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Abstract

We propose a new array configuration composed of multi-scale scalar arrays and a single triangular spatially spread
electromagnetic-vector-sensor (SS-EMVS) for high-accuracy two-dimensional (2D) direction-of-arrival (DOA)
estimation. Two scalar arrays are placed along x-axis and y-axis, respectively, each array consists of two uniform linear
arrays (ULAs), and these two ULAs have different inter-element spacings. In this manner, these two scalar arrays form a
multi-scale L-shaped array. The two arms of this L-shaped scalar array are connected by a six-component SS-EMVS,
which is composed of a spatially spread dipole-triad plus a spatially spread loop-triad. All the inter-element spacings
in our proposed array can be larger than a half-wavelength of the incident source, thus to form a sparse array to
mitigate the mutual coupling across antennas. In the proposed DOA estimation algorithm, we perform the
vector-cross-product algorithm to the SS-EMVS to obtain a set of low-accuracy but unambiguous direction cosine
estimation as a reference; we then impose estimation of signal parameters via rotation invariant technique (ESPRIT)
algorithm to the two scalar arrays to get two sets of high-accuracy but cyclically ambiguous direction cosine
estimations. Finally, the coarse estimation is used to disambiguate the fine but ambiguous estimations progressively
and therefore a multiple-order disambiguation algorithm is developed. The proposed array enjoys the superiority of
low redundancy and low mutual coupling. Moreover, the thresholds of the inter-sensor spacings utilized in the
proposed array are also analyzed. Simulation results validate the performance of the proposed array geometry.
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1 Introduction

In the field of array signal processing, the direction-of-
arrival (DOA) estimation accuracy of the incident sources
is proportional to the aperture of the antenna array, and
therefore an array with a larger aperture is desired [1].
However, to avoid the phase ambiguity in DOA estima-
tion, it is generally believed that the spacing between
adjacent antennas should not be greater than A /2, where A
denotes the wavelength of the incident signal [1, 2]. In this
way, a large aperture array usually requires more antennas
and thus increases the cost as well as the mutual cou-
pling between antennas. In order to mitigate this issue,
various sparse array configurations and the correspond-
ing DOA estimation algorithms have been developed. One
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type of sparse array is constructed by multiple widely sep-
arated sub-arrays [3-5], and the corresponding estima-
tion of signal parameters via rotation invariant technique
(ESPRIT)-based algorithms which used the dual-size or
multiple-size invariance within these arrays were devel-
oped therein. Another type is designed to obtain as many
as degrees-of-freedom (DOFs) to resolve more sources
than sensors, such as the minimum-redundancy array [6],
the nested array [7], and the co-prime array [8]. Their
DOA estimation algorithms focused on using the high
order statistic characteristics of the received data of the
sparse array to increase the number of DOF and thus often
required a large computational workload.

In the meantime, the electromagnetic-vector-sensor
(EMVS) [9] has received extensive attention in array signal
processing recently as well as other polarization antenna
arrays [10-16]. EMVS can not only provide the DOA
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estimation of the signal, but can also give the polar-
ization information. An EMVS usually consists of three
orthogonally oriented dipoles and three orthogonally ori-
ented loops to measure the electric field and the mag-
netic field of the incident source [17]. Unfortunately, due
to the collocated geometry, the mutual coupling across
the EMVS components affects the performance of the
algorithm severely. In 2011, Wong and Yuan [18] pro-
posed a SS-EMVS which consists of six orthogonally
oriented but spatially non-collocating dipoles and loops.
This SS-EMVS reduces the mutual coupling between
antenna components, and the developed algorithm retains
the effectiveness of the vector-cross-product algorithm
[9]. Following this, various spatially spread polarization
antenna arrays have been proposed [19-23]. Li et al. [24]
presented many geometry configurations of the SS-EMVS
and a nonlinear programming-based DOA estimation
algorithm. Yuan [25] proposed the way how the four/five
spatial noncollocated dipoles/loops were placed to esti-
mate multi-source azimuth/elevation direction finding
and polarization. The array configuration of the SS-EMVS
was further investigated in [11, 26].

Most recently, there are some research on the combi-
nation of EMVS and sparse array and the corresponding
parameter estimation algorithms. For example, Han et
al. [27] developed a nested vector-sensor array, He et al.
[28] proposed a nested cross-dipole array, and Rao et al.
[29] proposed a new class of sparse vector-sensor arrays.
Various compositions of sparse acoustic vector-sensor
arrays to estimate the elevation-azimuth angles of coher-
ent sources were presented in [30]. In [21], we proposed
a multi-scale sparse array with each sensor unit consist-
ing of one SS-EMVS, which is capable of estimating the
2D directions and polarization information of the source
simultaneously. However, the estimation accuracy for one
of the two direction cosines is limited (by the aperture of
a single SS-EMVS) since the sparse array is only extended
along one axis. Furthermore, the unit of the aforemen-
tioned array is a six-component SS-EMVS, and therefore,
the cost and redundancy of the whole array are still high.

