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Abstract

The brain dynamics in the electroencephalogram (EEG) data are often challenging to interpret, specially when the
signal is a combination of desired brain dynamics and noise. Thus, in an EEG signal, anything other than the desired
electrical activity, which is produced due to coordinated electrochemical process, can be considered as unwanted or
noise. To make brain dynamics more analyzable, it is necessary to remove noise in the temporal location of interest, as
well as to denoise data from a specific spatial location. In this paper, we propose a novel method for noisy EEG analysis
with accompanying toolbox which includes adaptive, data-driven noise removal technique based on the improved
intersection of confidence interval (ICI)-based algorithm. Next, a local entropy-based method for EEG data analysis was
designed and included in the toolbox. As shown in the paper, the relative intersection of confidence interval (RICI)
procedure retains the dominant dipole activity projected on electrodes, while the local (short-term) Rényi
entropy-based analysis of the EEG representation in the time-frequency domain is efficient in detecting the presence
of P300 event-related potential (ERP) at specific electrodes. Namely, the P300 are detected as sharp drop of entropy in
the temporal domain that enabled accurate calculation of the index of the noise class for the EEG signals.

Keywords: Non-stationary signals, Electroencephalogram (EEG), Event-related potentials (ERP), P300, Relative
intersection of confidence interval (RICI), Time-frequency signal analysis, Rényi entropy

1 Introduction
Electroencephalogram (EEG) is one of the earliest meth-
ods for observing brain dynamics. It also has been one
of the most reliable, affordable, and non-invasive ways
of recording brain activity. While recording EEG, it is
important to design the recording scenario focusing on
the brain dynamics of interest. The factors the number
of electrodes, placement of electrodes, subjects condition,
scalp preparation, any external distractions, and many
more play an important role in either obtaining a proper
recording or crippling the experiment in turn causing
poor recording session.
With all the external and internal factors that could

adversely affect the session taken care of in the best possi-
ble way, the EEG recorded can provide useful insight into
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the underlying phenomena and brain dynamics of the sub-
ject. While some brain dynamics, like the activity during
sleep and epileptic seizures, could be difficult to accu-
rately correlate to induced events, some other potentials
like contingent negative variation (CNV), mismatch nega-
tivity (MMN), and P300 are related to the occurred event.
This event can be marked on a time scale, and the EEG
following this event could be observed with higher tempo-
ral resolution. Such potentials which are neural responses
of events are often referred to as event-related potentials
(ERP). One of the early ERP researchers, Herb Vaughan in
1969, defined ERP as the general class of potentials that
display stable time relationships to a definable reference
event.
P300 is one of the most studied ERPs, arguably one of

those potentials which is understood the most when com-
pared to other ERPs [1]. Research on the P300 component
by Squires, Squires, and Hillyard (1975) revealed a lesser
prominent P3a component and a P3b component. Ver-
leger, Jaskowski, andWauschkuhn (1994) have shown that
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P3b component is observed for targets that are infrequent
but are in some sense expected; most researchers refer to
this as P3 component or P300 component. It gets its name
due to the fact that the early researchers noticed that the
ERP had a peak amplitude at around 300 ms [2]. Work
done by Donchin (1981) proposed that the P300 wave is
somehow related to a process called “context updating”;
this was confirmed by other researchers as well [3, 4],
considering these there has been development of prac-
tical response to stimuli communication methods. Such
methods are built on algorithms that leverage real-time
streaming of EEG data to classify between a P300 signal
(which is target ERP), and a non-target ERP [4–8]. Any
such system which interacts with computer and tries to
interpret brain signals to do a certain task is called brain
computer interface (BCI) systems.
The importance of response to stimuli detection and

