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Abstract

A new variable step-size strategy for the least mean square (LMS) algorithm is presented for distributed estimation in
adaptive networks using the diffusion scheme. This approach utilizes the ratio of filtered and windowed versions of
the squared instantaneous error for iteratively updating the step-size. The result is that the dependence of the update
on the power of the error is reduced. The performance of the algorithm improves even though it is at the cost of
added computational complexity. However, the increase in computational complexity can be minimized by careful
manipulation of the update equation, resulting in an excellent performance-complexity trade-off. Complete theoretical
analysis is presented for the proposed algorithm including stability, transient and steady-state analyses. Extensive
experimental analysis is then done to show the performance of the proposed algorithm under various scenarios.

Keywords: Variable step-size, Least-mean-square algorithm, Adaptive networks, Mean-square analysis, Steady-state
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1 Introduction
The past decade has seen a lot of research in the area of
distributed estimation for wireless sensor networks [1–4].
The diffusion scheme using the least mean square (LMS)
algorithm was first introduced by Lopes and Sayed in [2].
The first algorithm to propose a variable step-size for the
diffusion LMS algorithm was proposed by Saeed et al. in
[5] and extended by Saeed et al. in [6]. Since then, several
variable step-size algorithms have been proposed [7–12].
While each algorithm improves in performance, the

improvement comes at the cost of increased computa-
tional complexity. The variable step-size strategy pro-
posed by Kwong and Johnston in [13] was extended to
the distributed network scenario by Saeed et al. in [5, 6].
This work was further expanded by Saeed and Zerguine
in [7] by using the distributed nature of the network to
improve performance. A noise constraint was introduced
by Saeed et al. in [8] for improved performance. An opti-
mal step-size for the distributed scenario was derived by
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Ghazanfari-Rad and Labeau in [9], based on which they
derived a variable step-size for each iteration. A variable
step-size as well as combination weights were derived
using an upper bound for the mean square deviation
(MSD) by Jung et al. in [10]. Lee et al. derived an individual
step-size for each sensor by minimizing the local MSD in
[11]. Saeed et al. proposed a variable step-size strategy for
distributed estimation in a compressible system in [12].
While all these algorithms provide excellent perfor-

mance, they are all based on the l2-norm, except for
the algorithm in [12]. This means that the power of the
instantaneous error is the key factor for all these algo-
rithms. This means that the performance of these algo-
rithms suffers significantly in low signal-to-noise ratio
(SNR) scenarios. Furthermore, there is significant increase
in computational complexity as a trade-off for improved
performance.
This work proposes a method where the step-size is

varied using a quotient of the filtered error power. The
algorithm is inspired from the work of Zhao et al. in [14].
The quotient form combined with the windowing effect
reduces the effect of the power of the instantaneous error,
making the algorithm more robust to low SNR scenarios.
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The quotient form of [14] is combined with the diffu-
sion scheme in this work. A theoretical analysis of the
algorithm has been presented. The energy conservation
approach used for the analysis in this work was not used
in [14]. Saeed presented a generalized analysis for variable
step-size schemes using the energy conservation approach
in [15]. This work was extended to the diffusion scheme by
Saeed et al. in [16]. However, the variable step-size using
the quotient form was not included in [16]. The analysis
presented here utilizes the approach of [16] and gives sta-
bility, transient, and steady-state analyses for the proposed
algorithm. Simulation comparisons with the variable step-
size diffusion LMS (VSSDLMS) algorithm of [6] show that
the proposed algorithm achieves significant improvement
with a reasonably acceptable increase in computational
complexity.
The rest of the paper is divided as follows. Section 2

presents the system model and defines the problem state-
ment. Section 3 proposes the new algorithm. The theoret-
ical analysis is given in Section 4, followed by simulation
results in Section 5. Section 6 concludes this work.