In order to tackle the limitation of the sparse array
developed in [21], in this paper, we propose a new array
geometry composed with multi-scale scalar arrays and a
single triangular SS-EMVS, and develop the correspond-
ing 2-D DOA estimation algorithm. The proposed array
consists of an L-shaped scalar array and a triangular SS-
EMVS. The two arms of the L-shaped scalar array are
connected by a triangular SS-EMVS, which is placed in
such a way that the vector-cross-product algorithm can
be applied on it for DOA estimation. The scalar sen-
sors in each arm of the L-shaped array can be divided
into two uniform linear sub-arrays with different inter-
sensor spacings. Owing to the spatially spread geometry
of the SS-EMVS and the different inter-sensor spacings
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of the two sub-arrays, we can obtain multiple estimates
of target parameters. From the SS-EMVS, we can obtain
an unambiguous but low-accuracy estimates and a rela-
tively high-accuracy but ambiguous estimates of incident
sources using the vector-cross-product algorithm [18].
In addition, we can obtain two high-accuracy but cycli-
cally ambiguous estimates of desired direction cosines by
applying the ESPRIT algorithm to the corresponding two
sub-arrays in the L-shaped array, respectively. Following
this, we develop a three-order disambiguation method
to obtain the final high-accuracy and unambiguous esti-
mates of target DOA.

The proposed array integrates the advantages of sparse
(scalar) array and SS-EMVS in reducing mutual coupling
and achieving high-accuracy DOA estimation. Moreover,
we only use a single SS-EMVS along with the L-shaped
scalar array to achieve high-accuracy DOA estimation,
and thus the cost, the redundancy of the proposed array,
and the computational workload of the corresponding
DOA estimation algorithm decrease significantly.

The rest of this paper is organized as follows. Section 2
describes the proposed array geometry. Section 3 devel-
ops the proposed algorithm for DOA estimation. In
Section 4, numerical examples are provided to show the
effectiveness and advantages of the proposed array and
algorithm. Section 5 concludes the paper.

2 Array geometry
2.1 Triangular spatially-spread
electromagnetic-vector-sensor

Figure 1 depicts the array configuration for the triangu-
lar SS-EMVS used in our paper, where one dipole e, is
placed at the origin (of the Cartesian coordinate system)
and the other two dipoles are placed along x-axis and
y-axis. The distance between e, and ey is A, and the dis-
tance between ey and e, is Ay .. The loops of the SS-EMVS
are placed in such a way that the vector-cross-product
algorithm can be adopted for DOA estimation, i.e., ey_e; =

— N — N
—hyh, and ey€, = —hyh, [11], where xy denotes a vector
from point x to point y and 4, is located at (xy, ¥4, z1,). The
positions of the three dipoles and the three loops form
two right-angled triangles, and thus we name it as the ¢ri-
angular SS-EMVS. It is worth noting that both A, and
Ay, can be larger than a half-wavelength of the signal.
Therefore, the SS-EMVS itself is a sparse array.

Besides, the configuration of the SS-EMVS used in
[21] is based on two parallel lines. It can only expand
in one direction; the estimation accuracy for another
direction cosine is limited. By contrast, the triangular SS-
EMVS depicted in Fig. 1 has two direction extensions.
Therefore, this configuration can provide relatively higher
accuracy direction-cosine estimates for the two direction
consines along the x- and y-axis, respectively, and thus
higher accuracy estimates for 6 (elevation angle) and ¢
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Fig. 1 Configuration of the triangular SS-EMVS [11]. The source is located at elevation angle 6 and azimuth angle ¢

(azimuth angle) through the vector-cross-product algo-
rithm. Thereby, it is reasonable to use this configuration
of SS-EMVS to extend the aperture of the array by con-
structing a 2D L-shaped array.

Consider a far-field source, located at elevation angle
0 €[0,7] and azimuth angle ¢ €[0,2r), with polariza-
tion parameters (y,n), where y refers to the auxiliary
polarization angle and 7 represents the polarization phase
difference. The array manifold of the triangular SS-EMVS
in Fig. 1, a, can be denoted by the electric-field vec-
tor e =[ey, ey, e,)7 and the magnetic-field vector h =
[ hx, By, h T by taking account of the inter-dipole/loop
spacings {Ayy, Ay},

1 e
¢ % Dyy ex
) y
e]%”(Ax,yvay,zu) e
_ Z
a= e—jo” (Xpu+ypv+zpw—20,yv) O hx ’
e_jon [(putypvtzpw) _Ax,yv] hy
o Z L@ty v+2w) —(Bgyvt By za0)] he
1)
where
ex cos ¢ cos b —sing
ey sin ¢ cos @ cos ¢ 4
e; | _ —sin6 0 sin y /"
hy | —sin¢ —cos¢ cosf cosy
hy cos¢p  —singcosb
h, 0 sinf
2)

and A represents the wavelength of the signal, the super-
script ()T is the transposition operator, ® denotes
Hadamard (element-wise) product, j = +/—1, and

u = sinf cos ¢
v = sinfsin¢ (3)
w = cosf

represent the direction cosines along the x-, -, and z-axis,
respectively.

