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Abstract

The localization of multiple wireless agents via, for example, distance and/or bearing measurements is challenging,
particularly if relying on beacon-to-agent measurements alone is insufficient to guarantee accurate localization. In
these cases, agent-to-agent measurements also need to be considered to improve the localization quality. In the
context of particle filtering, the computational complexity of tracking many wireless agents is high when relying on
conventional schemes. This is because in such schemes, all agents’ states are estimated simultaneously using a single
filter. To overcome this problem, the concept of multiple particle filtering (MPF), in which an individual filter is used for
each agent, has been proposed in the literature. However, due to the necessity of considering agent-to-agent
measurements, additional effort is required to derive information on each individual filter from the available
likelihoods. This is necessary because the distance and bearing measurements naturally depend on the states of two
agents, which, in MPF, are estimated by two separate filters. Because the required likelihood cannot be analytically
derived in general, an approximation is needed. To this end, this work extends current state-of-the-art likelihood
approximation techniques based on Gaussian approximation under the assumption that the number of agents to be
tracked is fixed and known. Moreover, a novel likelihood approximation method is proposed that enables efficient
and accurate tracking. The simulations show that the proposed method achieves up to 22% higher accuracy with the
same computational complexity as that of existing methods. Thus, efficient and accurate tracking of wireless agents is
achieved.
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1 Introduction
Technological advances have opened the door for a broad
variety of applications of mobile agents such as robots,
drones, and sensory agents, ranging from surveillance and
delivery tasks to aerial and underwater exploration. In
many of these applications, accurate localization of the
agents is essential for successful task completion. How-
ever, such localization often cannot be achieved using
satellite-based systems such as GPS. Instead, in many
cases, a set of local beacons1 is used, which facilitate
range- and/or bearing-based localization.

*Correspondence: schlupkothen@ice.rwth-aachen.de
Chair for Integrated Signal Processing Systems, RWTH Aachen University,
Templergraben 55, 52062 Aachen, Germany

1Beacons are stationary at positions that are known a priori.

However, in many scenarios, access to beacons is
limited. This may be because their placement is costly or
because good beacon locations cannot be determined a
priori. Examples of such scenarios include those involv-
ing underwater robots, rescue robots operating in cases
of disasters such as earthquakes, and the exploration of
subterranean fluid-carrying structures and pipes [1, 2]. In
particular, the inspection of pipeline systems, e.g., pre-
dictive maintenance, is an emerging application of minia-
ture wireless agents. This approach promises to make
obsolete the bulky robots that are currently used, which
require maintenance shutdowns and thus result in pro-
duction downtimes. For many of these pipeline systems,
the placement of beacons would be extremely costly. In all
these application cases, this beacon access limitation can
be overcome through the use of numerous cooperating
agents conducting range and/or bearing measurements
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between pairs of agents. In such application cases, on
which this paper focuses henceforth, the number of agents
to be tracked is fixed and known a priori. Moreover, due
to size constraints imposed on the agents and correspond-
ing energy limitations, offline processing of the agents’
readings, including the localization, is considered in this
work. Access to the agents’ readings is, thus, only possible
after the agents have been extracted from their operation
domain.
Because many agents are needed to accomplish these

tasks, computationally efficient methods are needed for
localization. Classical (single) particle filters (PFs), for
example, suffer from the “curse of dimensionality”, i.e., the
fact that an exponentially increasing number of particles
is required to accurately capture the posterior distribution
as more agents need to be tracked [3]. This is because the
dimensionality of the state space grows in proportion to
the number of agents. To this end, the concept of multi-
ple particle filtering (MPF), in which one particle filter is
employed for each agent individually, has been proposed.
However, in scenarios with limited access to beacons,
such a localization process relies in large part on mea-
surements between agents (agent-to-agent measurements
(AAMs)) rather than measurements between agents and
beacons (beacon-to-agent measurements). This results in
a nonseparable likelihood p(yi,k|xi,k , xj,k) because each
measurement depends on two filters (the filter for agent
i’s state xi,k at time step k and the filter for agent j’s state
xj,k at time step k), whereas the solution to the local-
ization problem requires a likelihood for each individual
filter, p(yi,k|xi,k) and p(yj,k|xj,k). Here, xi,k , yi,k denote the
state vector and measurements of agent i at timestep k,
respectively.
To address this issue, a new approximation of the sought

likelihood is proposed that enables higher tracking accu-
racy with lower computational complexity compared with
what can be achieved using the existing methods in the
literature.

1.1 Related works
The literature is rich in PF-based localization algorithms;
however, these algorithms are mainly used to track single
or non-interacting2 agents or targets [4–7]. To mitigate
the enormous computational complexity that is associated
with tracking many wireless agents, the concept of mul-
tiple particle filtering has been proposed. The problem
of obtaining likelihood information for each individual
filter based on a nonseparable likelihood was first dis-
cussed in [8]. The authors proposed a technique based on
the replacement of the dependency on xj,k with a depen-
dency on an estimate of agent j’s predicted state, x̂j,k =

2Interaction here refers to the presence of agent-to-agent measurement.

∑L
�=1 w

(�)

j,k−1x
(�)

j,k , where the
{
w(�)

j,k−1x
(�)

j,k

}

�
terms represent

the corresponding particles and their weights from agent
j’s filter. This method is called point estimate approxi-
mation (PE) throughout the remainder of this manuscript
because it employs the point estimates x̂j,k .
After a series of additional papers on this topic by the

same authors [9–13], in [14], the authors proposed an
improved version based on an approximation of the mea-
surement function around the mean of agent j’s states
via Taylor approximation. This scheme assumes the like-
lihood to be Gaussian, leaving only its mean and variance
to be determined. The mean is derived from a second-
order Taylor approximation, while the variance is derived
only from first-order approximations. Moreover, the cor-
responding equations are provided only for additive Gaus-
sian noise and scalar states. Consequently, to apply this
scheme to the problem at hand, the generalization derived
in this work is required.
Scenarios with uncertainty in the motion and/or the

measurement model are covered in [15, 16], for example.
In both works, a finite collection of models is considered
to address, e.g., the problem of tracking persons who can
change their modes of transportation (cycle, bus, train,
or car). Instead of resorting to model switching, both
works exploit Bayesian model averaging [17] in combina-
tion with sequential Monte Carlo methods. Theoretically,
the lack of information in p(yi,k|xi,kxj,k) about xj,k could
be interpreted as a lack of information about the measure-
ment function such that the different models Mq corre-
spond to p

