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Abstract

Transient signals are characteristic of the underlying phenomenon generating them, which makes their analysis
useful in many fields. Transients occur as a sudden change between two steady state regimes, subsist for a short
period, and tend to decay over time. Hence, superimposed damped sinusoids (SDS) were extensively used for
transients modeling as they are adequate for describing decaying phenomena. However, SDS are not adapted for
modeling the turn-on transient current of electrical appliances as it tends to decay to a steady state that is different
from the one preceding it. In this paper, we propose a new and more suitable model for these signals for the purpose
of characterizing appliances. We also propose an algorithm for the model parameter estimation and validate its
performance on simulated and real data. Moreover, we give an example on the use of the model parameters as
features for the classification of appliances using the Controlled On/Off Loads Library (COOLL) dataset. The results
show that the proposed algorithm is efficient and that for real data the network fundamental frequency must be
estimated to account for its variations around the nominal value. Finally, real data experiments showed that the
model parameters used as features yielded a classification accuracy of 98%.
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1 Introduction
Studying transient phenomena is important and useful in
many fields such as biomedical research for the analysis of
heart rate variability [1], the extraction of detailed infor-
mation of muscle behavior [2], and the detection and clas-
sification of epileptic spikes [3]; mechanics for the study
of the susceptibility of structures to vibration issues [4];
and for seismic events detection and temporal localization
[5, 6]. Monitoring electrical loads and systems is particu-
larly one of the areas where transients play a central role.
We cite as applications the analysis of disturbances affect-
ing the quality of the electric power system [7, 8], fault
detection in rotary machines [9, 10], and non-intrusive
load monitoring (NILM) [11–13], a field concerned with
extracting individual energy consumption (e.g., of differ-
ent appliances) from measured total energy consumption
(e.g., at main breaker panel).
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Transients embed a decay or damping characteristic as
they exist for short periods, and therefore, the superim-
posed damped sinusoids (SDS) model [14] was extensively
used to model transients in many fields. For example, it
was used for modeling electric disturbances [15], tran-
sient audio signals [16], and the free induction decay
observed in nuclear resonance spectroscopy [17]. Along
with the model, different algorithms were proposed for
its parameter estimation [18]. The most known meth-
ods are Prony’s [19], Pisarenko’s [20], matrix pencil [21],
Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [22], and MUltiple SIgnal Classifi-
cation (MUSIC) [23]. Despite its success, the SDS model
is inadequate for turn-on transient current signals. In
fact, a lot of turn-on transient current signals are charac-
terized by a quasi-stationary harmonic content (Fig. 1a)
whereas the SDS model is best suited for modeling van-
ishing non-stationary content (Fig. 1b) because having
different damping factors for each frequency produces a
signal with non-stationary frequency content. Moreover,
the turn-on transient current decays to a steady state that
is different from the steady state preceding the turn-on
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Fig. 1 Two examples of transients. a A (turn-on) transient of an electrical signal (drill) for which the superimposed damped sinusoids (SDS) model is
inadequate, and b a transient of an audio signal (castanets) for which the SDS model is adequate. Note the non-stationary content of b and the
quasi-stationary content of a

of the appliance, whereas in the SDS the transient model
starts from one steady state and decays to the same one
afterwards. The electrical current “turn-on" transient is
the current that appears with the switching-on of an elec-
trical appliance. This corresponds to a transition from
one steady state to another. For example, if we consider
a single appliance on the network, then the first steady
state is the state of no consumption, the second steady
state is the state of steady consumption, and the tran-
sient is the part in between. Note that the transient we
are interested in modeling is the one related to the electri-
cal consumption. This transient is different from the very
high frequency transient (appearing as a short pulse pre-
ceding the turn-on transient) generated by the switching
devices because of the closure of the circuit [24]. Turn-on
transients are appliance-dependent and last usually from
few power system cycles to few seconds. A turn-on tran-
sient is typically characterized by a high current amplitude
(surge) at the beginning of consumption followed by a
decrease (or damping) in the amplitude of the consumed
energy until reaching a stable state (Fig. 1a).
In this paper, we propose a new model for turn-on

transient current signals along with an efficient algorithm
for the parameter estimation. The parameters are used
to characterize electrical appliances and are shown to be
useful for appliance classification. Several objectives are
targeted in this paper including:

• Derivation of an efficient estimation algorithm for the
model parameters.

• Assessment of the estimation performance via the
computation of the Cramér-Rao bound (CRB).

• Validation of the proposed model on real transient
signals and the evaluation of the modeling error
when using the developed estimation algorithm.

• Exploitation of the model parameters for appliance
characterization and assessment of their usefulness as
relevant features for a classification task example.

• As a by-product, we also developed a full
experimental setup (with a dedicated transient signal
acquisition device) to build our dataset of real
transient signals corresponding to different electrical
appliances. This dataset is used for our model
validation as well as for the performance assessment
of the proposed appliance identification method.

The rest of the paper is organized as follows: Section 2.1
describes the proposed data model, Section 2.2 details
the proposed parameter estimation algorithm, Section 3
gives the derivation of the parameters’ CRBs, Section 4.1
gives the assessment of the proposed model and algo-
rithm on simulated and real data, Section 4.2 shows the
usefulness of the model parameters through an appliance
classification example, and finally, Section 5 concludes the
paper.

2 Methods
2.1 Data modeling
In this section, we propose and discuss a mathematical
model for turn-on transient current signals. Strictly speak-
ing, we model the turn-on transient including a small part
of the following steady state regime; mainly because the
transient end is not well defined and because estimating
the harmonic content is easier on the steady state part.



