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Abstract

In this paper, we present a non-convex �2/�q(0 < q < 1)-analysis method to recover a general signal that can be
expressed as a block-sparse coefficient vector in a coherent tight frame, and a sufficient condition is simultaneously
established to guarantee the validity of the proposed method. In addition, we also derive an efficient iterative
re-weighted least square (IRLS) algorithm to solve the induced non-convex optimization problem. The proposed IRLS
algorithm is tested and compared with the �2/�1-analysis and the �q(0 < q ≤ 1)-analysis methods in some
experiments. All the comparisons demonstrate the superior performance of the �2/�q-analysis method with
0 < q < 1.
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1 Introduction
Data compression and data recovery (maybe from its com-
pressed observed data) are two crucial problems in many
real-world applications, including information processing
[1], machine learning [2], statistical inference [3], swarm
intelligence [4, 5], and compressed sensing (CS) [6, 7].
Among these applications, CS is particularly attractive
since it provides insights into signal processing with sig-
nificantly smaller samplings than classical signal process-
ing approaches based on the Nyquist-Shannon sampling
theorem.
CS was pioneered by Donoho [6] and Candès et al. [7]

around 2006, and it has already captured lots of attention
from researchers in a growing number of fields, including
signal processing, machine learning, mathematical statis-
tics, etc. A crucial concern in CS is to recover an unknown
signal f ∈ R

ñ from its small set of linear measurements

y = �f ,

where y ∈ R
m̃ is an observed signal vector and � ∈ R

m̃×ñ

is a given measurement matrix with m̃ � ñ.
Conventional CS heavily relies on techniques that can

express signals as a few linear combination of base vectors
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from an orthogonal basis. However, in a large number of
practical applications, the signals are not sparse in terms
of an orthogonal basis, but in terms of an overcomplete
and tight frame [8, 9]. In such a scenario, one natural way
to express f is to write f = �x, where � ∈ R

ñ×n is a
matrix with ñ ≤ n whose n columns form a tight frame,
and x ∈ R

n is sparse (or nearly sparse). In order to recover
f , a popular approach is using an �1-synthesis method [10,
11], which first solves following problem:

min
x∈Rn

‖x‖1 subject to y = ��x

to get the transform-based sparse coefficient vector x�,
and then reconstruct the original signal f � by applying
a synthesis operator � on x�, i.e., f � = �x�. Since the
entries in �� are correlated when � is highly coherent,
�� may no longer satisfy the required assumptions such
as the restricted isometry property (RIP) and the mutual
incoherence property (MIP) which have been widely used
in conventional CS. Therefore, it is not easy to study the
theoretical performance of the �1-synthesis method.
Fortunately, there exists an alternative to the �1-

synthesis method called the �1-analysis method [10, 12],
which directly finds an estimator f � by solving following
�1-analysis problem:

min
f ∈RN

∥

∥

∥�
T f
∥

∥

∥

1
subject to y = �f .
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The �1-analysis method has its roots in the analysis-style
sparse representation x = �T f , and is different from
the above-mentioned synthesis method, which is based
on the synthesis-style sparse representation, i.e., f = �x.
The existing literature has shown that there is a remark-
able difference between the two methods despite their
apparent similarity. For example, these two methods have
totally different recovery conditions to guarantee robust
recovery of any signal, and their ways to utilize the spar-
sity prior are also totally different. Please see [10, 13] and
references therein for more details. To investigate the the-
oretical performance of the �1-analysis method, Candès
et al. [12] introduced the definition of �-RIP: a measure-
ment matrix � is said to satisfy the RIP adapted to �

(�-RIP) with constant δk if

(1 − δk)‖�x‖22 ≤ ‖��x‖22 ≤ (1 + δk)‖�x‖22
holds for every vector x ∈ R

n that is k-sparse, and
establishes a sufficient condition related to �-RIP for
recovering general signals. In addition, they also demon-
strated the efficiency of the �1-analysis strategy with a
large number of experiments based on real signals.
Different from the general case in CS that the transform-

based coefficient vector x is sparse, some signals in the
real world may exhibit additional sparse structures in
terms of a fixed transform basis � . Take for example the
block-sparse structure, i.e., the non-zero elements of x are
assembled in a few fixed blocks, which is also our main
concern in this paper. Such structured signals naturally
arise in various applications. Prominent examples include
DNA microarrays [14], color imaging [15], and motion
segmentation [16]. Without loss of generality, we assume
that there are m blocks of size d = n/m in x. Then, one
can write any block-sparse vector x ∈ R

n as

x =[ x1, · · · , xd
︸ ︷︷ ︸

x[1]