(
yi,k|xi,kx(q)

j,k

)
, where

{
x(q)
j,k

}

q=1,...,Q
is a finite

collection of samples of possible agent states. However,
this interpretation, and thus also the methods presented
in both works, is inappropriate because it would require
each agent model to change at every time step. Moreover,
an enormous collection of samples (q = 1, . . . ,Q) would
be needed to cover all possible agent states, which would
result in high computational complexity.
The literature on related but different scenarios, in

which the number of targets or agents to be tracked is
unknown, offers a rich variety of solution approaches,
which are often based on random finite sets (RFSs) (see,
e.g., [18] for a review). In contrast to our scenario, where
the number of, e.g., rescue robots deployed in a zone
is known a priori, RFS scenarios include the tracking of
unknown or hostile aircraft using radar [19], pedestrian
tracking [20], active speaker tracking [21], and extended
object tracking, in which multiple objects generate an
unknown number of reflections that cannot be assigned a
priori to the different targets [22]. In our scenario, how-
ever, the number of agents is fixed and known, and thus,
there is no need to consider RFS theory or the additional
overhead associated with the estimation of the number
of targets. In the scenario considered in this work, the
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demand formany agents, their cooperative nature, and the
resulting agent-to-agent measurements are the predomi-
nant factors necessitating the schemes presented in this
work.
1.2 Contribution
To overcome the nonseparability of the likelihood, a new
method is proposed in this work that does not rely on Tay-
lor approximation and, thus, on the computation of gra-
dients or Hessians. Such a method is of particular interest
in the case of nondifferentiable measurement functions.
Instead of relying on derivatives, the proposed method
uses an approach that exploits Monte Carlo integration,
in which the filter output from the previous time step is
exploited to obtain likelihood information for the individ-
ual filters. This method is henceforth referred to as Monte
Carlo approximation (MCA).
Moreover, to enable this scheme to be compared with

state-of-the-art methods, the concept presented in [14]
is generalized to support multidimensional states. Addi-
tionally, it is generalized to multiplicative noise scenar-
ios, which are commonly encountered in the context of
distance-based localization, as such scenarios reflect the
property that measurements between agents separated by
farther distances are subject to stronger noise [23–26].
This generalized algorithm is henceforth referred to as
Gaussian approximation (GA).
Additionally, the GA scheme is extended to a full

second-order Taylor approximation. This method is
henceforth called extended Gaussian approximation
(EGA) and is intended to provide approximations that are
more accurate than those obtained using GA. An overview
of all discussed methods is given in Table 1.
In the presented simulations, it is shown that the

method proposed in this work outperforms all three
methods considered for comparison, i.e., PE [8], GA (gen-
eralized from [14]), and EGA, the last of which exploits
full second-order approximations. Moreover, it is shown
that the proposed method achieves higher localization
accuracy within the same computing time.

1.3 Organization
This work is structured as follows. Section 2 intro-
duces the concept of using MPF for tracking wireless
agents. Section 3.1 presents the GA likelihood approx-
imation technique. Sections 3.1.3 and 3.1.4 extend this
scheme to present the EGA method. In Section 4,
the proposed method is derived and presented. In
Section 5, the simulation setup and the performance met-
ric are discussed. In Section 6, numerical results are
presented, and all four considered methods are eval-
uated and compared. Finally, conclusions are drawn
in Section 7.

2 Problem introduction and systemmodel
This paper considers scenarios in which many wireless
agents are localized using pairwise measurements, such
as distance and/or bearing measurements. By the nature
of the abovementioned scenarios (cf. Section 1), a prede-
fined and known number of agents are employed which
are localized offline, after all agents’ readings have been
extracted in a fusion center. Consequently, no uncertainty
regarding the number of agents is considered. More-
over, access to beacons is assumed to be available but
limited, i.e., insufficient for agents to be accurately local-
ized solely by utilizing beacon-to-agent measurements.
For this reason, measurements between mobile agents
(AAMs) become increasingly relevant.
Because distance and bearing measurements as well

as realistic agent motions are nonlinear, PF approaches
are considered in this work. Subsequently, the important
properties of such approaches are briefly summarized.
In [27], the convergence of Monte Carlo approximation

in terms of the mean square error was shown to be of
O(L−1), where L is the number of particles. Moreover,
it has been shown that the error is (in theory) indepen-
dent of the state dimensionality. In practice, however, the
dimensionality plays a significant role in determining the
performance of PF techniques [3, 28]. For example, [3]
reported an exponential relationship between the number

Table 1 Features of the considered likelihood approximation schemes

Applicable to
vector states

Based on Gaussian
and Taylor approx.

2nd-order approx.
for mean

2nd-order approx.
for variance

Exploits full particle
description

PE, [8] �§ × n.a. n.a. ×
[14] ×† � � × ×
GA �‡ � � × ×
EGA � � � �� ×
MCA � n.a. n.a. n.a. �
n.a. not applicable
§Uses point estimates only
†Equations are given only for scalar states
‡Generalization of [14] to vector states
�Extension of GA to a full second-order Taylor approximation
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of particles and the state dimensions (“curse of dimen-
sionality”). Due to the high state-space dimensionality,
classical PF approaches demand unreasonable resources
for tracking many agents. Consequently, the concept of
multiple particle filtering, in which one filter is used for
each agent to be tracked, is considered instead.
A brief summary of the concepts relevant to particle

filter (PF) and multiple particle filter (MPF) is presented
below.

2.1 Particle filtering
In an agent tracking scenario, the objective is to sequen-
tially estimate the agents’ states, which are assumed to
be Markovian and discrete in time. Correspondingly, the
following state-space model for agent i is considered:

xi,k+1 = f̃ (xi,k , vk), yi,k = h̃
(
xi,k , xj,k , ηk

)
, (1)

where xi,k ∈ R
nx represents the state of agent i at dis-

crete time k and yi,k ∈ R
ny represents the corresponding

measurements of this agent, each of which, by the nature
of AAMs, also depends on the state vector of the other
agent involved in that measurement, xj,k (henceforth, the
notation j will be used to denote an agent other than
i). Moreover, vk and ηk denote the process noise and
measurement noise, respectively. The generally nonlin-
ear functions f̃ (·) and h̃(·) denote the state evolution and
measurement models, respectively, with noise included.
Equivalently, (1) can be written as

xi,k ∼ p(xi,k|xi,k−1), (2a)
yi,k ∼ p(yi,k|xi,kxj,k). (2b)

In the context of sequential Bayesian filtering in general
and the tracking of wireless agents in particular, the objec-
tive is to recursively estimate the posterior distribution

p(xi,k|yi,1:k) = p(yi,k|xi,k)p(xi,k|yi,1:k−1)

p(yi,k|yi,1:k−1)
, (3)

with the Chapman-Kolmogorov equation

p(xi,k|yi,1:k−1) =
∫

p(xi,k|xi,k−1)

· p(xi,k−1|yi,1:k−1)dxi,k−1

and

p(yi,k|yi,1:k−1) =
∫

p(yk|xi,k)p(xi,k|yi,1:k−1) dxi,k .