Nait-Meziane et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:55 Page 3 of 19

The shape of the turn-on transient and the related
amplitudes vary from one electrical appliance to another.
To take into account these variations, we propose to
model the noiseless electrical current turn-on transient
s(t) as the product of two signals

s(t) = e(t)ss(t), ∀t ∈[ 0,+∞) (1)

where e(t) represents an amplitudemodulation (envelope)
and ss(t) is a sum of d sinusoids given as follows

ss(t) =
d∑

i=1
aicos

(
2π fit + φi

)
, ∀t ∈[ 0,+∞) (2)

where ai (≥ 0), φi ∈ [−π ,π ] and fi are the sinusoids ampli-
tudes, phases, and frequencies, respectively. The number
d of sinusoids (current harmonics) is assumed known
(typically d = 5 harmonics is enough to represent the
sinusoidal signal ss(t)) and the frequencies satisfy fi =
(2i − 1)f0, i = 1, . . . , d where f0 ≈ 50 Hz. Indeed, because
of the half-wave symmetry found in electrical signals (i.e.,
for a periodic signal g(t) of period P, a half-wave symme-
try is characterized by g(t + P/2) = −g(t)), the sinusoid
frequencies fi are odd-order harmonics of the fundamen-
tal frequency. Note that the nominal value (50 Hz) of the
network fundamental frequency is a priori known, but
due to its fluctuations around this value over time (i.e.,
f0 = 50 + δf ), we have observed that for a correct mod-
eling, f0 should be considered as unknown and hence one
needs to re-estimate the fundamental frequency value for
each transient signal1.
The envelope e(t) is chosen of the form eu(t)+1 such that

eu(t) −−−−→
t→+∞ 0. This exponential function was chosen for

its usefulness in describing damped phenomena. A classi-
cal damped model is such that u(t) = −αt with α > 0.
For our model, we propose to extend this classical model
in order to adapt it to real current signals. Specifically, we
propose to model u(t) as a polynomial function allowing
more flexibility in describing the amplitude modulation of
real signals

e(t) = ep
T t + 1, ∀t ∈[ 0,+∞) (3)

where p = [
p0, p1, . . . , pn

]T is a vector of n+1 polynomial
coefficients and t = [1, t, . . . , tn]T is a time vector such
that pT t is a polynomial of degree n allowing the model
adaptation to the real signal variations2. The polynomial
is such that pT t −→

t→+∞ −∞ leading to e(t) −→
t→+∞ 1 (verified

if pn < 0).

1The European norm “EN 50160” [25] fixes the acceptable variation ranges for
δf0 . For the synchronous grid of Continental Europe—the largest synchronous
(same frequency) grid in the world linking most of Europe’s countries and
some countries of north Africa—these ranges are ± 1% of f0
(δf0 = [− 0.5,+ 0.5] Hz) 99.5% of a year and − 6%/ + 4% of f0
(δf0 = [− 3,+ 2] Hz) 100% of the time. The latter range is made large to
account for occasional high variations.
2Based on our real data measurements, we have observed that a polynomial
order n = 3 is sufficient to model properly the considered transient signals.

We assume that the measured current signal x(t) is cor-
rupted by an additive white Gaussian noise (AWGN) w(t)
with zero mean and variance σ 2

x(t) = s(t) + w(t), ∀t ∈ R. (4)

The passage from continuous to discrete-time notation is
done using tk = kTs, where Ts = 1/Fs is the sampling
period and k ∈ Z. This notation is used in the remainder
of the paper.

2.2 Parameter estimation algorithm
The proposed parameter estimation algorithm proceeds
in two steps:

• Estimation of the fundamental frequency f0.
• Estimation of the other signal parameters using the a

priori estimated frequency f̂0.

2.2.1 Fundamental frequency estimation
We assume that the fundamental frequency is unknown
but quasi-constant over the transient duration, typically
less than 5 s, and we propose to estimate it using the volt-
age signal, which is almost perfectly sinusoidal (Fig. 2).
Indeed, the stability of f0 (i.e., its rate of change) is an
important issue that was discussed in depth in the lit-
erature. This can be seen from the plot in Fig. 3 (bor-
rowed from http://wwwhome.cs.utwente.nl/~ptdeboer/
misc/mains.html) which represents the “Allan deviation”
of f0 for a measurement over a period of 69 days. As
explained in this reference, if the Allan deviation at an
averaging duration of 10 s is 10−4, it means that if one
measures the frequency during 10 s and once more during
the next 10 s, thesemeasurements will differ on average by
0.01%. Based on this, we consider the frequency variation
over our 5-s measurement period as negligible. Hence, the
fundamental frequency estimation problem turns into the
classical problem of estimating the frequency of a mono-
tone signal in noise. It is known that the CRB of the
frequency parameter of a monotone signal decreases with
a rate of 1/N3 [26]

var(f̂0) ≥ 12
(2π)2ηN(N2 − 1)

, (5)

where η is the signal-to-noise ratio (SNR) and N the
number of signal samples. This allows for highly precise
frequency estimates. Practically, we use the algorithm pro-
posed by Aboutanios and Mulgrew [27] which is shown
to provide a precise frequency estimate reaching the CRB.
Indeed, the voltage signal is modeled here as a pure sinu-
soid of frequency f0 corrupted by an AWGN. In such
a case, the optimal maximum likelihood (ML) solution
coincides with the peak location estimation of the Fourier
transform of the signal. This estimation is achieved by the
low cost efficient numerical method in [27].

http://wwwhome.cs.utwente.nl/~ptdeboer/misc/mains.html
http://wwwhome.cs.utwente.nl/~ptdeboer/misc/mains.html
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Fig. 2 A real voltage signal

In the second step (next section), we estimate the
remaining parameters using the frequency f̂0.

2.2.2 Transient current estimation (TCE) algorithm
Given the estimated frequency f̂0, the second step of our
estimation algorithm operates in two phases: (i) initializa-
tion and (ii) parameter estimation.
The initialization phase provides initial estimates of the

parameters pj, ai, and φi (j = 0, . . . , n and i = 1, . . . , d)
to be used in the parameter estimation phase, during
which these estimates will be refined. This two-phase

structure of the algorithm is motivated by the difficulty
and high computational cost of the nonlinear maximum-
likelihood-based estimation criterion (see (15)). In such
a case, we usually seek a good initial estimate and then
refine it in order to alleviate the ill-convergence and high
computational cost of the problem.
Note that the algorithm needs some pre-specified

values for n, d, and fi and also needs a pre-defined
steady state portion used in the initialization step for
the estimation of the amplitudes ai and phases φi of
the sinusoids. Hereafter, we start by discussing these

Fig. 3 Stability of network frequency (log-log plot of Allan deviation). Source: http://wwwhome.cs.utwente.nl/~ptdeboer/misc/mains.html

http://wwwhome.cs.utwente.nl/~ptdeboer/misc/mains.html
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“pre-specified quantities,” then we proceed to detailing the
algorithm.