identification has been shown in a significantly large num-
ber of experiments with different kinds of stimuli [4–6,
9]. Popular among them is the visual P300 ERP experi-
ment, often used as a speller [10]. Namely, in the visual
P300 experiment, the user is shown amatrix of characters,
images, or faces; the user is expected to focus or perform
a specific response to target stimuli by counting or press-
ing a button whenever the stimuli flashes. This response
to stimuli is expected to produce P300 ERP. Nonetheless,
P300 are not the only brain dynamics that are occur-
ring during the experiment, as other neuronal activities
are constantly happening in the brain which, in our case,
are considered as noise. Additionally, there are also other
electrical activities that electrodes pick up like 50 Hz line
noise, eye blink artifacts, and muscle artifacts. There are
numerous effective artifact removal techniques which get
rid of these artifacts, therefore we shall consider EEG data
with dipole activations and without artifacts in our data
processing steps.
With real-life EEG data, it is difficult to validate and

study the advantages and limitations of data analysis
methods, but with deep understanding of the data, it
becomes clear what to expect from the data simulations,
and how to treat the data, allowing the validation of data
analysis methods with ground truth data. Moreover, the
advantage of being able to manipulate effect sizes and
noise characteristics in simulated data, which is not pos-
sible to do in real data, makes the simulation of data even
more essential. A fair amount of research work has been
done using simulated data [11–14]. In our case, we simu-
late data with dynamics, features, and parameters of P300
ERP in mind in order to make it look as similar as possi-
ble to real data. Next, we analyze some real-life P300 data
[10], keeping inmind that the ground truth about this data
could be affected by artifacts, noise, and mood of the sub-
jects and other factors, and also that data sample is not
large enough to draw any cognitive conclusions.

The rest of the paper is structured as follows. Section 2
provides information on the structure of the data analyzed
in the paper. An adaptive, data-driven method for noise
removal from EEG records is described in Section 3.1,
followed by the representation of the EEG signals in time-
frequency domain explained in Section 3.2. Section 3.3
presents the proposed approach for detecting the phe-
nomena of interest in EEG time-frequency domain using
the local (short-term) entropy measures both for simu-
lated and a real-life P300 EEG data. Discussion on visual
comparison of results are elaborated in Section 4, followed
by conclusion in Section 5.

2 Structure of simulated data
The biophysical events, which give rise to scalp ERP, are
presumed to occur if an excitatory neurotransmitter is
released at the apical dendrites of a cortical pyramidal cell.
Resulting phenomena is detected as the current flowing
from the extracellular space into the cell, yielding a net
negativity on the outside of the cell in the region of the api-
cal dendrites. To complete the circuit, the current will also
flow out of the cell body and basal dendrites, yielding a net
positivity in this area. Together, the negativity at the apical
dendrites and the positivity at the cell body create a tiny
dipole. Hence, by interpreting this in terms of source acti-
vation, a dipole is defined as a pair of positive and negative
electrical charges separated by a small distance.
As shown in Fig. 1a, we use a non-adaptive distributed

source imaging method with 2004 dipoles for a standard
head shape with fixed locations and orientations (their
magnitudes are estimated by defining a set of electrode
weights for each source location). Thus, 64 electrodes
and 3 dipole orientations generate 64 × 3 × 2004 weight-
ing matrix. For example, multiplying the data from all
electrodes by the weights for the 637th element of that
weighting matrix would give you the estimate of activ-
ity at the 637th voxel in the brain model for the selected
head shape.
However, accurate spatial localization of P300 ERP

is rather challenging and requires further technological
advancements to achieve precise source localization. This
is due to the fact that for each person’s idiosyncratic
folding pattern of the cortex is not the same. Thus, in
this paper, we shall consider, based on reliable sources,
that P300 dipole activation was largest at a midline pari-
etal electrode site [1]. So, in order to simulate a P300
ERP, dipole activation is simulated to occur and peak
at 300 ms, and the effect of this dipole activation is
dominantly visible at electrode locations/numbers Pz(31),
CPz(32), P1(20), P2(57), CP1(19), and CP2(56) (but it can
also be seen on some other more distant electrodes) as
visible in Fig. 1b. This kind of simulations where one
dipole is activated is commonly addressed as forward
model.
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Fig. 1 The 637th dipole location, signal dipole projection with orientation according to X plane