2.2 Design of proposed array

Figure 2 demonstrates our proposed array configuration
composed of an L-shaped sparse scalar array and a single
triangular SS-EMVS. The triangular SS-EMVS is located
at the origin and two scalar arrays are placed along the
x-axis and y-axis, respectively. The antennas on the two
arms of the L-shaped array are oriented differently, i.e.,
along with e, and e;, respectively. Each arm of the L-
shaped array consists of two sub-arrays. Taking the arm
along with the y-axis as an example, the first sub-array,
which consists of the first n; dipoles (including the e, in
the triangular SS-EMVS located at the origin), is placed
with inter-sensor spacing D; > Ay > A/2; the second
sub-array, which consists of the last ny dipoles, is placed
with an even larger inter-sensor spacing Dy = m D,
where m; is an integer. Futhermore, we can see that the
first sub-array and the triangular SS-EMVS share a same
ex. Similarly, the arm of the L-shaped array along with the
x-axis consists of two sub-arrays with inter-sensor spac-
ings D3 > Ay, > A/2 and Dy = m3D3, respectively,
where m; is an integer; the first sub-array and the trian-
gular SS-EMVS share a same e;. It should be noticed that
the dipoles placed along the x-axis and the y-axis are of
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Fig. 2 The proposed array configuration. The triangular SS-EMVS in Fig. 1 is located at the origin.The scalar array whose unit is e, is extended along
y-axis. The inter-sensor spacing in sub-array 1 is D1 and the inter-sensor spacing in sub-array 2 is D5, respectively, where D, = mD; and

Dy > Ayy > A/2.Similarly, the scalar array whose unit is e; is extended along x-axis. The inter-sensor spacing in sub-array 3 is D3 and the
inter-sensor spacing in sub-array 4 is Dy, respectively, where Dy = my;D3 and D3 > Ay, > 1/2

different orientations, and they are the same as the dipoles
of the triangular SS-EMVS along with the corresponding
axis.

We take the scalar array placed along the y-axis as the
example again to illustrate the design idea of the proposed
array. The triangular SS-EMVS can provide a coarse esti-
mate of v by applying the vector-cross-product algorithm.
And the estimation result can be used as a reference for
solving the ambiguity problem of the v estimate from the
first sub-array in the scalar array. Therefore, the inter-
sensor spacing of the first sub-array can be larger than
A /2. The aperture of the first sub-array is much larger than
the inter-dipole/loop spacings of the triangular SS-EMVS
and thus we can obtain a finer estimate of the v with the
first sub-array. Similarly, the disambiguated estimation
result of the first sub-array can be adopted as the refer-
ence of the second sub-array and finally a high-accuracy
v estimation result is obtained. Similarly, we can use the
same method for the scalar array placed along the x-axis
to obtain a high-accuracy u estimation result. Finally, the
high-accuracy angular estimation results can be calcu-
lated with the high-accuracy # and v estimations. Besides,
the inter-sensor spacings of the two scalar arrays are much
larger than X1/2, and thus the apertures and the angle
estimation accuracy of the proposed array will be bet-
ter than the L-shaped array with 1 /2 inter-sensor spacing
[31] and the L-shaped nested array [32] with A/2 inter-
sensor spacing in the first sub-array. These probabilities
will be verified in Section 4 through extensive simulation
experiments. In addition, owing to that the scalar arrays
are extended along x-axis and y-axis at the same time, 2D
high-accuracy DOA estimations can be obtained simulta-
neously. This can not be reached by the multi-scale EMVS
array proposed in [21], where the multi-scale aperture
extension is only in one axis. Furthermore, only a single

SS-EMVS (along with scalar sensors) instead of many
SS-EMVSs are adopted in the proposed array, and thus
the cost and redundancy of the array will be decreased
dramatically.
2.3 Array manifold and signal model
The array manifold of the scalar array placed along the y-
axis is

1 -
e/ FEDv

n

e/ & (m—1)D1v

ay= e—jo”VllDlV ®al1], (4)

e~/ (mD1+D2)v
)

e*joﬂ[mDrHVIZ*l)DZ]V
where ® denotes the Kronecker product, a is defined in
Eq. (1), a[ 1] is the first row of &, and thus @, € CN1x1 with
N = m + no.
Similarly, the array manifold of the scalar array placed
along the x-axis is
_ 1 -
e_jonD3”
n3
2 )
e/ 5 (m3—=1)Dsu
as 6—127""3D3M
6—1'2-7"(713133+D4)u
i

o) 2 [13D3+(ns—1)Dylu
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where a[ 3] is the third row of @, and a, € CN2*1 with
Ny = n3 + na.