For general nonlinear state-space models, these integrals
cannot be computed analytically.
In sequential importance resampling (particle filter-

ing), the posterior distribution p(xi,k|yi,1:k) is therefore
approximated using L weighted particles, denoted by

{(
w(�)

i,k , x
(�)

i,k

)}L

�=1
, such that

p(xi,k|yi,1:k) ≈
L∑

�=1
w(�)

i,k δ
(
xi,k − x(�)

i,k

)
, (4)

where δ(·) is the Dirac delta function and � ∈ {1, . . . , L}
denotes a particle index. The weights are defined as

w(�)

i,k ∝ p
(
x(�)

i,0:k

∣
∣
∣ yi,1:k

)/
π
(
x(�)

i,0:k

∣
∣
∣ yi,1:k

)
, (5)

where π(xi,0:k|yi,1:k) denotes a proposal distribution (PD).
A PD is used because in most cases, directly sampling
from p(xi,0:k|yi,1:k) is impossible because it would require
solving complex and high-dimensional integrals for which
no general analytical solution is known [28].
If the PD is chosen to be factorized such that [29]

π(x0:k|y1:k) = π(xk|x0:k−1, y1:k)π(x0:k−1|y1:k−1)

= π(x0)
k∏

t=1
π(xt|x0:t−1, y1:t), (6)

then the following recursive expression for the weights
can be obtained [28]:

w(�)

i,k ∝ w(�)

i,k−1

p
(
yi,k

∣
∣
∣x(�)

i,k

)
p
(
x(�)

i,k

∣
∣
∣x(�)

i,k−1

)

π
(
x(�)

i,k

∣
∣
∣x(�)

i,0:k−1, yi,1:k
) . (7)

The performance of a PF scheme depends on the choice
of the PD π(·) and, as discussed in Section 2, on the num-
ber of particles L. Regarding the former, it is known that
an incremental variance-optimal PD is given by

π(xi,k|xi,0:k−1, yi,1:k) = p(xi,k|xi,k−1, yi,1:k);

however, in most cases, this PD is not available for sam-
pling [30]. This is because, in the general case, such
sampling would require solving an integral without an
analytical solution. Consequently, in many cases, the PD
is chosen to be

π(xi,k|xi,0:k−1, yi,1:k) = p(xi,k|xi,k−1), (8)

which further simplifies the PF (cf. (7)).

2.2 Multiple particle filtering
Multiple particle filtering aims to mitigate the curse of
dimensionality by employing a bank of parallel PFs. An
outline of the MPF procedure is given in Algorithm 1. The
differences with respect to the particle representations are
illustrated in Fig. 1. Most importantly, in classical PFs (cf.
Fig. 1a), a single particle is used to represent the states of
all M agents, making the computation of the likelihood
readily available.
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Fig. 1 Illustrations of a classical and bMPF particle representations, where nx denotes the dimension of the state vectors

By contrast, in MPF, a separate PF is employed for every
agent, resulting in the particle representation illustrated
in Fig. 1b. The benefits are a reduced state dimensionality
on a per-PF basis and the resulting improved conver-
gence properties. However, the separation of the PFs in
MPF causes the likelihood, which is required to com-
pute the weight update, for example (cf. (7)), to depend
on two particles representing two parallel, decoupled PFs
(i.e., the likelihood is nonseparable). In fact, in the con-
text of distance- and/or bearing-based tracking in our
scenario, the likelihood is nonseparable for the following
two reasons: first, the necessity of considering agent-
to-agent measurements, and second, the fact that both
types of measurements inherently depend on the states
of both agents conducting the measurements and their
corresponding filters.
In terms of likelihoods, the use of MPF in the context

of distance- and/or bearing-based tracking is associated
with the following problem: In MPF, only p(yi,k|xi,k , xj,k)
is readily available, where xi,k and xj,k are described by
particles of different PFs. However, for the weight update
in each PF (cf. (7) and line 5 in Algorithm 1), the full like-
lihood p(yi,k|xi,k) is required. Therefore, special proce-
dures are required to approximate the required likelihood.
The proposal of new procedures for this task is the main
topic of this work.
To this end, the following sections discuss three differ-

ent techniques for approximating p(yi,k|xi,k) for each PF
based on the particle information from all parallel PFs
{p(yi,k|xi,k , xj,k)}i.

3 Gaussian likelihood approximation via Taylor
approximation

The general idea presented in [14] is to approximate the
sought likelihood p(yi,k|xi,k) by a Gaussian distribution,
leaving only themeanE[ yi,k|xi,k] and varianceV[ yi,k|xi,k]
to be computed. In this case, xj,k is treated as a random
variable, and its moments are deduced from the particles.
The scalar measurements are subsequently assumed to

result from h̃(·):

yi,k = h̃(xi,k , xj,k , ηk), (9)

via Taylor expansion of the measurement function around
the mean of xj,k . In [14], corresponding equations for
scalar states xi,k and xj,k are given under the assumption

Algorithm 1:Outline of multiple particle filtering
1 Sample prior p(xi,0) for all agents;
2 foreach k = 1, . . . ,K do // Loop over all time
steps

3 foreach i = 1, . . . ,M do // Loop over all
agents

4 Time update using PD, cf. (8);
5 Weight update, cf. (7), for which an approximation

to p(yi,k |xi,k) is required;
6 Resampling;
7 end
8 end
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of additive measurement noise and for first-order approx-
imations of the variance only. In the remaining part of this
section, this approach will be extended to cover the gen-
eral case of vector states that is required for the described
application case.With this approximation of the bootstrap
filter, the weights are updated (cf. (7)) using:

p
(
yi,k|x(�)

i,k

)
= N

(
E

[
yi,k

∣
∣
∣x(�)

i,k

]
,V

[
yi,k|x(�)

i,k

])
. (10)

Subsequently, the derivations for additive white Gaus-
sian noise (AWGN)- and multiplicative Gaussian noise-
corrupted measurement are given in Sections 3.1.3 and
3.1.4, respectively. Note that both approximations are
needed due to the assumption of multiplicative Gaus-
sian noise- and AWGN-corrupted distance and bearing
measurements, respectively.

3.1 Taylor approximation
First, consider the following noise-free measurements:

yi,k = h(xi,k , xj,k). (11)

Subsequently, a second-order Taylor approximation
around the mean of xj,k is derived for h(xi,k , xj,k).

h(xi,k , xj,k) ≈ ĥ(xi,k , xj,k) (12)
≡ h(xi,k , x̄j,k) + g(xi,k , x̄j,k)x̃j,k

+ 1
2
x̃ᵀ
j,kH(xi,k , x̄j,k)x̃j,k

where x̃j,k ≡ xj,k − x̄j,k and E[ xj,k]≡ x̄j,k . Moreover, let
g(·) denote the gradient andH(·) denote the Hessian eval-
uated at x̄j,k , which are henceforth denoted simply by g
and H, respectively.

3.1.1 First moment of Taylor approximation
Lemma 1 (Expectation value of a quadratic form [31])

Let μ = E[ x] and � = Cov[ x]; then,

E[ xᵀAx]= tr[A�]+μᵀAμ, (13)

where A is a real square matrix.

The conditional expectation value of the Taylor approx-
imant ĥ(·) (cf. (12)) can be derived by using Lemma 1 in
step (†) below:

E

[
ĥ(·)

∣
∣
∣ ·
]

≈ h(xi,k , x̄j,k)2 + h(xi,k , x̄j,k)tr[H�xj,k ]

+ tr[ ggᵀ] (14)

where �xj,k ≡ Cov
[
xj,k

]
. Consequently, E

[
x̃j,k

] = 0.

Lemma 2 (Covariance of a quadratic form [32]) Let x
be multivariate Gaussian with mean μ and covariance
matrix �; then,

Cov
[
xᵀAx

] = 2tr
[
(A�)2

]+ 4μᵀA�μ, (15)

where (A�)2 = A�A� and A is a real square matrix.