Some of the disadvantages of the above method are
that the weights for each electrode are not fine-tuned to
the statistical properties of the data. Another disadvan-
tage is the number of comparisons that can be computed
must be controlled in statistical analyses. But having clear
hypotheses to constrain the analyses and results search
space will help address both the issues to a significant
extent [15].
One particular disadvantage of the ERP technique is that

ERPs are so small that it usually requires more than one
trials to measure them accurately. Therefore, we consider
30 trails which seems to be a modest number of trails for
a P300 experiment [9].
In order to make the simulated data as real as possible,

let us also consider the situation where the subject who
is responding to the event does not necessarily respond
to the event with millisecond accuracy and with the same
concentration and state of mind for each trial. This results
in P300 ERP which might not accurately peak at 300ms
causing latency variability. In addition, there are other
brain dynamics which occur around P300, viz, P100 or
P200 and N400, which might or might not be visible due
to the effect of other dipole activation. Considering these
factors, we do not just use a Gaussian waveform to rep-
resent a P300, but we do a pointwise multiplication of
Gaussian and a trial unique sine wave (where each trial
has its own random phase value) which results into a trial
unique Morlet-like wavelet.
Let us now consider a Gaussian taper with a peak at 300

ms and sinusoidal waveform of 10 Hz.

x(t) = ae−(t−m)2/(2σ 2) (1)

where a is the amplitude of Gaussian, t is the total number
of time point, m is peak time, and σ is the width of the
Gaussian, and the sinusoidal waveform

v(t) = cos(2π ft + 2πξ) (2)

where f is the frequency of the sinusoidal waveform, t
is the total number of time points, and ξ random value
which shifts the phase of the waveform randomly on each
trial. With t values same for both Gaussian and Sinusoidal,
pointwise multiplication of these two waveforms gives us
a wavelet which looks like a typical Morlet wavelet.

y(t) = x(t)v(t) = e
−t2
2σ2 e2π ft+2πξ (3)

For the wavelets, which are generated for T = 30 trials,
the phase randomly changes for each trial. The average
of all these wavelets from each trial at the dipole level is
shown in Fig. 2a.
Unlike the Gaussian taper which smoothly dissipates to

zero on both the sides, Morlet wavelet integrates to zero.
This means it has both positive and negative values in
the middle and tapers to zero on both the ends such that
the sum over integral is approximately equal to zero. This
kind of narrow-band responses which are also transient in
nature are typical for cognitive brain responses [16, 17].
The noise in our simulated data is just an activation

of other dipoles which are projected onto the electrodes.
An immediate intuitive thought when trying to simulate
noise is to add white noise, i.e., adaptive white Gaussian
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Fig. 2 a Average of 30 phase-shifted Morlet wavelets at dipole 637. b Average of 30 trails at electrode CPz

noise (AWGN), but in our EEG simulation, it is crucial
to consider that noise should look like temporal dynam-
ics that have been recorded by the electrode placed on
the scalp. These temporal dynamics in real-life data are
the results of neural responses due to activities which are
uncorrelated to event, viz, other cognitive, motor, percep-
tual, and language processes. Such data on the dipole level
has a mixture of signals with different frequencies and
amplitudes.
In order to represent this, we generate a pink noise,

initially generated in the frequency domain, Fig.3a. It
decreases with an increase in frequency, due to which it is
also referred to as factorial noise or 1/f noise. The param-
eter called the exponential decay ed allows us to control
how frequencies decays as we initially represent these
amplitude varying frequencies in the frequency domain
with

Ac = ξ(1,
n
2

− 1)e
− lim

(1→ n
2 −1) x

ed (4)

where ξ is a random variable generated for each data point
nwhich has 1024 data points as we consider 1 s long signal
with sampling rate of 1024. Ac represents the amplitude
coefficients of ξ random variables which are multiplied by
exponential parameter from Euler’s formula eik to give fc
Fourier coefficients

fc = Acei2πξ (5)

Here, ξ is the random sizes of amplitude parameter for n
data points. Coefficients such as fc are generated for each
dipole that is the real part of the inverse Fourier transform
which represents the noise that is generated by each dipole