Following this, the array manifold of the proposed array
is
a
ay[2:N1] |, (6)
a,[2: Ny

b=

where a,[2 : Ni] consists (N1 — 1) rows in ay, i.e., from
the second row to last row of a,, and a,[2 : N>] consists
(N; — 1) rows in ay, i.e., from the second row to last row
of a,. Therefore, b € CN*1 with N = N} + Ny + 4.

In a multiple sources scenario with K incident signals,
the received data of the proposed sparse array at time £ is

K

x(t) = Y brsi(t) + n(t) = Bs(t) + n(t), 7)
k=1

where by € CN*! represents the array manifold of the
kth signal and B =[by,by,...,bx]e CN*K () =
[s1(2),52(2), . ..,sx()]T denotes the incident signal vector,
and n(t) signifies the additive white Gaussian noise.

Considering L time snapshots, we can form the received
data matrix

X Z[x(tl)vx(tZ)y “e ’x(tL)] . (8)

The following task is to estimate the DOA of these K
sources from X € CN*L which will be described in detail
below.

3 Procedure of multi-scale DOA estimation
algorithm

As described in Section 2.2, we can obtain multiple esti-
mates of the direction cosines along y-axis and x-axis by
the received data of the triangular SS-EMVS and the two
arms of the L-shaped array. However, some of the esti-
mates are cyclically ambiguous and we will use the coarse
estimates to disambiguate the ambiguous estimates step
by step. The procedure of the entire algorithm is shown in
Algorithm 1.

In the following, we give the detailed derivation and
progress of the DOA estimation algorithm.

3.1 ESPRIT-based method to estimate the two sets of
high-accuracy but cyclically ambiguous v and two sets
of high-accuracy but cyclically ambiguous u

The array covariance matrix can be calculated by the

maximum likelihood estimation

Txxr, ©9)

L

where the superscript /7 is the Hermitian operator. Fol-

lowing [4], let E; € CN*K be the signal subspace matrix

composed of the K eigenvectors corresponding to the

K largest eigenvalues of R. And E; has the same signal

R:
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Algorithm 1 Proposed DOA estimation algorithm

1. Estimate the two sets of high-accuracy but cyclically
ambiguous y-axis direction cosine v estimations by
the two sub-arrays placed along the y-axis using the
ESPRIT algorithm [33].

2: Estimate the two sets of high-accuracy but cyclically
ambiguous x-axis direction cosine u estimations by
the two sub-arrays placed along the x-axis using the
same method as mentioned in 1.

3: Estimate the unambiguous but low-accuracy y-axis
direction cosine v and x-axis direction cosine u as well
as the relatively high-accuracy but ambiguous y-axis
direction cosine v and x-axis direction cosine u from
the triangular SS-EMVS as in [11].

4: Disambiguate the ambiguous u and v estimates pro-
gressively and calculate the final (high-accuracy)
arriving angles of the sources.

subspace with the manifold matrix B and thus

E; = BT, (10)

where T denotes an unknown K x K non-singular matrix.
According to the composition of the proposed array, we
divide the manifold matrix B into three parts, ie., By,
By, and By, where B; € COxK g composed of the top
six rows of B (corresponding to the triangular SS-EMVS),
B, € CNixK g composed of the first row of B and (N] —1)
rows from the seventh row (corresponding to the senors
on the y-axis), and B, € CN2*K is composed of the third
row of B and (N> — 1) rows from the (N7 + 5)th row (cor-
responding to the senors on the x-axis). In this way, By,
By, and B, signify the manifold matrices of the SS-EMVS
and the two scalar arrays, respectively. Similarly, we can
divide the signal subspace matrix E; into three parts with
the same method, i.e., E,, Es, and E;,. Thus, according to
the relationship between array manifold matrix and signal
subspace [33] described in Eq. (10), we have

E,, = BT, (11)
E;, = B,T, (12)
E, = B,T. (13)

After this, we deal with E;, and E,, separately to get
two sets of the high-accuracy but cyclically ambiguous
estimates of v and u. Let us take E;, as an example to
demonstrate the derivation. According to the different
inter-sensor spacings of the scalar array whose unit is ey,
we divide the E;, into two parts, i.e, E; , and E; ,, where
E,, eCn *K and E;, € C" *K correspond to sub-array
1 and sub-array 2, respectively. Recalling Fig. 2, both sub-
array 1 and sub-array 2 are uniform arrays, so the ESPRIT
algorithm can be used to E;,, and E;, to obtain two sets
of the high-accuracy but cyclically ambiguous estimates of
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v, respectively. The process is consistent with that devel-
oped in [21]. Since the inter-sensor spacing D; and D, are
both larger than A /2, two sets of high-accuracy but cycli-

~fine,1
cally ambiguous y-axis direction cosine estimations 7,

and v,f(me’ can be derived.

In addition, it can be seen from [21, 34] that due to the
same column permutatlon of T, these two sets of v estima-
tions {Afme’ } _, and {Aﬁne’ }Ille are paired automatically.