3.1.2 Secondmoment of Taylor approximation
Based on Eq. 13, the second noncentral moment can be
calculated as follows:

E

[
ĥ2(·)

∣
∣
∣ ·
]

≈ h
(
xi,k , x̄j,k

)2 + h
(
xi,k , x̄j,k

)
tr
[
H�xj,k

]

+tr
[
ggᵀ�xj,k

]
+ E

[
gx̃j,k x̃

ᵀ
j,kHx̃j,k

∣
∣
∣ ·
]

+1
4
E

[(
x̃ᵀ
j,kHx̃j,k

)2
∣
∣
∣
∣ ·
]

,

(16)

where the last summand in (16) can be simplified using

E

[(
x̃ᵀj,kHx̃j,k

)2
∣
∣
∣
∣ ·
]

=Cov
[
x̃ᵀj,kHx̃j,k

]
+
(
E

[
x̃ᵀj,kHx̃ᵀj,k

∣
∣
∣ ·
])2

(‡)= 2tr
[(

H�xj,k

)2
]

+
(
E

[
x̃ᵀj,kHx̃ᵀj,k

∣
∣
∣ ·
])2

.

(17)

In step (‡), Lemma 2 is used, and consequently, the
assumption of Gaussian states xj,k is made. Moreover,
under the same assumptions, Appendix A shows that the
third-order moment in Eq. 16 vanishes; that is:

E

[
gx̃j,k x̃

ᵀ
j,kHx̃j,k

∣
∣
∣ xi,k

]
= 0.

Consequently, the second noncentral moment is
described by

E

[
ĥ2(·)

∣
∣
∣ ·
]

≈ h
(
xi,k , x̄j,k

)2 + h
(
xi,k , x̄j,k

)
tr
[
H�xj,k

]

+ tr
[
ggᵀ�xj,k

]
+ 1

2
tr
[(

H�xj,k

)2
]

+ 1
4

(
tr
[
H�xj,k

])2
,

(18)

3.1.3 Synthesis: Additive white Gaussian noise
measurements

For AWGN-corrupted measurements of the form:

yi,k = h
(
xi,k , xj,k

)+ ηk , ηk ∼ N
(
0, σ 2

η

)
, (19)

the desired moments can be found as follows:

E
[
yi,k

∣
∣xi,k

] ≈ E

[
ĥ (·) ∣∣xi,k

]
cf. (14), (20)

E

[(
yi,k

)2 ∣∣xi,k
]

≈ E

[
ĥ2 (·) ∣∣xi,k

]
+ σ 2

η cf. (18). (21)

The required variance V
[
yi,k

∣
∣xi,k

]
can then be easily

inferred via
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V
[
yi,k

∣
∣xi,k

] = E

[(
yi,k

)2
∣
∣
∣ xi,k

]
− (

E
[
yi,k

∣
∣ xi,k

])2 .

(22)

3.1.4 Synthesis: Multiplicative Gaussian noise
measurements

Similarly, in the case of multiplicative noise in the form

yi,k = h
(
xi,k , xj,k

)
(1 + ηk) , ηk ∼ N

(
0, σ 2

η

)
, (23)

the following is found:

E
[
yi,k

∣
∣xi,k

] ≈ E

[
ĥ (·)

∣
∣
∣ xi,k

]
cf. (14) , (24)

E

[(
yi,k

)2
∣
∣
∣ xi,k

]
≈ E

[
ĥ2 (·)

∣
∣
∣ xi,k

] (
1 + σ 2

η

)
cf. (18) .

(25)

The variance can again be obtained via (22).

4 Monte Carlo-based likelihood approximation
In the following, a Monte Carlo (MC)-based approxima-
tion of the sought likelihood is derived. This approxi-
mation is believed to be more accurate than the pre-
sented GA-based methods because it does not rely on
the assumption that the corresponding likelihood can be
modeled by a Gaussian distribution. Moreover, our MCA
method does not exploit only the first- and second-order
statistics of the particles; instead, it uses the complete
information carried by the particles.
The derivation is based on the following approximation

of the sought likelihood:

p
(
yi,k

∣
∣
∣x(�)
i,k

)
(¶)=≈ p

(
yi,k

∣
∣
∣x(�)
i,k , yj,1:k−1

)

=
∫

p
(
yi,k , xj,k

∣
∣
∣x(�)
i,k , yj,1:k−1

)
dxj,k

=
∫

p
(
yi,k

∣
∣
∣x(�)
i,k , xj,k , yj,1:k−1

)

· p
(
xj,k

∣
∣
∣x(�)
i,k , yj,1:k−1

)
dxj,k

=
∫

p
(
yi,k

∣
∣
∣x(�)
i,k , xj,k

)
p
(
xj,k

∣
∣
∣yj,1:k−1

)

︸ ︷︷ ︸
≡(�)

dxj,k ,

(26)

where (�) is given by the Chapman-Kolmogorov equation
and consequently can be computed as follows:

p
(
xj,k

∣
∣yj,1:k−1

) =
∫

p
(
xj,k

∣
∣xj,k−1, yj,1:k−1

)
(27)

·p (xj,k−1
∣
∣yj,1:k−1

)
dxj,k−1.

Note that step (¶) in (26) assumes that the current mea-
surements of agent i and the collection of past measure-
ments of agent j are approximately conditionally inde-
pendent given the current state of agent i. Using the

importance sampling description of the previous poste-
rior, p

(
xj,k

∣
∣yj,1:k−1

)
equals:

∫

p
(
xj,k

∣
∣xj,k−1

) · p
(
xj,k−1

∣
∣yj,1:k−1

)

︸ ︷︷ ︸
(§)≈∑L

�′=1 w
(�′)
j,k−1δ

(
xj,k−1−x(�′)

j,k−1

)

dxj,k−1

≈
L∑

�′=1
w(�′)
j,k−1p

(
xj,k

∣
∣
∣x(�′)

j,k−1

)
, (28)

where the particle-based posterior description was used
in step (§). Thus, the sought likelihood can be written as
follows (cf. (26)):

p
(
yi,k

∣
∣
∣x(�)

i,k

)
≈

L∑

�′=1
w(�′)
j,k−1

∫

p
(
yi,k

∣
∣
∣x(�)

i,k , xj,k
)

· p
(
xj,k

∣
∣
∣x(�′)

j,k−1

)
dxj,k . (29)

Because the integral cannot be analytically computed in
general, MC integration techniques are adopted, i.e., the
integral is approximated as follows:

∫

p
(
yi,k

∣
∣
∣x(�)

i,k , xj,k
)
p
(
xj,k

∣
∣
∣x(�′)

j,k−1

)
dxj,k

≈ 1
N

N∑

n=1
p
(
yi,k

∣
∣
∣x(�)

i,k , x
(n|�′)
j,k

)
, (30)

with samples

x(n|�′)
j,k ∼ p

(
xj,k

∣
∣
∣x(�′)

j,k−1

)
, n = 1, . . . ,N . (31)

Here, the notation (n|�′) is used to illustrate the depen-
dency on the particle �′. Finally, the likelihood that is
sought is obtained as follows:

p
(
yi,k

∣
∣
∣x(�)

i,k

)
≈

L∑

�′=1
w(�′)
j,k−1 · 1

N

N∑

n=1
p
(
yi,k

∣
∣
∣x(�)

i,k , x
(n|�′)
j,k

)
.