X = real(IFFT(fc)) (6)

The histogram representation of the noise in Fig.3b shows
that the noise is normally distributed, and the time
domain representation in Fig. 3c shows the temporal
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Fig. 3 a Frequency domain representation of 1/f noise. b Histogram of noise. c Time domain representation of noise at dipole 2004

structure of the data which very closely represents the real
EEG signal.
The projection of dipoles onto the electrodes can be

represented with a linear algebraic equation

Y = LX (7)

where X is a matrix of dipole time series data, which is
multiplied with L the lead field matrix to give matrix Y
which is electrode time series data [18].
Figure 2b represents the trial average of ERP at electrode

CPz, which shows activity due to the projection of dipoles
onto CPz. The interesting thing about the electrode CPz is
that it is one of those electrodes which is near to the scalp
location where the P300 dipole activation is happening.
Therefore, features of P300 in the ERP along with noise
are visible in Fig. 2b.
Now that we have established ground truth about the

data, in order to evaluate the accuracy of the data analysis
method, we can compare the results of the data processing

pipeline in Section 3.1, against the data that is simulated
and projected onto the electrodes. This gives us an eval-
uation of the ground truth about the data and also the
effectiveness of the data analysis method.

3 Methods
3.1 RICI algorithm
A fairly simple and most commonly used method of iso-
lating ERPs from the EEG noise (which is the result of
activation of other dipoles) is to average across trials.
Averaging across more and more trails will progressively
reduce the EEG noise. But as the EEG noiseN decreases as
a function of the square root of the number of trails T, the
size of noise in an average of T trails equals (1/

√
T) × N ;

therefore, increasing the number of trials only works to a
certain extent.
Figure 4 shows the trail averaged spatial activity across

all the electrodes. Here, in each electrode, the ERPs are
isolated from the EEG noise, but as it can be seen that
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Fig. 4 Time by activity representation of ERPs at all the 64 electrodes

there is one major limitation to this method, i.e., the num-
ber of EEG trails used to average out EEG noise is not
enough, as there is still much noise that is obscuring the
features of interest. It might be tempting to increase the
total number of trials by, for example, four times (T =
120), and this might reduce the noise by 50%. But this is
not a practical solution since the time needed to detect
ERP would be much higher, which in turn increases the
length of the whole EEG recording session.
An alternative approach that we propose in this

paper is tested with the simulated P300 ERP (from
Section 2). This method is based on adaptive tempo-
ral filtering, where adaptive filters are able to recon-
figure themselves by tracking non-stationary changes in
the signal.
A method that originally proposed this kind of adaptive

filtering [19] was shown to efficiently adapt to unknown
smoothness of the signal [20] ensuring close to optimal
bias-to-variance trade-off [21], getting its name based on
its functionality as the intersection of confidence intervals
(ICI) method [20]. The goal of the ICI based denois-
ing procedure is to obtain discrete estimates ŷ(ti) as
close as possible to the noise-free signal y(ti); the ICI
method does so by selecting upper and lower bound-
aries of confidence interval to track non-emptiness of
confidence intervals intersection, whose limits can be
expressed as:

U(ti, h) = ŷ(ti, h) + �.s(ti, h), (8)

and

L(ti, h) = ŷ(ti, h) − �.s(ti, h). (9)

where� is the preset threshold, h is the window size which
is less than or equal to optimal window size [22], and ti
is instantaneous time for the estimates ŷ(ti). Note that
the performances of the ICI-based denoising are highly
dependent on threshold� [23], which causes oversmooth-
ing for larger values of � and undersmoothing for small
values of �.
An improved ICI-based method, called the relative

intersection of confidence intervals (RICI), has been pro-
posed in [24]. The modified approach takes into account
the amount of overlapping

O(ti, h) = U(ti, h) − L(ti, h), (10)

and defines R(ti, h) as a ratio of the overlapping versus the
size of the considered confidence interval:

R(ti, h) = U(ti, h) − L(ti, h)
U(ti, h) − L(ti, h)

. (11)