Be51des, we can obtam two sets of high-accuracy but
cyclically ambiguous u estimations, &2“1 and o Aﬁnez by
applying similar process to E;,. And the u estlmatlons,
itf(me Land & Afme 2 are also paired automatically.

3.2 Vector-cross-product algorithm to estimate the
unambiguous but low-accuracy v and u and the
relatively high-accuracy but ambiguous v and u

According to [18, 24], we need to get the estimate of the

array manifold in order to apply the vector-cross-product

algorithm to process the data of the triangle SS-EMVS.

And recalling Eq. (11), we can estimate the manifold

matrix of the SS-EMVS with

B; =E, T}, (14)
where B, = [@1,...,ax] and d is the estimation of array
manifold of kth source at the triangular SS-EMVS.

The following step is to apply the vector-cross-product
algorithm to ay. For convenience, we set 0 €[0,7/2], ¢ €
[0,77/2), and we omit the source index k and recall Eq. (1),

Ay &
where we have a = [eT,h ] with

€x
= P22 (A eiT”AA"'y‘;ey ’ 1
& (BayV Byt g,
o) B Gty w—208yv) I,
h= e*iZT" [(ensetyntzpw) — Ayyv] hy (16)

e_joﬂ [(xWhVﬂhW) - (Ax,yw'Ay,z u)] hZ

According to the vector-cross product algorithm of the
triangular SS-EMVS [11], we have,

@) x (h)*
@ =
we I Dy
:ei%”(xhuﬂhv-ﬂhw VeszT”(AxvarAy,zu) (17)
we I F Dryv

where x denotes the vector-cross product and p is calcu-
lated from a.

From the Poynting vector of kth source p; derived in
Eq. (17), we can obtain the unambiguous but low-accuracy
estimations of {uy, vk, wi} by
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w e = |[peh |,
viotse = lpila s (18)
wietse = |[pels s

where [ ]; extracts ith element of the vector inside [ ], and
| | denotes the absolute value of the entity inside | |.

In the following, we estimate the relatively high-
accuracy estimation of # and v from the displacement of
the dipoles/loops within the triangular SS-EMVS, i.e., A,
and A, .. From p, we can get

-2
ue/T”Ax,yv
Zpl _ |

22
wel 7 Byt

pP’'=pOe , (19)

where © denotes the Hadamard (element-wise) product.
Based on Eq. (19), we have one set of relatively high-
accuracy but ambiguous estimations of u and v by

A1

~fine, 0 0
= — Z s 20
af e (20)
: A1
~fine, 0 0
0= -/ . 21
Yk 21 Ay {lpih} =

It is worth mentioning that the unambiguous but
low-accuracy estimations {u“’arse}K and the relatively

high-accuracy but ambiguous estimations {ufme' }K_, are
paired automatically, and due to the same T in Eq. (14), all
u estimations have been paired, the same for v. Moreover,
for 6 and ¢ in other angular ranges, the changes are the
plus or minus signs in Egs. (18) and (19) [11].

3.3 Disambiguate the estimations of u and v and
calculate the final estimates of § and ¢
As can be seen from the above Sections 3.1 and 3.2, for
both u# and v, there are three sets of high-accuracy but
ambiguous estimations and one set of unambiguous but
low-accuracy estimation. The three sets of ambiguous
estimations correspond to different levels of ambiguity,
and a three-order disambiguation method is utilized here.
We take v as the example to demonstrate the deriva-
tion and the process for u is similar. Recalling Fig. 2, we
know the ambiguity of mee 0 ?/ime ! and Vime 2 correspond
to Ayy, D1, and Dy, respectlvely And due to the fact that
Dy > D1 > A,,, the order of solving ambiguity should be

~fine,0 ~fine,1 ~fine,2
Vkll’le , kll'le , V ne, Step by step
3.3.1 Disambiguate "° with v{oarse
With v;°¢ as the reference value, the ambiguity of ¥ Af‘“e 0
is solved and the result can be obtained by
i A A
e d = et 4y (22)
Ay y
7 — coarse __ (23)

I = argmin |V} —h3
I xy
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where R—l — f/gne,o) %—I <h < L(l - f/?ne’o> A;‘yJ
with [€] denoting the smallest integer not less than € and

Le] referring to the largest integer not more than € [35].