(32)

Because additional sampling and corresponding evalua-
tions of the probability density function given in (32) is
computationally demanding, a simplification is proposed:
Instead of sampling new particles x(n|�′)

j,k as per (31), the
time update samples (34), which are sampled from the
same probability density function, are reused. With this
procedure, approximation (35) is obtained which can be
interpreted as a particular instance of (32) for n = 1.
Therefore, an easily implementable approximation of the
sought likelihood is obtained that avoids the computation
of gradients and Hessians, which are needed in GA-based
methods. The full bootstrap-like algorithm employing
the proposed approximation is described in Algorithm 2,
whereAyi,i denotes the set of agents fromwhichmeasure-
ments have been recorded by agent i at the current time
step.
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Algorithm 2: Particle Filter with proposed
Likelihood Approximation for Multiple Particle Filter

input : Prior, evolution and measurement densities p(xi,0),
p(xi,k |xi,k−1), and p(yi,k |xi,kxj,k)

1 Draw L samples x(�)

i,0 from the prior

x(�)

i,0 ∼ p(xi,0), � = 1, . . . , L; ∀i ∈ A (33)

and set w(�)

i,0 = 1
L ,∀� = 1, . . . , L;∀i ∈ A;

2 foreach k = 1, . . . ,K do // Loop over all time steps
3 foreach i ∈ A do // Loop over all agents

4 Draw samples x(�)

i,k from the importance distribution

x(�)

i,k ∼ p
(
xi,k

∣
∣
∣x(�)

i,k−1

)
, � = 1, . . . , L; (34)

5 end
6 foreach i ∈ A do // Loop over all agents
7 foreach j ∈ Ayi ,i do // Loop over measurements
8 Calculate new weights according to

γ �
j ←

L∑

�′=1
w(�′)
j,k−1p

(
yi,k

∣
∣
∣x(�)

i,k , x
(�′)
j,k

)
, � = 1, . . . , L;

(35)

9 end
10 Obtain unnormalized weights as

w(�)

i,k ← w(�)

i,k−1

∏

j∈Ayi ,i

γ �
j (36)

and normalize them to sum to unity via

w(�)

i,k ← w(�)

i,k

/∑L

�=1
w(�)

i,k ; (37)

11 Perform resampling;
12 end
13 end

5 Simulation setup andmethod
This section introduces the chosen simulation setups,
including the environment, as well as the state evolution
and measurement models.

5.1 Systemmodel
Although the proposed procedure is also applicable
to other models, the following Gaussian constant-
velocity, constant-turn model is considered here
for each agent, with xi,k+1 = f (xi,k) + νk =
[ xi,k+1, yi,k+1, vi,k+1, φi,k+1, ωi,k+1]ᵀ [33]:

xi,k+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi,k+ 2vi,k
ωi,k

sin(ωi,kT/2) cos(φi,k+ωi,kT/2)

yi,k+ 2vi,k
ωi,k

sin(ωi,kT/2) sin(φi,k+ωi,kT/2)

vi,k
φi,k + ωi,kT

ωi,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+νk , (38)

where xi,k and yi,k are the agent’s Cartesian x and y posi-
tions, respectively; vi,k =

√
ẋ2
i,k + ẏ2

i,k is the agent’s speed;
and φi,k = atan(ẏi,k/ẋi,k) and ωi,k = φ̇i,k are the agent’s
heading angle and turning rate, respectively.

The process noise νk ∼ N (0,�) is Gaussian, with the
following covariance matrix:

� = blkdiag
[

σ 2
x σ 2

y T2σ 2
v̇ σ 2

ω̇

[
T3/3 T2/2
T2/2 T2

] ]

,

(39)

where T is the sampling period and σv̇ and σω̇ are the
standard deviations of the noise processes that corre-
spond to the linear acceleration and angular acceleration,
respectively.
Consequently, it is assumed that p(xi,k|xi,k−1) =

N (f (xi,k−1),�), where f (·) is the noise-free state evolu-
tion model given in Eq. 38.
In the following, bearing and distance measurements

between agents or beacons i and j of the form

yi,j,k =
[√

(xi,k − xj,k)2+(yi,k − yj,k)2 · (1+ηd,k)

atan2(yi,k − yj,k , xi,k − xj,k) + ηb,k

]

(40)

are considered, where ηk =[ ηd,k , ηb,k]ᵀ ∼ N (0,�), with
� = diag(σ 2

d , σ
2
b ), where σd and σb are the standard

deviations of the noise in the distance and the bearing
measurements, respectively. The multiplicative model for
the distance measurements accommodates the observa-
tion that distance measurements made with respect to
farther agents are less accurate.
The full measurement vector for agent i is then obtained

as follows:

yi,k =
[

. . . yᵀ
i,j,k . . .

]ᵀ
. (41)

To obtain the results presented in the following section,
the sampling period was set to T = 1 s, and the process
noise parameters were set to σv̇ = 3.16×10−3 m/s2, σω̇ =
3.16 × 10−3 rad/s2, and σx = σy = 0.30 m.

5.2 Simulation setup I
The first simulation setup is visualized in Fig. 2. It con-
sists of four mobile agents and four beacons, each with
a sensing radius of 4 m. In this setup, multiple different
maneuvers, consisting of turns and velocity changes, need
to be captured. A variety of trajectories are used to test
the algorithms’ performance on these two main types of
maneuvers. The agents follow the model given in (38), but
the turn rate and speed are abruptly changed.

• For agent 1:

[ω1(kT)]k =
[

015, �10
1
2
, −�10

1
2
, 010, −�12

1
2
, �22

1
2
, 09

]

[v1(kT)]k = [0.15 · 15, 0.075 · 183]
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Fig. 2 Simulation setup with four agents and four beacons. The agents’ true trajectories are shown

• For agent 2:

[ω2(kT)]k =
[

017, �20
3
2
, 010, −�20

3
2
, 021

]

[v2(kT)]k = [0.2 · 188]
• For agent 3:

[ω3(kT)]k =
[

022, �20
7
4
, 010, −�20

7
4
, 016

]

[v3(kT)]k = [0.2 · 15, 0.15 · 183]
• For agent 4:

[ω4(kT)]k =
[

015, −�22
1
2
, �12

1
2
, 010, �10

1
2
, −�10

1
2
, 09

]

[v4(kT)]k = [0.15 · 15, 0.075 · 183]
Here, 0n and 1n denote a sequence of n zeros and a
sequence of n ones, respectively. Moreover, �b

a denotes
the sequence that yields a a · π turn in b steps.
Due to the limited sensing range, this setup is rele-

vant to the considered scenario of limited beacon access.
All figures show results averaged over 100 simulations.
All algorithms listed in Table 2 are evaluated. This table
also summarizes the key features and properties of the
algorithms.
The setup is chosen for the following reasons: First,

the agents follow predefined trajectories that, apart from
the introduced abrupt changes with respect to velocity
and turn rate, are fully consistent with the chosen motion
model (38). Consequently, any tracking inaccuracy result-
ing from model mismatch, which will inherently arise in
any real-world scenario, is strongly limited. This, in turn,
facilitates a more in-depth analysis and fairer comparison
of the different likelihood approximation methods, which
target only the measurement function (cf. (2a)). Second,
despite the use of predefined trajectories, the maneuvers
are complex and challenging due to the variation in their
motion profiles, which include a broad set of different
turns and acceleration phases. Thus, adequate likelihood
approximation schemes are required to enable accurate
localization.