Now, if ICIs are empty R(ti, h) = 0, and if all the previous
confidence intervals are inside the considered confidence
interval, then R(ti, h) = 1, making R(ti, h) ∈[ 0, 1]. The
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improved method introduces threshold Rc as a additional
criterion defined as:

R(ti, h) ≥ Rc (12)

where Rc ∈[ 0, 1].
For our EEG signal, we choose the values � = 4.4 and

Rc = 0.85, as suggested in [25], for temporal smooth-
ing which significantly reduces noise retaining features
of the narrow band cognitive response around 300 ms.
This can be seen at electrode CPz(32), Pz(31), CP2(56),
and P2(57) in Fig. 5, when compared to Fig. 4. Anyway,
since RICI filtering does not have prior knowledge of
the feature that needs to be retained, it cannot distin-
guish between other features and P300 ERP; therefore,
there are features in Fig. 5 which may be misunder-
stood as useful information. Hence, in order to under-
stand the behavior of the P300 feature better, we express
the data in time-frequency domain in Section 3.2, in
order to represent and understand the behavior of the
distribution with respect to changes in its entropy in
Section 3.3. As electrodes CPz, Pz, CP2, and P2 are pri-
marily influenced by P300 dipole activation and given
the correct adjustment of parameters � and Rc, which
allows RICI to denoise the ERPs at these electrodes, the
RICI results are shown and discussed with more details
in Section 4.

Finally, it is worth mentioning that a plugin for EEGLAB
toolbox [26], where the RICI method can be applied on
any data that can be imported into EEGLAB, is been built.
In this plugin, the parameters � and Rc can be adjusted
manually to best suite the data that needs to be denoised
and features that need to be retained. The goal here is to
provide a tool to the researchers to manually do denoising
on specific temporal regions of the data or run denoising
on the whole dataset by selecting parameters of � and Rc
using the RICI plugin.

3.2 Time-frequency ERP representations
The non-stationarities of an ERP signal are encoded in the
phase spectrum of the signal, and their direct extraction
causes problems like phase unwrapping, as the frequency
characteristics of such a signal are equally important. The
assumption that the signal is roughly stationary over some
shorter (sliding) time window gives us a better frequency
resolution because instantaneous frequency commonly
describes phase variations. This allows us to compute the
power spectrum of a signal over short windows of time
resulting in high resolution (energy concentration) and
integrity (correct boundaries in time and frequency) [27].
Hamming window decays quite fast relative to other

window functions, which suites our need for building a
distribution which reflects any quick changes in the signal
onto the distribution.

Fig. 5 Time by activity representation of ERPs after RICI for 64 electrodes
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Let us consider a Hamming window of size h(τ ) = 7 as
an analyzing window in a quadratic distribution:

SPWs(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
g(t−u)H(f −v)Ws(u, v) dudv.

(13)

which is known as smoothed pseudo-Wigner-Ville dis-
tribution (SPWVD) [28]; we therefore obtain energy
distribution by smoothing the density distribution with
the window function h(τ ). The resulting time-frequency
power plots for few EEG electrodes are shown in plot (b)
of Figs. 6, 7, 8, 9, 10, and 11 of each electrode which shows
the energy spectrum of the distribution for P300 ERP at
electrodes CPz, Pz, CP2 and P2. Also, notice that some of
these electrodes, viz, Oz and F6, do not have the P300 ERP
or its feature in the time-frequency plane.

3.3 Rényi entropy
The EEG data have non-stationarities in the recordings,
which resulted in amixture of signal components with dif-
ferent time durations and frequency band widths. These
varying frequencies in time have been expressed in the
form of instantaneous power and energy spectrum using
SPWVD, as shown in 13. Based on this, it has been estab-
lished that an entropy of a multi-component system is
relatively larger than for the mono-component system,
and the generalized entropy of such system represented in
the time-frequency domain is well expressed with Rényi
entropy [28] as

Hα(Csn) = 1
1 − α

log2
∫ ∞

−∞

∫ ∞

−∞
Cα
sn(t, f ) dtdf , (14)

where Cs(t, f ) is the distribution obtained from 13 and
additionally normalized, and α is rank of Rényi measure.
Figure 12 shows in red (circle point representation) the
entropies of averaged ERPs for each electrode; it also