~fine, 1 fine, 0

3.3.2 Disambiguatev, ™ withv,

With vime’ as the reference value, the ambiguity of Vﬁ"e 1

is solved, and the result can be obtained by

; . A
mee, 1 _ fme, + 127

k - D

l» = argmin
)

(24)

fine, 0 ~fine ,1
Ve o T Vk

where [(—1 - f/]f(me’l> %—‘ <h< L(l - f/]f(me’l> %J

~fine,2

A

fine, 1

3.3.3 Disambiguatev, ™ with v,

Finally, we can disambiguate vf{mez with v 1 derived

above to estimate the final high-accuracy and unambigu-

fine,

ous estimation of meal
final _ pfine, A
Vkma _ me _|_1317 (26)
2
7 . fine, 1 ~fine ,2 A
I3 = argmin |v;" " =9 — 35—, (27)
& I3 k k D2

L) 2 2y = | (1) 22|
Similar to the above three steps, we can get the final
high-accuracy and unambiguous estimation of u]f(i“al by
replacing {Ayy, D1, D2} with {A, ;, D3, Dy}, respectively.
After getting the unambiguous and high-accuracy esti-
mation of {u,v}, we can get the high-accuracy DOA
estimation of kth source by (3) and the results are

. inal\ 2
O = arcsin <\/ (ui‘nal) + (v,f(‘“al) ) )
N Viinal
¢r = arctan W .

3.4 Analysis of the three inter-sensor spacings

Larger inter-sensor spacing brings in larger aperture and
further leads to higher direction estimation accuracy. At
the same time, it makes the disambiguation more diffi-
cult. There is a threshold in the process of disambiguation
[36]. When the inter-sensor spacing value is larger than
the threshold, the probability of successful disambiguation
will break down. Therefore, we analyze the threshold of
the inter-sensor spacing by analyzing the success proba-
bility of the disambiguation process.

Let us take v as an example to demonstrate the deriva-
tion again. According to the proposed array configuration
shown in Fig. 2, there are three scales, i.e., {Ay,, D1, D2}
for v. Thus, we utilize the three-order disambiguation pro-
cess in Section 3.3 to obtain vl Take the A, as an
example, recalling Eq. (23), only by satisfying the following
equation

where [ (-

(28)
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A
274y

ref coarse

Vi~ Vk <

(29)

can the disambiguation process be successful. The value
of |Vref Vcoarse| is the estimation error of the v;°"¢. We
hereby assume that the angle estimation error follows a
Gaussian distribution [37]. According to the distribution
function of the normal process [38], the probability of
the sample error falling into the scope of 3o is about
99.85%, where o is the standard deviation of the samples.
Thus, when the root mean square error (RMSE) of v{°**¢
satisfies

A
O coarse <

k 6A, ’y

(30)

we consider that the disambiguation process is successful.
Therefore, we can calculate the threshold of A, by

A threshold __ A

_— 31
xy 6o‘vioarse ( )

We can obtain the threshold of D; and D; using the
similar method. Furthermore, considering the practical
applications, we can only obtain the Cramér-Rao bounds
(CRB) of each parameter rather than RMSE. Thus, we can
substitute the RMSE of vf(me’o and vf{me’l with their CRB to
calculate the thresholds of D; and D,. However, due to the
CRB is much less than the RMSE, the calculated values of
thresholds of D; and D, will be far larger than the actual
values. And this probility will be verified in Section 4.

Similar to v, we can obtain the corresponding thresholds
of {Ayz, D3, Dy} for u.

Owing to the fact that RMSE is related to signal-to-
noise ratio (SNR), the snapshot number and the source
direction, we will analyze the influence of these factorsin
Section 4.

The derivation of the CRB for the new array is similar to
that in [21], and we will use the corresponding equations
therein to derive the CRB in the following simulations.

4 Simulation results and discussion

In this section, we conduct simulations to verify the effec-
tiveness and performance of the proposed array geometry
and algorithm. For simplicity, we set 8 €[0,7/2], ¢ €
[0,7/2). The coordinate of the /4, of the SS-EMVS is
X Y zn) = (7.51,7.54,51). The RMSE of parameter
estimation is defined as

1 M
S r Z (&m - Ol)zﬁ
M m=1

where &, is the estimation of mth trial of parameter o, and
M is the number of Monte Carlo trials. We assume that
the number of sources is known a priori in the following
simulations.

RMSE = (32)
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4.1 Parameter estimation results

In the first example, we consider that there are N = 12
ex’s placed along the y-axis direction and N = 12 e,s
placed along the x-axis direction. The first six e,’s com-
pose the sub-array 1 with inter-sensor spacing D; =
35A; the rest of the e,’s constitute the sub-array 2 with
inter-sensor spacing Dy = 7D; = 245A. Besides, the
first six e,’s compose the sub-array 3 with inter-sensor
spacing D3 = 35); the rest of the e;’s constitute the sub-
array 4 with inter-sensor spacing Dy = 7D3 = 245A.
For the triangular SS-EMVS, A, = A;, = 5A. There
are K = 2 pure-tone incident sources with unit power,
which have the numerical frequency f = (0.537,0.233),
elevation 6 = (42°,35°), azimuth ¢ = (55°52°), the
auxiliary polarization angle y = (36°,60°), and the polar-
ization phase difference n = (80°,70°) impinging on
the array. The number of snapshots is L = 200 and
SNR = 10 dB. The noise is a complex Gaussian white
noise vector with zero mean and covariance matrix o’L
Figure 3 shows the estimation results of the proposed
algorithm with 200 Monte Carlo trials. We can see that the
spatial parameters of all targets are correctly paired and
estimated.