The reported results below are related to the following
two measurement noise scenarios (MNSs):MNS 1:Multi-
plicative measurement noise with a standard deviation of
σd = 0.04 and bearingmeasurement noise with a standard
deviation of σb = 5◦ andMNS 2: σd = 0.06, σb = 10◦.

5.3 Simulation setup II
Additional simulation results, in which the agents’ motion
is obtained via computational fluid dynamics (CFD) simu-
lations, are presented. In contrast to the results presented
in the context of the first simulation setup, the resulting
agent motion cannot, to a significant extent, be properly
modeled by (38) (cf. Section 5). For this reason, the results
presented and discussed for this setup exhibit more vari-
ation. The CFD results were obtained by simulating the
pipe model shown in Fig. 3 using a D2Q9 lattice Boltz-
mann model (LBM). The pipe is filled with water at 25 °C.
The LBM parameters used for the CFD simulation are
listed in Table 3. Details such as the boundary method
implemented for the D2Q9 LBM are given in [34], where

Table 2 Overview of the evaluated algorithms

Abbr. Proposed
in

Discussed
in

Comment

PE [8] — Eliminates the dependency of
the likelihood on the other
agent’s state by means of
the point estimate x̂j,k =
∑l

�=1 w
�
j,k−1x

�
j,k.

GA [14]
(basic
form)

Section 3.1
(generalized
form)

Approximates the likelihood as
a Gaussian density using first-
and second-order terms for the
variance and mean,
respectively. Treats xj,k as a ran-
dom variable in the
likelihood.

EGA This
work

Sections 3.1.3
and 3.1.4

Extension of GA to a
complete second-order
approx. for both additive and
multiplicative noise.

MCA This
work

Section 4 MC-based likelihood approx.
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Fig. 3 Four agents (turquoise) in a pipeline. This setup was used for
CFD simulations with dimensions of 11.2 m × 6.48 m and four
beacons (red diamonds). The different colors (blue to yellow) indicate
different speeds, and the arrows indicate the direction of the flow. The
figure shows the velocity normalized to the max. occurring velocity

this method is reported to be accurate to approximately
second order.
These simulation results are thus consistent with the

application scenarios discussed in Section 1, in which
miniature agentsmay be employed to survey underground
structures or pipeline systems, such as those that exist in
chemical plants. The chosen setup, however, is designed
to challenge the algorithms (cf. Table 2), which is achieved
through a combination of fast agent motion and limited
beacon coverage.

5.4 Evaluation metric
The following time- and agent-averaged localization error
metric is used to evaluate the algorithms’ performance:
MAE = 1

M·K
∑M

i=1
∑K

k=1 ‖pi,k − p̂i,k‖2, where pi,k is the
true position of agent i at time step k and p̂i,k is the cor-
responding estimate, which refers to the first two states of
the corresponding state vector.

6 Numerical results and discussion
The discussion of the simulation results is split into three
main parts, with each focusing on different behavior and
properties of the methods. This discussion is presented in
the following subsections.

Table 3 D2Q9 LBM simulation parameters

Parameter Value

LBM relaxation time 0.515

LBM speed 0.05

Max. LBM iterations 1 × 104

LBM convergence threshold 1 × 10−7

Viscosity [m2/s] 0.89 × 10−6

Density [kg/m3] 997.05

For all results evaluating a performance as a function
of particles per agent (PPA), the 99% confidence inter-
vals (CIs) are shown as well. These results are visualized
as a transparent hose around the average performance
with the same line style and visualize the variation in the
individual simulations.

6.1 Setup I: Localization error vs. number of particles and
run time

The first set of results is presented in Fig. 4, which shows
the localization performance as a function of the number
of PPA, L. MNS 1 and MNS 2 are represented in the top
andmiddle panels, respectively. Moreover, in Figs. 4 and 5,
a third MNS is presented in which multiplicative distance
measurement noise is increased to σd = 0.1 compared to
MNS 2.
The left panels of Fig. 4 clearly show that PE exhibits

significantly reduced performance compared to that of
the other three methods. The right row of Fig. 4 focuses
on the differences between the GA-based algorithms (GA
and EGA) and the proposed MCA method. In these pan-
els, the differences between the former two are generally
small. However, the performance of MCA is significantly
improved compared to that of the other methods. For
example, for L = 1000, an error reduction of 16% com-
pared to EGA is achieved. The middle panels show that in
MNS 2, EGA is slightly superior to GA. Most notably, the
localization error reduction of 21% is achieved by MCA
over EGA. Similarly, for MNS 3, MCA achieves error
reductions of 24%.
Interestingly, the mean absolute error (MAE) of the PE

method decreases from 0.46 (MNS 1) to 0.39 (MNS 2)
to 0.35 (MNS 3) with increased measurement noise. In
contrast, the MAE of the other methods increases at the
same time. For example, for MCA, the MAE increases
from 0.10 to 0.15 to 0.18 at these measurement noise con-
figurations. Despite this increase in absolute terms, the
relative improvement of MCA over EGA increases from
16% (MNS 1) to 22% (MNS 2) to 24% (MNS 3), as men-
tioned above. Importantly, despite the improvement in PE
with increasing noise intensity, the absolute performance
gains through MCA remain significant. Additionally, CIs
show that the performance of PE is the least consistent.
A comparison of performance versus run time for the

MNS 1 and MNS 2 results shown in Fig. 4 is presented in
Fig. 5. Note that for each algorithm, an increase in com-
puting time is directly linked to an increase in PPA value.
These results show the trade-off between the different
algorithms in terms of the achievable MAE performance
and required computing time. Given certain requirements
of either performance or computing time, these results
aid in selecting algorithms for particular application sce-
narios. As discussed subsequently, some algorithms are
limited in either of these figures, i.e., MAE performance
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Fig. 4 Localization error as a function of PPA. The plots for MNS 1, MNS 2, and MNS2 3 are at the top, middle, and bottom, respectively. In all panels,
M = 4 agents are considered. The right panels show magnified views of the results presented in the upper panels but without the PE results for
improved readability

or computing time. Similar to the previous results, the
left panels of Fig. 5 show a comparison among all four
algorithms, whereas the right panels of Fig. 5 focus on
the GA-based methods and MCA. Because the results in
Fig. 5 are deduced from the data depicted in Fig. 4, the
supports for the curves are different. As such, the left pan-
els of Fig. 5 show low run times for PE because no data are
available for run times longer than 10 s. However, these
low run times are not accompanied by performance values
better than a localization error of 0.34 m.
The right panels of Fig. 5 (together with the right panels

of Fig. 4) show that MCA not only yields improved local-
ization performance, with a lower localization error than
those of all other methods, but also achieves improved
performance within the same computing time. For exam-
ple, in MNS 1, a reduction in the error metric of 14%
is achieved for a run time of 14 s. Similarly, for MNS
2 and MNS 3, reductions in 20% and 23% are obtained,
respectively.