Pre-specified quantities These quantities are fi (i =
1, . . . , d), n, d, tss1, and tss2 (“ss” stands for steady state).
As mentioned in Section 2.1, fi are odd-order harmon-
ics of f0. Taking into account the estimated fundamental
frequency f̂0, the sinusoids’ frequencies are given by fi =
(2i − 1)f̂0. The rest of the parameters are chosen in an
ad hoc way. The polynomial degree n and the number of
sinusoids d were chosen based on experimental observa-
tions made on the real data we used. The chosen values
were n = 3 and d = 5 (see the discussion of assumption
A3 in Section 4.1.2).
Quantities tss1 and tss2 define the time instants that

delimit a portion, noted xss(tk), of the steady state of the
current signal (Fig. 4). This portion is used in the initial-
ization phase for the estimation of the amplitudes and
phases. On this steady state portion, tk ∈[ tss1, tss2], we
can write x(tk) = xss(tk) = ss(tk) + w(tk) where ss(tk) is
the sum of sinusoids signal (2); we neglect the envelope
influence by assuming e(t) = 1 on this portion.
We define tss1 and tss2 using the High Accuracy NILM

Detector (HAND) algorithm [28] found in the literature.
Applying HAND on a turn-on transient signal provides
the time-instants tonbeg and tonend defining the beginning and
end of the turn-on transition (Fig. 4). Practically, we define
tss1 a few (typically ten) time cycles after tonend and tss2 such
that the duration of xss(tk) is 25 time-cycles (i.e., half a sec-
ond, sufficient to get good initial estimates of amplitudes
and phases).

Initialization phase

1. Estimation of ss(tk): Using the least squares (LS)
criterion, parameters ai and φi are estimated using

Fig. 4 Output of the High Accuracy NILM Detector (HAND) when
applied to a simulated single-appliance signal. HAND outputs the
time-instants: tonbeg and tonend . Blue: current signal. tss1 and tss2 define the
steady state portion (25 time-cycles long) used for the estimation

(tk ∈[ tss1, tss2])
xss(tk) = ss(tk) + w(tk)

=
d∑

i=1
aicos

(
2π fitk + φi

) + w(tk)

=
d∑

i=1
[ ai cosφi cos

(
2π fitk

)

− ai sinφi sin
(
2π fitk

)
]+w(tk). (6)

Writing (6) in vector form gives

xss = Mc + w, (7)

where xss = [xss(tss1), . . . , xss(tss2)]T ,
c = [a1 cosφ1, a1 sinφ1, . . . , ad cosφd, ad sinφd]T ,
w = [w(tss1), . . . ,w(tss2)]T is the noise vector andM
s the matrix given in (8).

M =

⎡

⎢⎢⎢⎢⎣

cos
(
2π f1tss1

) − sin
(
2π f1tss1

) · · · cos
(
2π fdtss1

) − sin
(
2π fdtss1

)

...
...

. . .
...

...

cos
(
2π f1tss2

) − sin
(
2π f1tss2

) · · · cos
(
2π fdtss2

) − sin
(
2π fdtss2

)

⎤

⎥⎥⎥⎥⎦

(8)

The LS criterion, used to find an estimate for c, aims
to minimize the square of the Euclidean norm (‖ · ‖2)
of the difference between the measured signal and
the data model, i.e.,

ĉ = argmin
c

1
2
‖xss − Mc‖22

subject to ai ≥ 0 and φi ∈[−π ,π ] ,∀i. (9)

In that case, the solution ĉ is given by
rĈlĉ = M+xss, (10)

whereM+ = (MTM)−1MT is the (Moore-Penrose)
pseudo-inverse ofM. We extract from ĉ two vectors
ĉs =

[
â1 cos φ̂1, . . . , âd cos φ̂d

]T
and

ŝn =
[
â1 sin φ̂1, . . . , âd sin φ̂d

]T
, and we compute âi

and φ̂i as follows

â =
⎡

⎢⎣
â1
...
âd

⎤

⎥⎦ =
√
ĉs 	 ĉs + ŝn 	 ŝn, (11)

φ̂ =
⎡

⎢⎣
φ̂1
...

φ̂d

⎤

⎥⎦ = arctan
(
ŝn 
 ĉs

)
, (12)

where 	 and 
 are the element-wise product and
division operators, respectively.

2. Estimation of e(tk) :
To estimate e(tk), we use the trust-region-reflective
(TRR) algorithm [29, 30], an efficient nonlinear
optimization algorithm that belongs to the “trust
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region” class of algorithms [31]. This algorithm
allows constraints to be imposed on the values of the
parameter estimates enabling us to satisfy our
constraints (ai ≥ 0, φi ∈ [−π ,π ] and pn < 0).
Having the estimates â and φ̂ obtained from the
previous step and the (overall) measured signal
x = [x(t0), . . . , x(tN−1)]T , we estimate an initial value
of p =[ p0, . . . , pn]T (the remaining unknown) using

p̂ = argmin
p

1
2
||x − (e 	 Movĉ)||22

subject to pn < 0, (13)

where e = [e(t0), . . . , e(tN−1)]T , N is the number of
samples of x, andMov is the matrixM (8) with
t ∈[ t0, . . . , tN−1] instead of t ∈[ tss1, . . . , tss2].
Moreover, t0 is practically chosen as the time-instant
corresponding to the maximum current amplitude;
that way, we model the damped part of the turn-on
transient starting from the maximum amplitude. In
the end of this phase, we obtain the initial estimated

parameter vector θ̂0 =
[
p̂T , âT , φ̂T]T

.