4.2 Parameter estimation performance

In order to further exploit the performance of the pro-
posed array, we hereby conduct various simulations with
different parameters of the array and sources.

4.2.1 Performance versus SNR

In the first example, we consider the performance of
parameter estimation versus SNR. Figure 4 a shows the
RMSE of all estimates of u, i.e., u"®0, yfinel and 5final
of the proposed array versus SNR compared with "¢
and the CRB. Figure 4 b shows the RMSE of all esti-
mates of v, e, vine0, yfinel anq yfinal of the proposed
array versus SNR compared with v°°®¢ and the CRB. It
can be observed that both #f™ and vi" improve sig-
nificantly from their coarse estimates, #“°"*¢ and %3¢,
respectively; both of them are getting closer to their CRB.
Moreover, the disambiguation described in Section 3.3
is similar to that of dual-size ESPRIT [4]. There exists
a SNR threshold in the process of disambiguation [39].
The parameter estimation performance will be degraded
significantly if the SNR is lower than the threshold.
When SNR is larger than this threshold, the performance
improves dramatically, and the performance is getting bet-
ter with the increase of SNR. From Fig. 4, we can see
that the SNR threshold of # and v are 7 dB and 6 dB,
respectively.

In addition, we compare the proposed array with the
array configuration in [32] which has the same number of
scalar sensors, and the array configuration in [21] which
has the same number of SS-EMVSs in y-axis. Figure 5

(2019) 2019:44
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a and b shows the RMSE of u and v estimates versus
SNR for all three arrays, respectively. Comparing with the
2D nested scalar array in [32], the proposed array has a
much larger aperture extension and lower mutual cou-
pling; comparing with the linear multi-scale SS-EMVS
array in [21], the proposed array has a much larger aper-
ture extension in x-axis. We can observe from Fig. 5 a that
the performance of the proposed array of u estimation is
higher than those of the two other arrays when SNR is
larger than the threshold. That is because the array aper-
ture of the proposed array in x-axis is much larger than
the two other arrays. From Fig. 5 b, we can observe that
the performance of the proposed array of v estimation is
a little worse than that of the array configuration in [21].
However, the SNR threshold of the proposed array is far
smaller (7 dB).

Moreover, we consider another configuration of the pro-
posed array in which the array is extended along y-axis and
z-axis, respectively. And the triangular SS-EMVS of this
configuration is placed along y-axis and z-axis, respec-
tively. The DOA estimation process of this array is similar
to that of the proposed array, except that the correspond-
ing direction cosines change from u and v to v and w.
Using the same simulation conditions as in Section 4.1,
we compare the parameter estimation performance of this
array configuration with the proposed array. The results
are given in Fig. 6. We can observe that RMSEs of u of
these two configurations are similar, and the same behav-
ior happens for v of the proposed array and w of another
configuration. But we still can see that the accuracy of
the proposed array are marginally better than the other
configuration when SNR is large enough, i.e., > 8 dB.

As the arriving angle estimation is determined by u
and v jointly, in Fig. 7, we show the RMSEs of the esti-
mated 0 and ¢ of all array configurations versus SNR
and the CRB of the proposed array. It can be seen that
the SNR threshold of 6 and ¢ of the proposed array
are both 7 dB, the lowest one of the threshold of # and
v. Moreover, the performance of the proposed array is
the best in all array configurations. Therefore, our pro-
posed array is a good trade-off of mutual coupling, esti-
mation accuracy, and robustness (lower SNR threshold)
to noise.

4.2.2 Performance versus snapshot number

In the next example, we consider the performance of
DOA estimation versus snapshot number L. Figure 8 a
and b show the RMSEs of 6 and ¢ estimation of all
array configurations versus L at SNR=10 dB, respec-
tively. We can see that the parameter estimation perfor-
mance of the proposed array improves with the increase
of snapshots, and the performance of the proposed
array is the best among all array configurations once
again.
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4.2.3 Performance versus inter-sensor spacing

In the third example, we consider the performance of
parameter estimation versus inter-sensor spacings. We
take one target as an example, and set A, = A,,
in the SS-EMVS with SNR=10 dB. The elevation of
the target is 6 35°, azimuth ¢ 52°, the auxil-
iary polarization angle y = 36°, and the polarization
phase difference n = 80°. As mentioned in Section 3.4,
there is a threshold of inter-sensor spacing. Figure 9
shows the RMSE of #™ and 1"¢0 of the proposed

array versus A,,. Recalling Eq. (31), we can obtain
the threshold of A, at SNR=10 dB is AJ, 7.15A.
From Fig. 9, the threshold of A, is approximately 6A.
Thus, according to the obtained threshold and practical
applications, we set A,, = 5A. The same method can
be performed for A,,, Afc,y = 8.04A, and the threshold
of Ay, is approximately 8A from Fig. 9. Therefore, the
method derived in Section 3.4 for calculating the thresh-
olds of different inter-sensor spacings is effective. Similar
to Ay, weset Ayy = 5.