6.2 Setup I: Performance over time
The second set of results, illustrating the performance of
the algorithms over the different time steps, is visualized
in Figs. 6, and 7.
Figure 6 visualizes the performance for MNS 2 with

422 PPA, which has been chosen as a compromise
between a low PPA (where MCA performs similarly to
EGA) and a high PPA (where MCA is able to signifi-
cantly improve compared to EGA and the other meth-
ods). The estimated positions are overlaid on the agents’
actual trajectories, which are shown in red, and are
plotted as markers only in the same colors as those
used in Fig. 2.
It can be observed that the performance of PE (cf.

Fig. 6b) deteriorates in the case of maneuvers. The agent
profiles visualized with red and orangemarkers are partic-
ularly strongly affected. GA and EGA (cf. Fig. 6c, d) show
improved localization performance compared to that of
PE; this improvement is also reflected by the observed
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Fig. 5 Localization error as a function of run time. The plots for MNS 1 and MNS 2 are at the top and bottom, respectively. In both MNSs,M = 4
agents are considered. The right panels show magnified views of the results presented in the upper panels but without the PE results for improved
readability

reduction of almost 50% in the localization error. How-
ever, both of these algorithms also show reduced tracking
accuracy during maneuvers (cf. in particular the estimates
represented by red markers in the top loop and by green
and orange markers at the saddle points of the maneu-
vers). Figure 6a shows the performance of MCA, which
encounters only minor issues with tracking (cf. the esti-
mates represented by red markers in the top loop). This
superior performance is also evident from the reduction
of − 22% in the localization error compared with that of
GA.
Figure 7b clearly shows a decreasing tracking accuracy,

with the peak being in the transition zone between the
coverage areas of the left and right beacons. Figure 7c
and d, for GA and EGA, respectively, show significantly
improved performance compared with that of PE, with
some strong fluctuations (note the differences in scal-
ing for reasons of readability). Figure 7a shows the per-
formance of MCA. At the beginning of tracking, MCA

exhibits a significant reduction in error from the initial
value. Compared to all other methods, not only reduced
error but also lower fluctuations in the performance over
time are apparent.

6.3 Setup I: Localization error vs. number of agents
The third and last set of results for the first setup is
presented in Figs. 8 and 9, which analyze the tracking per-
formance for varying numbers of agents for MNS 1 and
MNS 2, respectively. The results were obtained with the
same setup depicted in Fig. 2, with only the first i =
1, . . . ,M agents being simulated in cases with fewer than
four agents.
Figure 8 shows that the performance of PE decreases

significantly with an increasing number of agents. Sim-
ilar behavior can be observed for GA and EGA,
with the error metric increasing by approximately 11%
when four agents need to be localized instead of
two. Only MCA exhibits the opposite trend, with the
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Fig. 6 Estimated averaged trajectories (markers only) for all methods, with the actual trajectories underlaid in black (cf. Fig. 2). These results were
obtained for MNS 2 and 422 PPA

Fig. 7 Localization error as a function of the time step forM = 4 agents in MNS 2. The individual solid lines in each of the plots correspond to one of
the agents. The CIs are illustrated as transparent hoses around the mean performance. aMCA. b PE. c GA. d EGA
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Fig. 8 Localization error as a function of the number of PPA for different numbers of agents to be tracked for MNS 1

Fig. 9 Localization error as a function of the number of PPA for different numbers of agents to be tracked for MNS 2
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Fig. 10 Localization performance as a function of PPA for different numbers of agents: a four agents, b six agents, c eight agents, and d ten agents

error metric decreasing by approximately 2% in the
same case.
Similar trends can be observed in Fig. 9 for increas-

ing measurement noise. Here, the error metric of MCA is
reduced by 6.88% when four agents are tracked instead of
two.
In both MNSs, this behavior can be explained by the

additional agent-to-agent measurements that are pro-
vided by the additional agents. In the cases of GA and
EGA, for example, these additional measurements result
in significant error accumulation because the likelihoods
are approximated as Gaussian distributions and, in the
weight update (cf. (7)), the product of these likelihoods
is taken3. For MCA, however, the approximation error is
lower, allowing the additional measurements provided by
the extra agents to be successfully exploited.

6.4 Setup II: Localization error vs. number of particles and
run time

For brevity, the second setup is evaluated only for the fol-
lowing simulation configuration. The MNS was scenario
2, and the agent and beacon coverage ranges were both
Rs = 10 m.
The first set of results is presented in Fig. 10, which

compares the performance of the different algorithms as
a function of the number of PPA. The different panels of

3Recall that the measurement noise is assumed to be independent and
identically distributed in nature.

Fig. 10 present the results for M = 4, 6, 8, and 10 agents.
For low PPA values, GA and EGA outperform MCA.
However, GA and EGA do not achieve a MAE lower than
1 m, which can be considered critical depending on the
precise application requirements. For more than approx.
200 PPA, MCA achieves the best performance, resulting
in MAE reductions of between 71% (for M = 4) and 59%
(forM = 10) compared to EGA. Interestingly, not only the
average MAE performance of MCA improves for increas-
ing PPA: For example, for four agents, the size of the CI for
MCA decreases from 0.55 m (200 PPA) to 0.08 m (1500
PPA). Similarly, for ten agents, the CI size decreases from
0.32 m to 0.17 m at the same time.
Similar to the results discussed in Section 6, EGA out-

performs GA, although marginally, throughout the simu-
lations.
The second set of results is given in Fig. 11, which com-

pares the run times of the algorithms with their achieved
MAE values. With the same run-time budget, the follow-
ing reductions inMAE are achieved: forM = 4 agents and
62 s, 63%; for M = 6 agents and 145 s, 32%; for M = 8
agents and 254 s, 45%; and forM = 10 agents and 389 s, a
reduction of 45%.

6.5 Setup II: Localization error vs. number of agents
The third set of results is given in Fig. 12, which compares
the change in performance of each algorithm as the num-
ber of agents to be tracked changes. The fluctuations with
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Fig. 11 Localization performance as a function of run time for 1500 PPA and for different numbers of agents: a four agents, b six agents, c eight
agents, and d ten agents

variations in the number of agents and the PPA value for
MCA are very low in the absolute sense. In fact, the per-
formance degradation associated with the requirement to
track 10 instead of 4 agents corresponds to an increase of
only approximately 0.27 m relative to the initial value of
0.275m (M = 4). In contrast, not only the fluctuations but
also the absolute MAE values for GA and EGA are much
higher. For example, for 1500 PPA, the MAE increases by
0.43 m from an initial value of 1 m (GA) and by 0.4 m from
an initial value of 0.95 m (EGA).
The fourth and final set of results is presented in Figs. 13

and 14, which show the actual agents’ trajectories as solid
lines and the average estimated positions as markers only
forM = 4 and 8 agents, respectively. ForM = 4 agents (cf.
Fig. 13), MCA can accurately track the agents’ fast motion
and achieves an average MAE of 0.28 m. In contrast, the
othermethods quickly lose track of the agents’ motion and
cannot achieve an MAE better than 0.95 m.
In the case that 8 agents are to be tracked (cf. Fig. 14),

MCA tends to overestimate the turn rates of the agents,
resulting in an average MAE of 0.5 m. In contrast, all
other methods are, on average, unable to track the agents’
motion at all, resulting in a poor accuracy of 1.28m at best.