Fig. 6 Electrode CPz a. Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the distribution
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Fig. 7 Electrode Pz. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the distribution

Fig. 8 Electrode CP2. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the distribution



Madhale Jadav et al. EURASIP Journal on Advances in Signal Processing          (2020) 2020:7 Page 10 of 18

Fig. 9 Electrode P2. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the distribution

Fig. 10 Electrode Oz. a Time domain representation of ERP. b SPWVD time-frequency representation .c Short-term Rényi entropy of the distribution
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Fig. 11 Electrode F6. a Time domain representation of ERP. b SPWVD time-frequency representation .c Short-term Rényi entropy of the distribution

Fig. 12 Change in global Rényi entropy before and after RICI for average of ERPs at each electrode
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shows in green (square point representation) the entropies
of averaged ERPs for the same electrodes after the data
had been processed by the RICI temporal denoising (as
explained in Section 3.1). Change in global entropy after
RICI shows that the standard deviation

σ =
√∑N

i=1(xi − x)2

N − 1
of the ERPs across the scalp for the given time period has
increased by 0.1%.
This shows that although global Rényi entropy is a good

indicator of signal complexity, change in entropy for the
ERPs obtained across the scalp provides us with very little
information on what is happening on the electrode level.
Therefore, in this paper, we explore the solution which

can represent the P300 features using short-term Rényi
entropy [28] using a sliding window of fixed size. This is
done by considering different portions of the (t, f ) plane;
for each time instant p to obtain different values of the
Rényi entropy, where p is centered in the (t, f ) plane for
the upper and lower window span t0, we can express the
short-term Rényi entropy as

Csp(t, f ) =
{
Cs(t, f ), p − t0 < t < p + t0,

0 otherwise,

}
(15)

Plots (a), (b), and (c) of Figs. 6, 7, 8, 9, 10, and 11 show
simulations of ERPs at electrodes, their time-frequency
distribution, and their short-term Rényi entropy which
represents the change in instantaneous power of the dis-
tribution Cs(t, f ) for each time instant p.
The Rényi entropy of a signal is invariant to the active

dipole orientation (if it is negative or positive) and does
not care about the within subject variation; this makes it a
robust tool for ERP analysis.
To check short-term Rényi entropy methods’ perfor-

mance with some real-life EEG dataset, we considered
training datasets of two subjects from visual P300 exper-
iment [10] which was recorded using the paradigm
described by Donchin et al., in 2000, [5] and originally
by Farwell and Donchin, in 1988 [6]. Researchers were
interested in basically two types of responses which were
recorded at 240 Hz, one that would appear if the charac-
ter the user was focusing flashed, and thus was considered
as target response, and the non-target response is the
one where characters were flashing while the user was
focused on the character he selected, waiting for it to flash.
This produced a target ERP and a non-target ERP which
are trail averaged with other targets and non-targets as
shown in plot (a) of Fig. 13 and Fig. 14, and short-term
Rényi entropy of target and non-target shows a clear dif-
ference on how the local changes in entropy are different
for targets and non-targets; this is clearly visible in plot
(b) of Fig. 13 and Fig. 14 for the electrode Cz. The dataset
provided was prepossessed to minimize noise, and more

details about the dataset and experiment can be obtained
by studying P300 experiment conducted by Wolpaw, in
2002 [10].