o @ RVISE of |
0— RMSE of u™°
== RMSE of u™™’
- RMSE of u™
=%=CRBofu

RMSE of u estimations

10%

-5 0 5 10 15 20
SNR(dB)

(a)

proposed array

0 =@~ RMSE of v*°'*®
‘ 0~ RMSE of vi"0
=2~ RMSE of v'™®
—fl— RMSE of v
== CRB of v

=)

RMSE of v estimations

20

10 15

5
SNR(dB)

(b)

Fig. 4 The RMSE of (a) u<®@e, (fine0 finel and findl compared with CRB, and (b) veoarse, yfined yfinel ang final compared with CRB using the
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In the second simulation, we set D; D3, and the
RMSE of ufi"®! and #f"®! of the proposed array versus
D, is shown in Fig. 10. Similar to A, ., we can calculate
the threshold of Dy and D3. But there is little different, as
mentioned in Section 3.4, we utilize the CRB of #"¢0 and
Wm0 instead of the RMSE to calculate the threshold of Dy
and D3. And the calculated value are Di = 161.5A and
Di = 197.5). From Fig. 10, we can obtain these thresh-
old values (D% = 761, D§ = 721). We know that CRB
is much smaller than RMSE. Therefore, we should set D
and D3 much smaller than the calculated threshold values.
Thereby, we set D; = D3 = 35).

In the third simulation, we set Dy = D, and plot the
RMSE of ufi" and #fi" of the proposed array versus Dy
in Fig. 11. Similar to D;, we can calculate the threshold
of Dy and Dy, Dé 8047.6). and Di 7857.91, by

CRB. From Fig. 11, we can obtain these threshold val-
ues (D5 = 2500, D, = 23001). Again, we should set D,
much smaller than the calculated threshold values, and
considering the practical applications, we set Dy = Dy =
245).

4.2.4 Threshold of inter-sensor spacing versus SNR

We investigate the threshold of inter-sensor spacing ver-
sus SNR. Take one target as example, and we set the
elevation of the target as & = 35°, azimuth ¢ = 52°, the
auxiliary polarization angle y = 36°, and the polarization
phase difference n = 80°. Other simulation conditions
remain the same with Section 4.1. Figure 12 shows the
thresholds of A, and A, versus SNR. It is seen that
the thresholds of A,, and A,, both increases as SNR
increases. And the thresholds of {D1, D3} and {D5, D4} are

10

+ RMSE of u (x-z configuration)
—fll— RMSE of u (proposed array)

::: RMSE of w (x-z configuration)

RMSE of v (proposed array)

10"

10°

RMSE of u, v and w estimations

-6

!

12

10
-5 5

10 20

SNR(dB)

Fig. 6 RMSE of parameters estimations of the two array configurations versus SNR
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shown in Figs. 13 and 14, respectively. The results are
similar to Fig. 12.

4.2.5 Threshold of SNR versus arriving angle

Lastly, we consider the threshold of SNR in the disam-
biguation process versus the signal arriving angle. Take
one target as the example, we set the auxiliary polariza-
tion angle of the target y = 36° and the polarization
phase difference n = 80°. We set another angle equals 45°
when we analyze one angle. Other simulation conditions
remain the same as in Section 4.1. Figure 15 shows the

threshold of SNR of u and v versus 6 and ¢. We can see
that the threshold of SNR is approximately symmetrical
with 90° for 6 and symmetrical with 0° for ¢. As we set
0 €[0,7/2] and ¢ €[0,7/2), the threshold of SNR is in
a lower range when the target is located in 6 €[20°,70°]
and ¢ €[20°,70°].

5 Conclusions

In this paper, a new array configuration composed
of multiple sparse scalar arrays and a single trian-
gle electromagnetic-vector-sensor is proposed, which

RMSE of uf@ gng vfina

+ ufinal

= Vfinal

1000 2000

Fig. 11 Threshold of D, and D4
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enjoys the superiorities of both the spatially spread
electromagnetic-vector-sensor and the sparse array. The
new array can provide four direction cosine estimates
with gradually improved accuracies, which are along
the x-axis and y-axis, respectively. Based on this, we
developed the algorithm for direction-of-arrival estima-
tion, which utilizes the approach of three-order dis-
ambiguation. We have analyzed the thresholds of the
inter-sensor spacings in the four uniform scalar sub-
arrays and conducted extensive simulations to validate

them. We compare the performance of the direction
cosine estimations of our array with the 2D nested scalar
array and the linear multi-scale SS-EMVS array. These
results demonstrated that our proposed array geome-
try enjoys the optimal trade-off on estimation accuracy,
mutual coupling, and robustness to noise. Moreover,
since only a single SS-EMVS is used with other scalar
sensors, the proposed array has achieved a good per-
formance with small redundancy, less elements, and
low cost.

Fig. 13 Threshold of D3 and Dy versus SNR
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