, xd+1, · · · , x2d
︸ ︷︷ ︸

x[2]

, · · · , xn−d+1, · · · , xn
︸ ︷︷ ︸

x[m]

]T ,

where x[ i] denotes the ith block of x. If x has at most k
non-zero blocks, i.e., ‖x‖2,0 ≤ k, we refer to such a vector
x as a block k-sparse signal. Accordingly, we can also write
� ∈ R

ñ×n as

� =[�1, · · · ,�d
︸ ︷︷ ︸

�[1]

,�d+1, · · · ,�2d
︸ ︷︷ ︸

�[2]

, · · · ,�n−d+1, · · · ,�n
︸ ︷︷ ︸

�[m]

] ,

where �i with i = 1, 2, · · · , n and �[ j] with j =
1, 2, · · · ,m are denoted by the ith column vector and
the jth sub-block matrix of � , respectively. Most current
papers focus more on the conventional sparse or nearly
sparse case in terms of � . As one of some exceptions,
Wang et al. [17] proposed an �2/�1-analysis method to
investigate the recovery of block-sparse signals in terms of
� . Basing their theoretical analysis on block �-RIP, which
is a block version of �-RIP that we will define in the next
section, Wang et al. [17] also developed several sufficient

conditions to guarantee robust recovery of general signals.
For completeness, we present the �2/�1-analysis problem
as follows

min
f ∈RN

∥

∥

∥�
T f
∥

∥

∥

2,1
:=

m
∑

i=1

∥

∥

∥�[ i]T f
∥

∥

∥

2
subject to y = �f ,

Obviously, when d = 1, the �2/�1-analysis method will
degenerate to the �1-analysis method mentioned above.
Recently, the work of Chartrand et al. [18–20] has shown

that the non-convex �q(0 < q < 1) method allows the
exact recovery of sparse signals from a smaller set of linear
measurement than that of the �1 method, providing a new
paradigm to study CS problems. In this paper, along with
previous works on the non-convex �q(0 < q < 1) strategy,
we first propose an �2/�q-analysis method with 0 < q ≤ 1
to recover general signals that can be expressed as block-
sparse signals in terms of � . Our method is different
from conventional CS methods, which only concern cases
where the signals per se are sparse or block-sparse [18,
21–23], and also different from previous analysis meth-
ods [24–26], which only focus on the recovery of general
signals that are expressed as non-block structured signals
in terms of � . Specifically, the proposed method can be
described as:

min
f ∈RN

∥

∥

∥�
T f
∥

∥

∥

2,q
:=
{ m
∑

i=1

∥

∥

∥�[ i]T f
∥

∥

∥

q

2

}1/q

subject to y = �f ,

In many application problems, the observed signal y may
be polluted by a bounded noise e, i.e., y = �f + e. So for
the general situation, we have the model:

min
f ∈RN

∥

∥

∥�
T f
∥

∥

∥

2,q
subject to ‖y − �f ‖2 ≤ ε, (1)

where ε is the noise level. Secondly, for (1), we also estab-
lish a sufficient conditions for robust recovery of general
signals. The obtained results associate two constants �-
RIC and �-ROC in a block version with different q ∈
(0, 1], and provide a series of selectable conditions for
robust recovery via the �2/�q-analysis method. Finally,
inspired by the ideas of [21, 27], we derive an iterative
re-weighted least square (IRLS) algorithm to solve our
�2/�q-analysis problem. Also, some experiments are con-
ducted later that further demonstrate the efficiency of our
�2/�q-analysis method with 0 < q ≤ 1.
The rest of the paper is organized as follows. In

Section 2, we first state three key definitions and then
present our main theoretical results. In Section 3, we
propose an IRLS algorithm to solve the �2/�q-analysis
problem, and conduct some experiments to support the
validity of our �2/�q-analysis method. Finally, the conclu-
sion is addressed in Section 4.
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2 Robust recovery for �2/�q-analysis problem
In this section, we mainly establish a sufficient condition
to robustly recover general signals that can be expressed
as block-sparse vectors in terms of � . Before presenting
ourmain results, we first introduce several definitions that
will be used later. We start with the introduction of two
important definitions, which can also be found in many
references such as [17].