4 Results and discussion
The position of P300 dipole in the head model of Fig. 1a
and its projection due to dipole activation is shown in
Fig. 1b, based on which we simulated P300 narrow band
responses on the dipole level which has been trail aver-
aged and shown in Fig. 2.
Other dipole activations which represent noise in our

dataset have been initially simulated with factorial decay-
ing frequencies in the frequency domain as shown in
Fig. 3a, and the normal distribution of the histogram in
Fig. 3b shows how pink noise is almost Gaussian, very
similar to adaptive white Gaussian noise. Meanwhile, the
time domain representation of the pink noise shown in
Fig. 3c looks much more like real biological EEG activ-
ity and shows how it is different than the adaptive white
Gaussian noise in its temporal structure.
Simulated P300 ERP on an electrode level, which is

a combination of simulated P300 narrow band response
and noise, projecting onto the scalp is shown in Fig. 2b.
Such trial averaged scalp projections of activity in each
electrode has been shown in Fig. 4 for all the 64 EEG
electrodes. The scalp projections of activity after adaptive
RICI temporal denoising is shown in Fig. 5. Finally, Fig. 12
compares before and after RICI global Rényi entropy and
shows the shift of global entropy for each of the 64 EEG
electrodes.
Electrodes CPz, Pz, CP2, P2, Oz, and F6 were few elec-

trodes chosen to show more details in the structure of
ERP which is visible in plot (a) of Figs. 6, 7, 8, 9, 10,
and 11 and Figs. 15, 16, 17, 18, 19, and 20 which show
the before and after RICI trail averaged ERPs at the said
electrodes, and plot (b) of Figs. 6, 7, 8, 9, 10, and 11 and
Figs. 15, 16, 17, 18, 19, and 20 show the pre- and post-
RICI representations of ERP time-frequency distribution
obtained by SPWWD. Plot (c) of Figs. 6, 7, 8, 9, 10, and 11
and Figs. 15, 16, 17, 18, 19, and 20 shows the time domain
representation of local short-term Rényi entropy changes,
which is based on the energy spectrum of the ERPs for
pre- and post-RICI.
The pre-processed Visual P300 experiment datasets

obtained from BCI competition 3 [10] have subjects A and
B EEG data at the Cz electrode location for both target and
non-target ERP activities. This has to be averaged across
their respective trials, and their ERP is shown in plot (a) of
Figs. 13 and 14, and plot (b) of Figs. 13 and 14 which shows
the local short-term Rényi entropy for both target and
non-target ERP to facilitate discussion and comparison
with results of the simulated dataset.
Analysis of real-life P300 ERP in general [1], as well

as the dataset we obtained and studied [10], shows
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Fig. 13 Visual P300 experiment recorded at electrode Cz for subject A. a Trial average ERPs of targets and non-targets. b Short-term Rényi entropy of
averaged ERPs

Fig. 14 Visual P300 experiment recorded at electrode Cz for subject B. a Trial average ERPs of targets and non-targets. b Short-term Rényi entropy of
averaged ERPs
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Fig. 15 Electrode CPz after RICI. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the
distribution

Fig. 16 Electrode Pz after RICI a Time domain representation of ERP b SPWVD time-frequency representation c short-term Rényi entropy of the
distribution
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Fig. 17 Electrode CP2 after RICI .a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the
distribution

Fig. 18 Electrode P2 after RICI. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the
distribution
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Fig. 19 Electrode Oz after RICI. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the
distribution

Fig. 20 Electrode F6 after RICI. a Time domain representation of ERP. b SPWVD time-frequency representation. c Short-term Rényi entropy of the
distribution
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that the P300 ERP waveform vary significantly between
subjects. In addition, external factors as drop in con-
centration or internal factors like noise due to other
dipole activations could cause small variations in latency
and phase of P300 ERP [1, 29]. This is the reasons
why the proposed method for ERP analysis is designed
not to depend on any prior information about the
signal.
With respect to real-life P300 ERP datasets, the sim-

ulated ERP dataset has a lot in common to the one
explained in Section 2, so much so that we can consider
the factors like the variation in latency and phase that
affect the real-life P300 ERP dataset, to stand true to our
simulated dataset as well.
A visual interpretation of the temporal dynamics of the

ERPs of our simulated data at near dipole electrodes CPz,
Pz, CP2, and P2 (in the plot (a) of Figs. 6, 7, 8, and 9)
shows that the effect of P300 dipole activation, although
visible around 300 ms, has been corrupted by noise from
other dipoles. The time-frequency representation in plot
(b) of Figs. 6, 7, 8, and 9 for the same electrodes more
clearly shows the P300 feature, but it also has many ridges
throughout the temporal plane. Far dipole electrodes Oz
and F6 in plots (a) and (b) of Figs. 10 to 11 do not
have P300 feature as they are relatively away from P300
dipole activation region (however, they also have ridges
and features due to other dipole activations which are not
relevant to P300).
Also, it is worth noting that the recommended