Parameter estimation phase As the estimation of ai and
φi is done using only a portion of the total measured sig-
nal x(tk), the aim of this parameter estimation phase is to
improve the estimation of all the parameters by consid-
ering all the samples of x(tk). We use for this the same
TRR algorithm considered for the estimation of e(tk) by
taking as initial value the result of the estimation phase
θ̂0. The unknown, to be estimated this time, is the global
parameter vector θ = [

pT , aT ,φT ]T estimated as

θ̂ = argmin
θ

1
2
‖x−(e 	 Movc)‖22 (14)

The TCE algorithm is summarized in Algorithm 1.

3 Cramér-Rao bounds of themodel parameters
The Cramér-Rao bound (CRB) provides a lower bound
on the variance of any unbiased estimator. We show in
Section 4.1.1 that this unbiasedness condition is approxi-
mately verified (at least for moderate and high SNRs) for
our estimated parameters, and hence, we can use the CRB
to assess the performance of our estimation.
Evaluating the performance of the estimation consists of

comparing the estimated parameters’ variances with their
CRB. Taking into account the dependence of s(tk) on the
parameter vector θ and N samples of x(tk), (4) can be
written using vector notation as

x = s(θ) + w, (15)

where x is normally distributed with mean μ (θ) = s(θ) =
[ s(t0, θ), . . . , s(tN−1, θ)]T and a covariance matrix C (θ) =
C = σ 2I.

Algorithm 1: Transient Current Estimation (TCE)
algorithm
Pre-specified quantities: fi (i=1, . . . , d), n, d, tss1, tss2.
Initialization

1. Compute â and φ̂ such that

â =
√
ĉs 	 ĉs + ŝn 	 ŝn (11)

φ̂ = arctan
(
ŝn 
 ĉs

)
(12)

using the least squares (LS) criterion where

ĉs =
[
â1 cos φ̂1, . . . , âd cos φ̂d

]T
and

ŝn=
[
â1 sin φ̂1, . . . , âd sin φ̂d

]T
extracted from

ĉ = argmin
c

1
2‖xss − Mc‖22 = M+xss(10)

whereM is computed using (8) and c =
[a1 cosφ1, a1sinφ1, . . . , ad cosφd, adsinφd]T .

2. Compute

p̂ = argmin
p

1
2‖x − (e 	 Movĉ)‖22,

s.t. pn < 0 (13)
using the TRR algorithm [29, 30] initialized by
p0 = 0.Mov is the matrixM (8) with
t ∈[ t0, . . . , tN−1] instead of t ∈[ tss1, . . . , tss2].

Parameter estimation

1. Compute θ̂ such that

θ̂ = argmin
θ

1
2
‖x−(e 	 Movc)‖22 (14)

using the TRR algorithm [29, 30] with

θ̂0 =
[
p̂T , âT , φ̂

T]T
as initial value.

The CRB is defined as the inverse of the Fisher infor-
mation matrix (FIM). If we assume θ = [

pT , aT ,φT ]T =
[θ1, . . . , θK ]T , K = n+1+2d (the noise power is assumed
known here) and x =[ x(t0), . . . , x(tN−1)]T ∈ R

N , then for
the general Gaussian case where x ∼ N (μ(θ),C(θ)), the
FIM is given elementwise by [26]

[F (θ)]ij =
(

∂μ(θ)
∂θi

)T
C−1 (θ)

(
∂μ(θ)
∂θj

)

+ 1
2 tr

[
C−1 (θ)

∂C(θ)
∂θi

C−1 (θ)
∂C(θ)
∂θj

]
,

(16)

where ∂μ(θ)
∂θi

=
[

∂[μ(θ)]1
∂θi

, . . . , ∂[μ(θ)]N
∂θi

]T
, and

∂C (θ)

∂θi
=

⎡

⎢⎢⎣

∂[C(θ)]11
∂θi

· · · ∂[C(θ)]1N
∂θi

...
. . .

...
∂[C(θ)]N1

∂θi
· · · ∂[C(θ)]NN

∂θi

⎤

⎥⎥⎦ .
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The symbol [·]i denotes element of index i of the corre-
sponding vector, [·]ij denotes the element of index ij of
the corresponding matrix, and tr [ ·] denotes the trace
operator.
For our model where μ (θ) = s (θ) and C (θ) = σ 2I

(covariance matrix independent of θ ), the (elementwise)
FIM becomes

[F (θ)]ij = 1
σ 2

(
∂s(θ)

∂θi

)T (
∂s(θ)

∂θj

)
, i, j = 1, . . . ,K .

(17)

Taking into account (17) and the structure of θ , the FIM
can be written using matrix notation in the form of a
nineblock matrix representing the partial derivatives with
respect to the elements of θ as

F (θ) = 1
σ 2

⎡

⎢⎢⎢⎣

(
∂sT
∂pl

∂s
∂pm

) (
∂sT
∂pl

∂s
∂am

) (
∂sT
∂pl

∂s
∂φm

)

(
∂sT
∂al

∂s
∂pm

) (
∂sT
∂al

∂s
∂am

) (
∂sT
∂al

∂s
∂φm

)

(
∂sT
∂φl

∂s
∂pm

) (
∂sT
∂φl

∂s
∂am

) (
∂sT
∂φl

∂s
∂φm

)

⎤

⎥⎥⎥⎦ ,

(18)

where l,m ∈ {1, . . . , n+1} for the elements of p and l,m ∈
{1, . . . , d} for the elements of a and φ.
Since thismatrix is symmetric (because of the symmetry

of the second order partial derivatives), we only have to
compute the following terms to find all the elements of the
matrix: ∂sT

∂pl
∂s

∂pm ,
∂sT
∂pl

∂s
∂am ,

∂sT
∂pl

∂s
∂φm

, ∂sT
∂al

∂s
∂am ,

∂sT
∂al

∂s
∂φm

, ∂sT
∂φl

∂s
∂φm

.
After straightforward derivations, we get

∂sT

∂pl
∂s

∂pm
=

N−1∑

k=0

(
ss(tk )e

pT tk
)2

tl+m
k

∂sT

∂pl
∂s

∂am
=

N−1∑

k=0
s(tk )e

pT tk tlk cos
(
2π fmtk + φm

)