Definition 1 Let � ∈ R
ñ×n with ñ ≤ n be a matrix

whose n columns form a tight frame. A measurement
matrix � ∈ R

m̃×ñ is said to satisfy the block �-RIP
condition with constant δk|d(block �-RIC) if

(1 − δk|d)‖�x‖22 ≤ ‖��x‖22 ≤ (1 + δk|d)‖�x‖22
holds for every vector x ∈ R

n that is block k-sparse.

Definition 2 The block �-restricted orthogonality con-
stant(block �-ROC), denoted by θ(k1,k2)|d, is the smallest
positive number that satisfies

|〈��x1,��x2〉 − 〈�x1,�x2〉| ≤ θ(k1,k2)|d‖x1‖2‖x2‖2
for every x1 and x2 such that x1 and x2 are block k1-sparse
and block k2-sparse, respectively.

It is easy to see that if one sets � to be the identity
matrix of size ñ× ñ, then the above-mentioned definitions
will be reduced to the well-known block-RIC and block-
ROC definitions. Furthermore, if one sets the block size
d = 1, then we will get the classical RIC and ROC defi-
nitions. Obviously, block-RIC and block-ROC definitions,
together with RIC and ROC definitions, are just two spe-
cial cases of Definitions 1 and 2. In addition, we also need
the following definition, which also plays a key role in our
theorem.

Definition 3 Given x ∈ R
n, we denote the best k-block

approximation of x as

x[k] = arg min
‖u‖2,0≤k

‖x − u‖2,1, u ∈ R
n.

For convenience, in the remainder of this paper, we use
δk and θk1,k2 , instead of δk|d and θ(k1,k2)|d, to represent the
block �-RIC and block �-ROC, respectively, whenever
confusion is not caused.
Next, we present our main results, which are included

in the following theorem.

Theorem 1 Let k1 and k2 be two positive inte-
gers such that 0 ≤ 8(k1 − k) ≤ k2, and denote
t = 21/q−1(k1/k2)1/q−1/2 + √

k2/k1[ (q/2)q/(2−q) −
(q/2)2/(2−q)]−(1 + 21/q−1)

√

k2/k1 [(k1 − k)/k2]1/q with
0 < q ≤ 1. If the matrix � satisfies

δk1 + tθk1,k2 < 1, (2)

where δk and θk,k are defined in Definitions 1 and 2, then
the solution f � to problem (1) obeys

∥

∥f − f �
∥

∥

2 ≤ C1ε + C2‖
(

�T f
)

[k]
‖2,q, (3)

where

C1 =
2
√

(1 + δk1)
(

(2k1)1/q−1 + 1
)

1 − δk1 − tθk1,k2
,

C2 = 22/q−1(k2)1/2−1/qθk1,k2
√

(2k1)1/q−1 + 1
1 − δk1 − tθk1,k2

+ 22/q−2
√

k1
(

(2k1)1/q−1 + 1
)

.

In what follows, we present two remarks for the estab-
lished results, and the proof of the theorem will be given
in the appendix.

Remark 1 Theorem 1 presents a sufficient condition
to robustly recover general signals via the �2/�q-analysis
method with 0 < q ≤ 1. The obtained sufficient condition
associates block �-RIC and block �-ROC with different
q ∈ (0, 1], and provides a series of selectable conditions
for robust recovery of general signals that can be expressed
as block-sparse vectors. Since condition (2) is related to t,
which is a complex combination of k1, k2, k, and q, it is dif-
ficult to intuitively analyze the obtained condition. So by
choosing some representative values, we induce a series of
new conditions, as detailed in Table 1.

Remark 2 Inequality (3) indicates that our recon-
structed error ‖f − f �‖2 can be bounded by the lowest
k-block approximation error and the noise level ε. As a
special case where ε = 0 and the original signal f can be
expressed as a block k-sparse vector with a fixed � , i.e.,
‖�T f ‖2,0 ≤ k, if the matrix� satisfies (2), solving problem
(1) will lead to exact recovery of the original signal f .