6.6 Setup II: Summary of results
In the second simulation setup, a close-to-reality sce-
nario is considered in which up to 10 agents are car-
ried by fluid dynamics alone through a pipe branch.

Because the agents’ motion is difficult to describe with
a single motion model, the results, as expected, show
more fluctuations and are more dependent on the accu-
racy of the motion model compared to results of the
first simulation setup. Nevertheless, even in this sce-
nario, the proposed MCA method outperforms the PE,
GA, and EGA methods, achieving MAE reductions of
up to 63% when the computational costs for all methods
are fixed.

7 Conclusion and future work
In this work, a new approximation scheme for individ-
ual filter likelihoods for the tracking of wireless agents
has been proposed. The proposed MCA scheme has been
compared to the existing PE method and to a general-
ization of the Gaussian approximation concept presented
in [14]. Moreover, this generalization (GA) has further
been extended to the EGAmethod for additional compar-
isons. The simulation results showed clear improvements
in the localization accuracy when MCA was employed. In
particular, a reduction in the localization error by up to
22.81%was achieved for a fixed number of particles. Addi-
tionally, it was shown that given the same computing time,
MCA achieves a tracking accuracy that is 22.35% higher
than that of GA. Moreover, the tracking accuracy of MCA
was shown to be more consistent over time, with lower
fluctuations in performance. In contrast to the other con-
sidered methods, MCA was able to successfully exploit
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Fig. 12 Localization performance as a function of the PPA value and as a function of the number of agents to be tracked. aMCA. b PE. c GA. d EGA

Fig. 13 Average estimated positions (markers) and actual trajectories (solid lines) in the case ofM = 4 agents and for 1500 PPA. aMCA, MAE 0.28 m.
b PE, MAE 1.98 m. c GA, MAE 1.01 m. d EGA, MAE 0.9 m
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Fig. 14 Average estimated positions (markers) and actual trajectories (solid lines) in the case ofM = 8 agents and for 1500 PPA. aMCA, MAE 0.50 m.
b PE, MAE 2.09 m. c GA, MAE 1.35 m. d EGA, MAE 1.28 m

additional measurements introduced with an increase in
the number of agents to be tracked in the synthetic bench-
mark (first setup). Similarly, for the second set of close-to-
reality simulations (second setup),MCAwas least affected
by an increase in the number of agents. In numbers, MCA
achieved MAE reductions between 58 and 71% compared
to EGA.
In summary, the MCA scheme presented in this study

offers significant improvements in localization accuracy
and/or computing time. The scheme has shown poten-
tial for many application cases in which a known number
of cooperating agents are to be localized using distance
and/or bearing measurements if access to beacons is lim-
ited and/or AAMs are essential for accurate localization.
Examples thereof are rescue robots employed for survey-
ing collapsed buildings due to earthquakes and miniature
agents used for pipeline inspection.
In future works, we will investigate the proposed

scheme on a broader scale, including the effect of the
MC parameter n on performance and run time. More-
over, an in-depth theoretical analysis of the computational
complexity of all discussed algorithms is of interest in this
context.

Appendix A: Proof of the third-order moment of a
Gaussian approximation component

As mentioned in Section 3, the state x̃j,k is assumed to
be Gaussian. For simplicity, the agent and time indices are

dropped in the following, such that x̃j,k = x̃ and xi,k = x.
Generally, the i-th element of a vector x is denoted by [ x]i,
and the (i, j)-th element of a matrix X is denoted by [X]i, j.
For simplicity, [ x̃j,k]i is denoted by x̃i.
With this new notation,

E

[
gx̃j,k x̃

ᵀ
j,kHx̃j,k

∣
∣
∣ xi,k

]

=
∑

i

∑

j

∑

l
gi[H]j,l E[ x̃ix̃jx̃l|xi,k] , (42)

and the expected value that is sought reduces to the sum of
the higher-order moments of a Gaussian random vector.
Subsequently, the link between the higher-order moments
and the multivariate Hermite polynomials is exploited in
accordance with the following theorem.

Theorem 1 (Higher-order moments of multivariate
Gaussian random variables [35]) For a Gaussian random
vector x ∼ N (μ,�), with μ ∈ R

n and � ∈ R
n×n � 0, it

holds that

E
[
xν1
1 · · · xνn

n
] = Heν1,...,νn(−�−1μ,−�), (43)

where the νi are nonnegative integers. The Hermite polyno-
mials are defined as

Heν1,...,νn(z,A) = exp(Q/2)
n∏

i=1

(

− ∂

∂zi

)νi

exp(−Q/2),

(44)

where Q = zᵀAz.
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Noting that x̃ is zero-mean by definition, it holds that

E[ x̃ix̃jx̃l]= − ∂3

∂zi∂zj∂zl
exp

(

−1
2
zᵀAz

)∣
∣
∣
∣
z=0

. (45)

The following three cases need to be addressed for (42),
without loss of generality: i 
= j 
= l, i = j 
= l, and i = j =
l. For all of them, the following derivative is important:

∂

∂zq
exp

(

−1
2
zᵀAz

)

=

− exp
(

−1
2
zᵀAz

)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Aq,qzq + 1
2
∑

n
=q
An,qzn

︸ ︷︷ ︸
≡γ (q)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (46)

Case 1: i �= j �= k

E
[
x̃ix̃jx̃k

] = − exp
(

−1
2
zᵀAz

){

γ (i)γ (j)γ (k)

+1
2
(
γ (i)Aj,k + γ (j)Ai,k + γ (k)Ai,j

)
}

= 0

(47)

Case 2: i = j �= k

E[ x̃2i x̃k] = − exp
(

−1
2
zᵀAz

)

{
γ (i)2γ (k) + γ (k)Ai,i + γ (i)Ak,i

} = 0 (48)

Case 2: i = j = k

E[ x̃3i ] = − exp
(

−1
2
zᵀAz

)
{
γ (i)3 + 3γ (i)Ai,i

} = 0

(49)

List of symbols
0n×m : All zero matrix of dimension n × m;A: Set of agents; Covp[ ·]:
Covariance matrix with respect to density p; δ(x − x0): Dirac delta function
centered at x0; Ep[ ·]: Expectation operator with respect to density p; i, j,�:
Some agent indices; L: Number of particles; �: Particle index; [X]i,j : (i, j)-th
element of matrix X ; η: Measurement noise vector;N (μ,�): Normal
distribution with mean μ and covariance matrix �; ν : Process noise vector;
O(·): Computational complexity in terms of big O notation; p(·): Probability
density function or probability mass function; �b

a : Sequence that yields a a · π

turn in b steps; π(·): Proposal density; Rs : Agent sensing range; R: Set of real
numbers; tr[ ·]: Trace Operator; Vp[ ·]: Variance with respect to density p; ω:
Particle weight; xi,k : State vector of agent i at time instant k; xi,k : Cartesian x
coordinate of agent i at time step k; x̂i,k : Estimate of state vector of agent i at
time instant k; yi,k : Measurement vector of agent i at time instant k; yi,k :
Cartesian y coordinate of agent i at time step k

Abbreviations
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