∂sT

∂pl
∂s

∂φm
= −

N−1∑

k=0
s(tk)e

pT tk tlkam sin
(
2π fmtk + φm

)

∂sT

∂al
∂s

∂am
=

N−1∑

k=0
e(tk )2 cos

(
2π fl tk + φl

)
cos

(
2π fmtk + φm

)

∂sT

∂al
∂s

∂φm
= −

N−1∑

k=0
e(tk )2am cos

(
2π fl tk + φl

)
sin

(
2π fmtk + φm

)

∂sT

∂φl

∂s
∂φm

=
N−1∑

k=0
e(tk )2alam sin

(
2π fl tk + φl

)
sin

(
2π fmtk + φm

)
,

(19)

where tk = [
1, tk , . . . , tnk

]T , and s(tk), ss(tk), e(tk) are
defined in (1), (2), and (3), respectively. Finally, the CRB is
equal to F−1 (θ) obtained after inserting expressions (19)
in (18) and inverting F (θ).
In the previous CRB derivation, we assumed the noise

variance σ 2 known so that K = n + 1 + 2d. If we assume
that σ 2 is also an unknown parameter to be estimated
such that θ ′ = [

pT , aT ,φT , σ 2]T , then the FIM F
(
θ ′) is

equal to the FIM F (θ) augmented with one row and one
column corresponding to partial derivatives with respect
to σ 2. Using (16), we get

F
(
θ ′) =

[
F (θ) 0
0 N

2σ 4

]
. (20)

The CRB is then given by

CRB(θ ′) = F−1 (
θ ′) =

[ F−1 (θ) 0
0 2σ 4

N

]
. (21)

This indicates that it is sufficient to independently com-
pute F−1 (θ) and 2σ 4

N to find F−1 (
θ ′). It also means that

the existence or lack of information about σ 2 does not
affect the performance bound (CRB) of the other desired
parameters.

4 Results and discussion
4.1 Estimation performance assessment
4.1.1 Assessment on simulated data
In this section, we present the results of the estimation
performance evaluation on simulated data. Hereafter, we
present (i) the simulated signal and its parameters, (ii)
the bias of the estimated parameters, (iii) the estimated
parameters variance and its comparison to the CRB, (iv)
the CRB variation with respect to the sampling frequency,
and (v) the convergence of the TCE algorithm.

Simulated signal and its parameters Taking the consid-
ered setup (n = 3 and d = 5) in this section, we end up
with 14 parameters for the simulated signal. So, with such
large number of degrees of freedom, we decided to choose
the set of parameters such that the simulated signal will
resemble as much as possible real signals, and without a
priori knowledge on what parameter values are appropri-
ate, we decided to tweak themodel parameters and choose
the ones that gave a simulated signal “resembling” (sim-
ilar waveform) typical real current waveforms from our
dataset. The noiseless signal model is

s(tk)=e(tk)ss(tk)=
(
ep

T tk + 1
) d∑

i=1
aicos

(
2π fitk + φi

)
,

where p = [
p0, p1, . . . , pn

]T , tk = [
1, tk , . . . , tnk

]T , tk ∈
[ t0, tN−1], ai (≥ 0), φi ∈ [−π ,π ] and fi = (2i −
1)f0, i = 1, . . . , d with a fixed fundamental frequency
f0 = 50 Hz. The chosen model parameter values are
Fs = 30 kHz: sampling frequency
t0 = 0 s, tN−1 = 3 s: specify signal duration
n = 3: polynomial degree
d = 5: number of harmonics
p =[ 1.9,− 9, 8.5,− 4]T
a =[ 1.8, 0.5, 0.2, 0.1, 0.05]T
φ =[− 3, 3, 2.5, 1.5, 1]T
tss1 = 2.5 s, tss2 = 3 s: define steady state portion.
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The polynomial degree is chosen relatively small (we
found that n = 3 is sufficient to characterize the tested
signals, and hence, this value will be used in the remainder
of the paper). The previous transient signal is then cor-
rupted by an additive white Gaussian noise of zero mean
and variance σ 2 (varied such that the signal-to-noise ratio
(SNR) = 1/N

∑N−1
k=0 s(tk)2

σ 2 varies in the range [ 0 − 50] dB).
The obtained simulated signal is shown in Fig. 5.

Bias of the estimated parameters As mentioned before,
the CRB applies for unbiased estimators. Our maximum
likelihood estimation method based on criterion (14) is
known to be asymptotically, i.e., for high SNR, unbiased
[26]. Here, we evaluate our estimator bias numerically
using (1000) Monte-Carlo runs.
Figure 6 gives the bias computed for the parameters

estimated using the proposed algorithm versus the signal-
to-noise ratio (SNR).We can see that all estimated param-
eters have negligible bias for SNR values greater than or
equal to 30 dB. Between 10 dB and 30 dB, the estimated
parameters have very small biases, and below 10 dB, we
start getting some bias, nonetheless with values that are
still small compared to the true parameter values.

Estimated parameters’ variance and its comparison to
the CRB Similarly to the bias computation, the variance
is also computed numerically. Figure 7 shows the differ-
ent parameter variances compared with their respective
CRBs. We note that all the parameter variances coincide
with their respective CRBs almost perfectly. Hence, our
estimation is efficient (unbiased and the variance reaches
the CRB).