3 Numerical experiments and results
In this section, we conduct some numerical experiments
to evaluate the performance of our �2/�q(0 < q < 1)-
analysis method. An IRLS algorithm is first proposed to
solve the induced �2/�q(0 < q < 1)-analysis problem. We
then compare our �2/�q(0 < q < 1)-analysis method with
other analysis-style methods, including �2/�1-analysis
[17] and �q(0 < q ≤ 1)-analysis [26].

3.1 An IRLS algorithm for �2/�q-analysis
In order to solve the �2/�q-analysis problem (1) with 0 <

q ≤ 1, we derive an efficient analysis-style IRLS algorithm.
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Table 1 Different sufficient conditions related to k1, k2, and q

k1 k2 q = 0.1 q = 0.5 q = 0.7 q = 1

k 3k δk + 1.43θk,3k < 1 δk + 1.21θk,3k < 1 δk + 1.13θk,3k < 1 δk + 1.02θk,3k < 1

k 4k δk + 1.63θk,4k < 1 δk + 1.2θk,4k < 1 δk + 1.12θk,4k < 1 δk + θk,4k < 1
5
4 k

11
4 k δk + 1.49θ 5

4 k,
11
4 k < 1 δk + 1.28θ 5

4 k,
11
4 k < 1 δk + 1.09θ 5

4 k,
11
4 k < 1 δk + 0.78θ 5

4 k,
11
4 k < 1

3
2 k

7
2 k δk + 1.41θ 3

2 k,
7
2 k

< 1 δk + 1.19θ 3
2 k,

7
2 k

< 1 δk + 0.96θ 3
2 k,

7
2 k

< 1 δk + 0.61θ 3
2 k,

7
2 k

< 1

2k 5k δk + 1.37θ2k,5k < 1 δk + 1.07θ2k,5k < 1 δk + 0.79θ2k,5k < 1 δk + 0.4θ2k,5k < 1

The proposed algorithm can be seen as a natural exten-
sion of the traditional IRLS algorithm [21, 27] for sparse
problems. We first rewrite the problem (1) as

min
f ∈RN

∥

∥

∥�
T f
∥

∥

∥

ε

2,q
+ 1

2λ
‖y − �f ‖22, (4)

where λ is a regularization parameter and ‖�T f ‖ε
2,q =

m
∑

i=1

(

ε2 + ‖�[ i]T f ‖22
)
q
2 .

Using the first-order optimality condition on (4), we
have

m
∑

i=1

q�[ i]�[ i]T
(

ε2 + ‖�[ i]T˜f ‖22
)1−q/2

˜f + 1
λ

(

�T�˜f − �Ty
)

= 0,

(5)

where ˜f denotes a critical point of (4). Due to the non-
linearity in the above equation, there is no straightforward
way to obtain an accurate solution of (5). However, utiliz-
ing some numerical techniques, one can well approximate
an accurate solution of (5). Along the ideas in [21, 27], we
present a similar iterative procedure as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m
∑

i=1

qλ�[ i]�[ i]T
[

(

ε(t))2 +
∥

∥

∥�[ i]T f (t)
∥

∥

∥

2

2

]1−q/2 +�T�

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

f (t+1) =�Ty,

which is implemented by Algorithm 1.

3.2 Experimental settings
Throughout the experiments, the measurement matrix �

is generated by creating an m̃ × ñ Gaussian matrix with
m̃ = 64 and ñ = 256, and the overcomplete and tight
frame � is generated by taking the first ñ rows from an
n × n Hadamard matrix with n = 512. The original
signal f is synthesized as f = �x where x is a block k-
sparse signal with block size d = 4. We set the value
of the noise vector e as obeying a Gaussian distribute
with mean 0 and standard deviation 0.05. We consider
four different values of q = 0.1, 0.5, 0.7, 1 for both the

�2/�q-analysis and �q-analysis methods. The relative error
between the reconstructed signal f � and the original signal
f is calculated as ‖f − f �‖2/‖f ‖2.