(in Section 3.3) short-term Rényi entropy changes in
Figs. 6, 7, 8, and 9 are not consistent for the near dipole
electrodes.
But once the ERPs are denoised with the RICI, as sug-

gested in Section 3.1, including P300 ERP component,
other dominant components are also retained, which is
visually comparable between Fig.4 and Fig. 5.
Comparison between plots (a) and (b) of

Figs. 6, 7, 8 9, 10, and 11) and Figs. 15, 16, 17, 18, 19,
and 20) both for near dipole electrodes and far dipole
electrodes show the cleaner ERP temporal dynamics and
lesser ridges in the time-frequency representation in the
latter. By the way, the P300 ERP and its temporal dynam-
ics around 300 ms are more clearly visible at near dipole
electrodes in plots (a) of Figs. 15, 16, 17, and 18 than in
Figs. 6, 7, 8, and 9.
Interestingly, the short-term Rényi entropy method

(elaborated on in the Section 3.3) after RICI denois-
ing (as explained in Section 3.1), gives a bell-shaped
curve around the temporal region where P300 ERP is
dominant. This is visible for near dipole electrodes in
Figs. 15, 16, 17, and 18, but it is not present for far dipole
electrodes (which has nothing but noise, and it can be
considered to have similar uncorrelated EEG activity as
non-targets).

The bell-shaped curve is comparable with the short-
term Rényi entropy of real visual P300 ERP dataset that
has been analyzed in plot (b) of Fig. 13 to Fig. 14 for tar-
gets. As local Rényi entropy shows a steep drop in the
zone of event detection and then a steady climb indi-
cating the local similarity in the P300 activity (which is
then followed by a steep drop, representing the difference
between ERP and pink noise), this can be noted as area
of detection for our ERP. The reason why the bell shape
is much larger with real visual P300 ERP is explained
by the original sampling rate being 240 samples per sec-
ond, and the chosen short-term Rényi entropy window
size is selected to consider 101 samples, thus making the
area of detection larger. In simulated P300 ERP whose
sampling rate is 1024, a short-term Rényi entropy win-
dow size of 101 creates smaller local entropy bell-shaped
curve.
Note that the proposed entropy-based analysis requires

the short-term Rényi entropy window to be carefully
selected for the ERP based on its temporal structure, since
the short-term Rényi entropy window size should be large
enough to detect the ERP component of interest. We
therefore have allow user in the short-term Rényi entropy
toolbox plugin to manually select the desired window
size. However, an automatic procedure for selecting the
optimal window size is planned to be investigated in our
future work.

5 Conclusion
The paper present a novel approach for noisy EEG sig-
nal interpretation in the time-frequency domain. In order
to analyze EEG dynamics more accurately, it is necessary
to denoise the data. Noise removal was performed using
the improved adaptive, data-driven ICI method, called the
RICI method (which was also included in the accompa-
nying toolbox). The results of the RICI filtering showed
that the P300 feature was successfully retained in the
time-frequency domain while the noise was significantly
reduced. Next, a local Rényi entropy was proposed as a
tool for the P300 detection in the time-frequency distri-
butions of the denoised EEG records. It was shown that
the local Rényi entropy is superior to peak-based mea-
sures due to its insensitivity to latency variability and
change in dipole orientation. Both the RICI and local
Rényi entropy analysis have proved to perform well for
the simulated data where ground truth is known. The
method was also applied to real-life P300 data showing
the promising results. In our future work, we plan to per-
form comprehensive testings on the large P300 datasets
and other ERPs in order to obtain detailed performance
analysis of the proposed technique for analysis of the EEG
records in the time-frequency domain. For this purpose,
we have also built a toolbox plugin to automatize large
datasets analysis.
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