CRB variation with respect to the sampling frequency
Due to the transient behavior of the observed phenomena,
a good choice for the sampling frequency Fs of measure-
ments is mandatory. We seek a sufficiently high sampling
frequency to catch the transient behavior but not too high
to avoid heavy computational load. The CRB allows us
to evaluate the impact of the sampling frequency on the
parameter variance lower bounds and therefore decide on
the desired performance taking into account computa-
tional complexity.
Figure 8 gives the variation of the parameters’ CRB as a

function of Fs (1 to 100 kHz) on a logarithmic scale. The
results show that an increase in Fs results in a better esti-
mation performance (linearly decreasing variance w.r.t. to
the sample size) for all the parameters. This is expected,
since a higher Fs meansmore data samples (on a fixed time
period) and hence better performance. When consider-
ing real signals, however, this is not necessarily true. The
white noise (independence) assumption initially verified
for relatively low Fs (still high frequency though) might
not be verified in practice for higher frequency values.
At higher frequencies, the data samples become closer
and might become correlated, when the time duration
between two samples is too small to assume indepen-
dence. In that case, the computed CRB assuming a white
noise can no longer be used to evaluate the estimation
performance.

Practically, finding the adequate sampling frequency
is not easy since it depends on different parameters:
transient waveforms of interest and their frequency con-
tents, computational complexity, desired performance,

Fig. 5 Simulated turn-on transient current used for performance assessment
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Fig. 6 Bias of the different parameters estimated using the TCE algorithm. a Bias of p̂, p =[ 1.9,− 9, 8.5,− 4]T . b Bias of â, a =[ 1.8, 0.5, 0.2, 0.1, 0.05]T .
c Bias of φ̂, φ =[− 3, 3, 2.5, 1.5, 1]T . We used 1000 Monte-Carlo runs

etc. According to our experiments, and for the study of
turn-on transient signals, a sampling frequency at least
equal to 5 kHz is recommended (captures around 50 har-
monics) whereas going beyond 100 kHz starts generating
heavy data processing. A sampling frequency of 30 kHz
seems to be a good compromise, since it captures around
300 harmonics and is less computationally heavy. Hence,
our choice was Fs = 30 kHz for simulations.

Convergence of the TCE algorithm Since the TCE algo-
rithm uses an optimization algorithm in both its estima-
tion and refinement phases, it is important to check its
convergence, especially if there is a need for real-time
processing. Hereafter, we check the convergence of the
nonlinear optimization algorithm, trust-region-reflective
(TRR), for both phases.
Figure 9 gives, for different SNR values, the mean-

square-error (MSE) as a function of the number of iter-
ations in the estimation phase of the TCE algorithm.

Independently of the SNR, the algorithm converges after
ten iterations. The convergence of the TRR algorithm in
the refinement phase is even faster. Indeed, the initializa-
tion point being better defined, it converges at most after
three iterations.

4.1.2 Assessment on real data
Real data considerations Until now, we have implicitly
assumed, for simulated data, some simplifying assump-
tions to test the parameter estimation independently of
the performance of other blocs that may condition the
estimation. These assumptions are as follows: (A1) a well-
defined portion of the steady state, (A2) transient starting
from a maximum, and (A3) known polynomial degree
n and number of harmonics d. In real situations, how-
ever, these assumptions are not necessarily verified for the
following reasons: (i) the definition of the steady state por-
tion is affected by the precision of turn-on transient (end)
detection and is never perfect (depends on the detector
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Fig. 7 Comparison of the CRB and estimated parameters’ variance. Represented is the CRB vs. variance for p (a), a (b), and φ (c). The CRB curves are
represented using dashed lines and the variance curves using solid lines. We used 1000 Monte-Carlo runs

accuracy); (ii) physically, there will always be a latency in
the appliance response before the current signal reaches
its maximum amplitude; and (iii) the polynomial degree
as well as the harmonic numbers are only chosen param-
eters used to trade-off between complexity and modeling
efficiency.
The easiest assumption to get around in a real situation

is A2 since we only need to detect the signal maximum
amplitude and model the damped part, starting from this
maximum (so the portion of transient signal preceding
the peak value will be disregarded). For assumption A1,
we use the HAND detector [28] built specifically to allow
high accuracy detection of turn-on transients. For A3, we
relied on our dataset of real life signals to get our ad hoc
choice of the “effective” polynomial degree n = 3 and
“effective” number of harmonics d = 5 that have been
experimentally shown to be suitable for a good model-
ing of the considered transient signals. As an example,

Fig. 10 shows different plots comparing the real signal
x(t) to its estimate x̂(t) for different values of the polyno-
mial degree n (1, 3, 5 and 7). We note the improvement
of the root-mean-square error (RMSE) between n = 1
and n = 3, hence a better estimation using n = 3,
and a slight improvement of the RMSE between n = 3,
n = 5, and n = 7. We consider n = 3 to be a good
trade-off between model complexity and the estimation
performance (less than 10% of relative RMSE difference,
e.g., between n = 3 and n = 5, we have a relative RMSE
difference of 0.2473−0.2433

0.2473 ≈ 1.6%).
As an aside, note that the particular “two-steps” struc-

ture of the proposed parameter estimation algorithm
(Section 2.2) is motivated by the highly nonlinear opti-
mization problem involved. Such a two-step approach
helps to avoid local minima by providing a good initial-
ization point in the first step, then refining the obtained
estimate in the second step. For completeness, we have
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Fig. 8 CRB of the model parameters as a function of the sampling frequency Fs (from 1 kHz to 100 kHz) at an SNR of 25 dB. Represented is the CRB of
p (a), a (b), and φ (c)

Fig. 9Mean square error (MSE) 1
N

∑N−1
n=0 |x(tn) − s(θ̂ , tn)|2 as a function of the number of iterations of the trust-region-reflective algorithm

(estimation phase only). Different SNR values are considered and the last point of each curve indicates the convergence of the algorithm
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Fig. 10 Comparison between real, x(t), and estimated, x̂(t), transient current signals of a drill using different polynomial degrees n. The pairs
(polynomial degree, root-mean-square errors) (i.e., (n, RMSE)) for the different panels are (n = 1, 0.2962) (a), (n = 3, 0.2473) (b), (n = 5, 0.2433) (c),
and (n = 7, 0.2428)(d)

also tried to improve the estimate of f0 by jointly esti-
mating it when (i) estimating p̂ (13), (ii) when refining
the estimation of all parameters (14), and (iii) in both (i)
and (ii). This, however, did not improve the results, indi-
cating that the proposed approach already leads to near
optimal values (due in part to the highly precise estimate
of f0 obtained using [27]). As an example, we have con-
ducted the joint estimations described above considering
the real signal used in Fig. 10 with n = 3 that gave initially
RMSE = 0.2473. The newly obtained results, in terms of
RMSE, were 0.2473, 0.2479, and 0.2479, respectively for
(i), (ii), and (iii). The joint estimation of f0 was not con-
sidered further as it would generate more computational
load without performance gain.