3.3 Experimental results
In order to find the value of λ that minimizes the relative
error, we conduct two sets of trials. Figure 1a depicts the
relative error versus λ for recovering the signals f , which
can be expressed as block 5-sparse signals in terms of � .
It is easy to see that choosing λ less than 1 × 10−2 is
appropriate. Similar results can also be found in Fig. 1b.
Without loss of generality, we take λ = 1 × 10−3 as the
best regularization parameter value.
Next, we compare our �2/�q(0 < q < 1)-analysis

method with the �2/�1-analysis and �q(0 < q ≤ 1)-
analysis methods. The results are depicted in Fig. 2.
It is easy to see that the �2/�q(0 < q < 1)-analysis

method is far superior to the �2/�1-analysis method. Take
for example the �2/�0.5-analysis method when k = 8.
The relative error from the �2/�0.5-analysis method is
0.016, which is about 16 times smaller than that of the
�2/�1-analysis method (0.257). Additionally, in terms of
the non-convex strategy, a proper value of q contributes to
better performance of both the �2/�q(0 < q ≤ 1)-analysis
and �q(0 < q ≤ 1)-analysis methods. However, with
increasing block-sparsity k, the three methods above tend
to consistency.What is more, when it comes to recovering
the signals, which can be expressed as block-sparse coef-
ficient vectors based on � , our method performs better
than the other two methods. An instance is also presented
in Fig. 3, which displays the recovery of the signal f syn-
thesized by a block 7-sparse vector based on the � via
�2/�q(0 < q ≤ 1)-analysis and �q(0 < q ≤ 1)-analysis
methods, respectively.

4 Conclusion and discussion
This paper mainly investigates an �2/�q(0 < q ≤ 1)-
analysis method to recover a general signal that can be
expressed as a block-sparse vector in terms of an over-
complete and tight frame. To the best of our knowledge,
this is the first theoretical characterization of the pro-
posed non-convex �2/�q-analysis method with 0 < q < 1.
Specifically, the obtained results contribute to CS in the
following three aspects:
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Algorithm 1 IRLS algorithm for �2/�q-analysis problem
1: Initialize f (0) = arg min

u∈RN
‖�f − u‖22, and ε(0) = 1, 0 < q ≤ 1, λ.

2: Set t = 0.
3: repeat
4: Search f (t+1) by solving

f (t+1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�Diag

⎡

⎢

⎢

⎢

⎣

qλId
[

(

ε(k))2 +
∥

∥

∥�[ i]T f (t)
∥

∥

∥

2

2

]1−q/2 , i = 1, 2, · · · ,m

⎤

⎥

⎥

⎥

⎦

�T + �T�

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

−1

�Ty.

5: Update ε(t+1) = 0.95ε(t).
6: Replace t with t + 1.
7: until Any of the following stopping criterions are satisfied.

•
∥

∥

∥f (t+1) − f (t)
∥

∥

∥

2
≤ 1 × 10−4;

• t ≤ 500;

8: Output f (t+1) as the approximation to˜f .

• We proposed an �2/�q-analysis method to recover a
general signal that can be expressed as a block-sparse
vector in a certain frame, generalizing both the
traditional methods in CS to recover sparse signals
and the recent novel analysis methods to recover
general signals.

• Basing our theoretical approach on a proposed
�2/�q-analysis method, we established a sufficient
condition for robust recovery of general signals that
can be expressed as a block-sparse signals, which
associates block �-RIC and block �-ROC with
different values of q ∈ (0, 1], providing a series of
selectable conditions related to q.

• We derive an analysis-style IRLS algorithm to solve
the proposed method and compare our method with
that of other representative methods, obtaining some
convincing results.

There are still some issues left for future work. For
example, one could consider establishing sharp recovery
conditions of our �2/�q(0 < q < 1)-analysis method,

and one could also consider replacing our �2/�q(0 < q <

1)-analysis method with other more general non-convex
methods.

Appendix
The proof of Theorem 1 is proved as follows.
Let f � = f +h be a solution of (1), where f is the original

signal. Write �Th = (c[ 1] , c[ 2] , · · · , c[m] )T and rear-
range the block indices such that ‖c[ 1] ‖2 ≥ ‖c[ 2] ‖2 ≥
· · · ≥ ‖c[m] ‖2. Let ˜
 = {1, 2, · · · , k} and 
 the block
index set over the k blocks with largest �2 norm of �T f .
We denote by 
c the complement set of 
 in {1, 2, · · · , d}.
For convenience, we use �T

˜

to denote (�

˜
)T where �S is
the matrix � restricted to the column-blocks indexed by
˜
, and then partition {1, 2, · · · , d} into the following sets


0 ={1, 2, · · · , k1},

1 ={k1 + 1, k1 + 2, · · · , k1 + k2},

2 ={k1 + k2 + 1, k1 + k2 + 2, · · · , k1 + 2k2},

· · ·

Fig. 1 Selection of regularization parameter λ over the range from 1 × 10−6 to 1. a k = 5. b q = 0 : 5
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Fig. 2 Comparison of recovery performance among non-convex
�2/�q(0 < q < 1)-analysis, �2/�1-analysis and �q(0 < q ≤ 1)-analysis
methods

Since f � is a minimizer of (1), we have
∥

∥

∥�
T

f
∥

∥

∥

q

2,q
+
∥

∥

∥�
T

c f

∥

∥

∥

q

2,q

=
∥

∥

∥�
T f
∥

∥

∥

q

2,q
≥
∥

∥

∥�
T

(f +h)

∥

∥

∥

q

2,q
+
∥

∥

∥�
T

c(f + h)

∥

∥

∥

q

2,q

≥
∥

∥

∥�
T

f
∥

∥

∥

q

2,q
−
∥

∥

∥�
T

h
∥

∥

∥

q

2,q
+
∥

∥

∥�
T

ch
∥

∥

∥

q

2,q
−
∥

∥

∥�
T

c f
∥

∥

∥

q

2,q
.

This implies
∥

∥

∥�
T

ch

∥

∥

∥

q

2,q
≤ 2

∥

∥

∥�
T

c f

∥

∥

∥

q

2,q
+
∥

∥

∥�
T

h
∥

∥

∥

q

2,q
. (6)

Note that
∥

∥

∥�T
˜

h
∥

∥

∥

2,q
≥ ∥

∥�T

h
∥

∥

2,q and
∥

∥

∥�T
˜
ch

∥

∥

∥

2,q
≤

∥

∥�T

ch

∥

∥

2,q, and thus it follows from (6) that
∥

∥

∥�
T
˜
ch

∥

∥

∥

q

2,q
≤
∥

∥

∥�
T
˜

h
∥

∥

∥

q

2,q
+ 2

∥

∥

∥�
T

c f

∥

∥

∥

q

2,q
.

Further, we have
∥

∥

∥�
T
˜
ch

∥

∥

∥

2,q
≤ 21/q−1

∥

∥

∥�
T
˜

h
∥

∥

∥

2,q
+ 22/q−1

∥

∥

∥�
T

c f

∥

∥

∥

2,q
.

(7)
Using the inequality involving �2 and �q(0 < q ≤ 1)

norms1(see [28], Lemma 3), it is easy to obtain that
∥

∥

∥�
T

jh
∥

∥

∥

2
≤ (k2)1/2−1/q

∥

∥

∥�
T

jh
∥

∥

∥

2,q

+Pq
√

k2
{‖c[ k1+(j−1)k2+1]‖2−‖c[ k1+ jk2] ‖2

}

holds for any j ≥ 1, where Pq = (q/2)q/(2−q)−(q/2)2/(2−q).
Thus, summing these terms yields

1In fact, when 0 < q < 1, the �q norm is a quasi norm. For consistency, we
instead use the norm.

∑

j≥1

∥

∥

∥�
T

j
h
∥

∥

∥

2
≤ (k2)1/2−1/q∑

j≥1

∥

∥

∥�
T

j
h
∥

∥

∥

2,q

+ Pq
√

k2‖c[ k1 + 1] ‖2
≤ (k2)1/2−1/q

{

∥

∥

∥�
T
˜
ch

∥

∥

∥

2,q
− (k1 − k)1/q‖c[ k1 + 1] ‖2

}

+ Pq
√

k2‖c[ k1 + 1] ‖2.
This, along with (7), thus gives
∑

j≥1

∥

∥

∥�
T

jh
∥

∥

∥

2
≤ (k2)1/2−1/q

∥

∥

∥�
T
˜
ch

∥

∥

∥

2,q

+
[

Pq
√

k2 − (k2)1/2−1/q(k1 − k)1/q
]