Estimation with TCE on a real signal of the COOLL
dataset The real signal is taken from a turn-on tran-
sient dataset we built especially for transients analysis.

The dataset is called Controlled On/Off Loads Library
(COOLL) [32] and is freely available on the internet
(https://coolldataset.github.io/). Since the measurement
system [33] (Fig. 11) used to collect the dataset’s signals
allows the control over the turn-on/off, we know exactly
the turn-on/off time instants and assumptions A1 and A2
hold then true. Moreover, we consider the signal starting
from its maximum in order to verify A3.
The COOLL dataset signals (Table 1) are sampled at

Fs = 100 kHz3. The dataset consists of turn-on transient
current and voltage signals of 12 different electrical appli-
ances and each appliance has 20 signal examples. Figure 12
shows a typical histogram of the noise on a measured cur-
rent signal taken from its pre-turn-on part (noise only).

3After measurements were done we found that Fs = 30 kHz would have been
enough to capture the transient behavior of interest.

https://coolldataset.github.io/
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Fig. 11 Photograph of the measurement system

This shows that the noise distribution for the COOLL cur-
rent signals is Gaussian with zero mean and a standard
deviation of 2.2 mA (equivalent to an approximate power
consumption of 0.5 W).
Next, we provide an illustrative example corresponding

to a test signal of a fan (Fig. 13). The total duration of the
measurement is 6 s with a 0.5 s of pre-turn-on. The esti-
mation results of TCE on the fan signal (Fig. 13) are as
follows:

Table 1 COOLL dataset summary

N° Appliance type No. of appliances No. of current signals (20
per appliance)

1 Drill 6 120
2 Fan 2 40
3 Grinder 2 40
4 Hair dryer 4 80
5 Hedge trimmer 3 60
6 Lamp 4 80
7 Paint stripper 1 20
8 Planer 1 20
9 Routera 1 20
10 Sander 3 60
11 Saw 8 160
12 Vacuum cleaner 7 140
Total 42 840

aThis is an electrical router for woodworking not a network router

lp̂ =

⎡

⎢⎢⎣

−1.15
−0.19
0.20
−0.32

⎤

⎥⎥⎦ , â =

⎡

⎢⎢⎢⎢⎣

0.21
7.3 × 10−3

6.4 × 10−3

4.7 × 10−3

1.0 × 10−3

⎤

⎥⎥⎥⎥⎦
, φ̂ =

⎡

⎢⎢⎢⎢⎣

−3.10
2.94
2.72
0.22
1.27

⎤

⎥⎥⎥⎥⎦
,

RMSE =
√√√√ 1

N

N−1∑

n=0
|x(tn) − s(θ̂ , tn)|2 = 7.1 × 10−3 A,

Fig. 12 Histogram of current noise
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Fig. 13 Turn-on transient current of a fan from the COOLL dataset

where RMSE is the root-mean-square-error. The above
estimation results indicate little information on the esti-
mation quality, especially that we are applying the algo-
rithm on a real signal. Nonetheless, the RMSE gives
an idea about the estimation quality but is still without
much meaning if not considered relative to some refer-
ence value. Here, we propose to compare it to the average
maximum value of the steady state amplitude (around
0.2 A). We get a relative RMSE of 3.6%. Note that we
got an average relative RMSE of around 8% for the whole
dataset, which is acceptable considering the variability of
real signals.
Figure 14 allows to get a visual feel for the esti-

mation quality. Figure 14a and b show a good fit
between the reconstructed signal and the original
zone.

4.2 Classification of cOOLL dataset’s appliances using the
model parameters

Here, we propose to classify the appliances of the COOLL
dataset using the model parameters. We use the clas-
sical supervised k-nearest neighbors algorithm (k-NN)
[34, Chap. 13], which proceeds by taking the test exam-
ple (here the vector of parameters representing the test
signal) and classifying it according to a majority vote of
the k-nearest examples (of the training dataset). We used
the Euclidean distance as a distance metric. We assess
the result using K-fold cross-validation with K = 10.
This validation works by first partitioning the dataset to
K equal partitions (in our case each partition contains
84 example), then take one partition for testing and keep

the other nine partitions for training, and we assess the
performance using for example the classification accuracy
(CA). This process is repeatedK times, taking at each time
a different partition for testing and the remaining nine for
training. The final result is the average of the K accuracy
results.
Note that the estimated values of the phase parame-

ters φi are too random to be considered as features for
the classification and, hence, are discarded hereafter. We
apply the k-NN on the data using the estimated p̂j, j =
0, . . . , 3 and âi, i = 1, . . . , 5. The results are presented as a
confusion matrix (Fig. 15).
The classification accuracy (CA) is given in the bottom

rightmost corner. It is defined as CA = TP
Tot where TP

is the number of true positives (i.e., examples correctly
classified) and Tot is the total number of considered exam-
ples. Figure 15 also gives the values of two largely used
performance metrics for classification known as recall
(rightmost column) and precision (bottom row). These
are defined as recall = TP

RP and precision = TP
CP where RP

is the number of relevant positives (i.e., examples belong-
ing to the true class), and CP is the number of examples
classified as positives. Note that these metrics depend on
the relevant (considered) appliance class and are, hence,
recomputed for each class. To illustrate this, consider the
first row of the confusion matrix (Fig. 15) correspond-
ing to the true class “drill.” Here, recall = 103

120 = 85.8%
(i.e., 103 examples are correctly classified among a total
of 120 relevant positives (row sum)). Similarly, for the
first column corresponding to the predicted (classified)
class “drill,” we have precision = 103