‖c[ k1 + 1] ‖2
≤ 21/q−1(k2)1/2−1/q

∥

∥

∥�
T
˜

h
∥

∥

∥

2,q

+ 22/q−1(k2)1/2−1/q
∥

∥

∥�
T

c f

∥

∥

∥

2,q

+
[

Pq
√

k2 − (k2)1/2−1/q(k1 − k)1/q
]

‖c[ k1 + 1] ‖2

≤ 21/q−1(k2)1/2−1/q
{

∥

∥

∥�
T

0h

∥

∥

∥

2,q
− (k1 − k)1/q‖c[ k1 + 1] ‖2

}

+ 22/q−1(k2)1/2−1/q
∥

∥

∥�
T

c f

∥

∥

∥

2,q

+
[

Pq
√

k2 − (k2)1/2−1/q(k1 − k)1/q
]

‖c[ k1 + 1] ‖2
= 21/q−1(k2)1/2−1/q

∥

∥

∥�
T

0h

∥

∥

∥

2,q

+ 22/q−1(k2)1/2−1/q
∥

∥

∥�
T

c f

∥

∥

∥

2,q

+
[

Pq
√

k2 − (k2)1/2−1/q(k1 − k)1/q

−21/q−1(k2)1/2−1/q(k1 − k)1/q
] ‖c[ k1 + 1] ‖2.

Since ‖�T

0
h‖2,q ≤ (k1)1/q−1/2‖�T


0
h‖2 and c[ k1 +

1] ‖22 ≤ ‖�T

0
h‖22/k1, we can get

∑

j≥1
‖�T


jh‖2 ≤ t‖�T

0h‖2 + 22/q−1(k2)1/2−1/q‖�T


c f ‖2,q,

(8)

where t = 21/q−1(k1/k2)1/q−1/2 + Pq
√

k2/k1 − (1 +
21/q−1)

√

k2/k1 [(k1 − k)/k2]1/q.
In fact, to make (8) work, one way is to set

Pq
√

k2/k1 − (

1 + 21/q−1)√k2/k1 [(k1 − k)/k2]1/q ≥ 0,
for all 0 < q ≤ 1,

which is equivalent to

0 ≤ k1 − k
k2

≤
[

(q/2)q/(2−q) − (q/2)2/(2−q)

21/q−1 + 1

]q

.

To this end, we have to estimate the minimal value of

f (q)=
[

(q/2)q/(2−q) − (q/2)2/(2−q)

21/q−1 + 1

]q

, where 0 < q ≤ 1.

(9)

By means of mathematical skills, we can deduce that f (q)
arrives at its minimum value 0.125 when q = 1. An
auxiliary result is depicted in Fig. 4.
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Fig. 3 An instance for recovering the signal, which can be expressed as a block 5-sparse vector in terms of � for different recovery methods. The
solid line with pentagram markers represent the original signal, and the dotted line represents the recovered signal. a �2/�0.5-analysis method. b
�2/�1-analysis method. c �0.5-analysis method. d �1-analysis method

A direct result is that if the condition 0 ≤ k1−k
k2 ≤ 0.125

holds, one can easily get (8) for all 0 < q ≤ 1.
Similar to the consequence of �-RIP, we have

〈

�h,���T

0h

〉

=
∥

∥

∥���T

0h

∥

∥

∥

2

2

+
∑

j≥1

〈

���T

jh,���T


0h
〉

≥ (

1 − δk1
)

∥

∥

∥��T

0h

∥

∥

∥

2

2

+
∑

j≥1

〈

��T

jh,��T


0h
〉

− θk1,k2

∥

∥

∥�
T

0h

∥

∥

∥

2

∑

j≥1

∥

∥

∥�
T

jh
∥

∥

∥

2
.

By applying the equality

∑

j≥1

〈

��T

jh,��T


0h
〉

=
〈

h − ��T

0h,��T


0h
〉

=
∥

∥

∥�
T

0h

∥

∥

∥

2

2
−
∥

∥

∥��T

0h

∥

∥

∥

2

2
,

to the above inequality, we get

〈

�h,���T

0h

〉

≥
∥

∥

∥�
T

0h

∥

∥

∥

2

2
− δk1

∥

∥

∥��T

0h

∥

∥

∥

2

2

− θk1,k2

∥

∥

∥�
T

0h

∥

∥

∥

2

∑

j≥1

∥

∥

∥�
T

jh
∥

∥

∥

2

≥ (

1 − δk1 − tθk1,k2
)

∥

∥

∥�
T

0h

∥

∥

∥

2

2

− 22/q−1(k2)1/2−1/qθk1,k2

∥

∥

∥�
T

0h

∥

∥

∥

2

∥

∥

∥�
T

c f

∥

∥

∥

2,q
.

(10)

By the feasibility of f �, we have

‖�h‖2 = ‖�(f � − f )‖2 ≤ ‖�f � − y‖2 + ‖�f − y‖2 ≤ 2ε.

Thus,

〈�h,���T

0h〉 ≤ ‖�h‖2‖���T


0h‖2
≤ 2ε

√

1 + δk1‖�T

0h‖2. (11)

It then follows from (10) and (11) that

∥

∥

∥�
T

0h

∥

∥

∥

2
≤ 1

1 − δk1 − tθk1,k2
[

2ε
√

1 + δk1 + 22/q−1(k2)1/2−1/qθk1,k2‖�T

c f ‖2,q

]

.
(12)
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Fig. 4 Plot of f (·) (given in (9)) with respect to q from 0.001 to 1 with
step size 0.001. One can easily find that the function f (q) obtains its
maximum (around 0.5300) at about q = 0.16 and its minimum value
(around 0.125) at q = 1. Besides, when q = 0.5 the value of f (q) is
around about 0.3969. In other words, f (q) ≥ f (1) for any q ∈ (0, 1]

By (7), it is easy to see that

∥

∥�
0ch
∥

∥

2
2 ≤ ∥∥�
0ch

∥

∥

2,q

∥

∥

∥�T

0

h
∥

∥

∥

2,1
k1

≤ ∥

∥�
˜
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∥

∥

2,q

∥

∥

∥�T

0

h
∥

∥

∥

2,1
k1

≤
(

21/q−1
∥

∥

∥�
T

0

h
∥

∥

∥

2,q
+ 22/q−1

∥

∥

∥�
T

c f

∥

∥

∥

2,q

) ‖�T

0

h‖2,1
k1

≤ (2k1)1/q−1
∥

∥

∥�
T

0

h
∥

∥

∥

2

2
+ 22/q−1

√
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∥

∥

∥�
T

0

h
∥

∥

∥
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∥

∥
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∥

∥

∥

2,q
.

Consequently, we have

‖h‖22 =
∥

∥

∥�
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∥

∥

∥

2

2
=
∥

∥

∥�
T

0h

∥

∥

∥

2

2
+
∥

∥

∥�
T
˜
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∥

∥

∥

2

2

≤[(2k1)1/q−1 + 1
]

∥

∥

∥�
T

0h

∥

∥

∥

2

2
+ 22/q−1

√
k1

∥

∥

∥�
T

0h

∥

∥

∥

2

∥

∥

∥�
T

c f

∥

∥

∥

2,q

≤

⎧

⎪

⎨

⎪

⎩

√

(2k1)1/q−1 + 1
∥

∥

∥�
T

0h

∥

∥

∥
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√
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[

(2k1)1/q−1 + 1
]

∥

∥

∥�
T

c f

∥

∥

∥

2,q

⎫

⎪

⎬

⎪

⎭

2

.

(13)

Plugging (12) into the previously mentioned inequality
and by a direct calculation, we get

‖h‖2 ≤

⎧

⎪

⎨

⎪

⎩

22/q−1(k2)1/2−1/qθk1,k2
√

(2k1)1/q−1 + 1

1 − δk1 − tθk1,k2

+ 22/q−2
√

k1
[

(2k1)1/q−1 + 1
]

⎫

⎪

⎬

⎪

⎭

∥

∥

∥DT

c f

∥

∥

∥

2,q

+
2
√

(1 + δk1)
[

(2k1)1/q−1 + 1
]

1 − δk1 − tθk1,k2
ε,

(14)

which yields (3).
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