121 = 85.1% (i.e., 103
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Fig. 14 Turn-on transient current of a fan from the COOLL dataset (in blue) with the reconstructed signal (in red) generated using the estimated
parameters with the TCE algorithm. a Current signals, b zoom on the interval [ 0.50 − 0.60] s, and c zoom on the interval [ 3.50 − 3.60] s

Fig. 15 Classification result as a confusion matrix using model parameters p̂i and âi . The bottom rightmost cell gives the classification rate, the
rightmost column contains the recall values, and the bottom row the precision values
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Fig. 16 Four examples of turn-on transient signals. a Drill, b hair drayer, c paint stripper, and d fluorescent lamp. Note the different envelope shapes
for the different appliances, which gives different minimum radii of curvature

examples are correctly classified among 121 classified as a
drill (column sum)).
We obtain a CA of 92.4%. Although the CA is higher

than 92%, we expect a less variable characteristic feature
capturing the envelope shape to be more relevant for the
classification. In fact, the p̂j are sensitive to the chosen
origin of time (except the last parameter p̂n) and their
estimated values are less stable due to the difficulty of pre-
cisely defining the origin of time for transient signals. To
remedy this, we need to construct a new feature that is
independent of the time origin and that still is characteris-
tic of the envelope shape.We propose to use theminimum
radius of curvature of the estimated envelope signal ê(t)
constructed using the p̂j parameters. For a function f (t),
the radius of curvature at point t0 is defined as [35]

R(t0) =
∣∣∣∣
(1 + f ′(t0)2)3/2

f ′′(t0)

∣∣∣∣ (22)

where f ′(t0) and f ′′(t0) are the first and second derivatives
of f (t) at point t0, respectively. Practically, we compute
this value for each sample point of ê(tk) and take the
minimum value Rmin. This minimum value is inversely
proportional to the maximum curvature, which is a dis-
tinctive feature of the turn-on transient signals as can be
seen in Fig. 16.
It is important to notice that the phase of the grid

(referred to as action delay) when switching-on the appli-
ance might affect the shape of the transient signal enve-
lope. To investigate the influence of the phase of the grid
on the chosen minimum radius of curvature, we evaluate
the variation of the latter parameter for different delays
as illustrated in Fig. 17 for a drill and a vacuum cleaner.
As can be seen from these plots, the minimum radius
of curvature remains relatively stable w.r.t. action delay
parameter values. This observation is valid for most of the
electrical appliances.
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Fig. 17 Stability of the minimum radius of curvature versus various values of the grid phase (action delay) for two appliances (a drill and a vacuum
cleaner). Action delay is the delay w.r.t. the (positive-to-negative) zero-crossing of the voltage signal before switching-on an appliance, e.g., an
action delay of 4 ms means that the appliance is switched-on after 4 ms of voltage zero-crossing

The classification results using Rmin and âi are shown
in Fig. 18. Compared to the previous result, we obtain
an improvement of 5.6%, with a CA of 98.0%. Another
performance metric used often in assessing classification
performance is the F1 score defined as 2precision×recall

precision+recall .
This metric can be computed for each appliance and gives
a single number assessing the performance, which is espe-
cially helpful when comparing different classifiers or, as is
the case here, the result of two different sets of features.

The F1 score results for our classification are given in
Table 2. These results show an improvement in the F1
score for almost all the appliances when using the set of
features {Rmin, âi} compared to the set of features {p̂j, âi}.
5 Conclusion
We proposed in this paper a new mathematical represen-
tation suitable for modeling turn-on transient current sig-
nals and proposed an algorithm for the model parameter
estimation. The efficiency of the algorithm is assessed

Fig. 18 Classification result as a confusion matrix using the minimum radius of curvature Rmin and model parameters âi . The bottom rightmost cell
gives the classification rate, the rightmost column contains the recall values, and the bottom row the precision values
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Fig. 19 Turn-on transient current of a microwave

theoretically via benchmarking its estimation error vari-
ances with respect to the CRB derived in Section 3 of this
paper. Later on, the proposed parametric model is vali-
dated using real data from the COOLL dataset that we
developed specifically for this research work. A “good” fit-
ting between the proposed signal model and the real-life
signals has been observed with, in particular, an average
relative mean-square-error of about 8%. Note also that
our experimental tests showed the need for estimating
the fundamental frequency due to its deviation from the
nominal value (i.e., 50 Hz). A classification method using
the model parameters has been proposed. The obtained

Table 2 Comparative F1 scores of the different COOLL
appliances for the classification result using the two sets of
features {p̂j , âi} and {Rmin, âi}, j = 0, . . . , 3, and i = 1, . . . , 5

F1 score

{p̂j , âi} {Rmin, âi}
Drill 85.5 98.8

Fan 98.7 95.2

Grinder 82.4 100.0

Hair dryer 99.4 100.0

Hedge trimmer 81.8 96.7

Lamp 96.8 96.8

Paint stripper 100.0 100.0

Planer 95.2 100.0

Router 78.8 100.0

Sander 99.2 95.7

Saw 87.4 97.2

Vacuum cleaner 100.0 98.6

results show the usefulness of the transient signal param-
eters as relevant features for the characterization of elec-
trical appliances with a correct classification accuracy of
98% in the considered context.
The proposed model is valid for a lot of electrical

appliances that show a single-phase behavior during the
turn-on such as incandescent light bulbs, compact fluo-
rescent lamps, heaters, vacuum cleaners, and hairdryers.
However, some electrical appliances may have a turn-
on transient current signal consisting of different phases
each with a distinct signal content (harmonics with dif-
ferent amplitudes and phases) and a distinct envelope
shape corresponding to the different regimes that the
appliance goes through during turn-on. For instance, the
microwave turn-on transient shown in Fig. 19 has two
phases (some microwaves may have more than two) each
with its specific characteristics. As a perspective work,
one can consider using our model to characterize each
phase independently (as a single-phase appliance) and
then devise some rule to identify the correspondingmulti-
phase appliance (e.g., considering the occurrence of the
different phases in a time series).
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