2 Systemmodel
A geographical area ofN sensor nodes, each connected to
its closest neighbors as shown in Fig. 1, is being consid-
ered. The unknown parameters are modeled as a vector,
wo, of size (M × 1). The input to a node at any given time
instant, i, is a (1×M) regressor vector, uk(i), where k ∈ N
is the node index. The resulting observed output for the
node is a noise corrupted scalar, dk(i), given by

dk(i) = uk(i)wo + vk(i), (1)

where vk(i) is the zero-mean additive noise.
The generic form of the Adapt-then-Combine (ATC)

variable step-size diffusion LMS (VSDLMS) algorithm is
given by [16]

�k(i + 1) = wk(i) + μk(i)ek(i)uTk (i), (2)

wk(i + 1) =
∑

l∈Nk

clk� l(i + 1), (3)

μk(i + 1) = f {μk(i)}, (4)

where wk(i) is the estimate of the unknown vector at time
instant i for node k, bf�k(i) is the intermediate update
for node k, ek(i) = dk(i) − uk(i)wk(i) is the instantaneous
error, clk is the combination weight for the data transmit-
ted from node l to node k, Nk is the neighborhood of
node k and (.)T is the transpose operator. The step-size is
denoted by μk(i) and f {.} is the function that updates the
step-size at every iteration.
The main objective of this work is to propose a

new function, f {.}, for the VSDLMS algorithm defined
by (2)–(4). The new function is derived in the next
section, followed by theoretical analysis and experimental
results.

3 Proposed algorithm
The proposed update equation for the step-size is given by

μk(i + 1) = αμk(i) + γ θk(i), (5)

θk(i) =
∑i

m=0 ame2k(i − m)
∑i

n=0 bne2k(i − n)
, (6)

where α and γ are positive parameters such that 0 <

α < 1 and γ > 0 and a and b are forgetting factors
for the decaying exponential windows in the numerator
and denominator and are bounded as 0 < a < b < 1.
Although (6) represents the complete window for both the
numerator and denominator, a more suitable and iterative
representation is given by

Fig. 1 An illustration of an adaptive network of N nodes
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Ak(i) =
i∑

m=0
ame2k(i − m) = aAk(i − 1) + e2k(i), (7)

Bk(i) =
i∑

n=0
bne2k(i − n) = bBk(i − 1) + e2k(i), (8)

θk(i) = Ak(i)
Bk(i)

= aAk(i − 1) + e2k(i)
bBk(i − 1) + e2k(i)

. (9)

Combining (5) and (9) with (2) and (3) gives the pro-
posed variable step-size diffusion LMS algorithm with a
quotient form (VSQDLMS).

4 Theoretical analysis
Recently, the authors of [16] proposed a unified theo-
retical analysis for VSDLMS algorithms. Following the
same procedure as [16], the following global variables are
introduced to represent the entire network:

w(i) = col {w1(i), ,wN (i)} ,
�(i) = col {�1(i), . . . ,�N (i)} ,
U(i) = diag {u1(i), . . . ,uN (i)} ,
D(i) = diag {μ1(i)IM, . . . ,μN (i)IM} ,
�(i) = diag {θ1(i)IM, . . . , θN (i)IM} ,
Ā(i) = diag {A1(i)IM, . . . ,AN (i)IM} ,
B̄(i) = diag {B1(i)IM, . . . ,BN (i)IM} ,
d(i) = col {d1 (i) , . . . , dN (i)} ,
v(i) = col {v1 (i) , . . . , vN (i)} .

The combination weight matrix is given by {C}lk =
clk . When expanded to the entire network, this becomes
G = C ⊗ IM, where ⊗ represents the Kronecker prod-
uct. The unknown parameters vector wo is expanded
for the entire network using w(o) = Qwo, where
Q = col {IM, IM, . . . , IM} is a (MN × M) sized matrix.
The resulting global set of equations representing the
VSQDLMS algorithm are given by

d(i) = U(i)w(o) + v(i), (10)
� (i + 1) = w(i) + D(i)UT (i) (d(i) − U(i)w(i)) ,

(11)
w (i + 1) = G� (i + 1) , (12)

�(i) = Ā(i)
B̄(i)

, (13)

D (i + 1) = αD(i) + γ�(i). (14)

4.1 Mean analysis
Introducing the global weight-error vector as

w̃(i) = w(o) − w(i). (15)

Using (15), the update in (2) is rewritten as

�̃k(i + 1) = w̃k(i) − μk(i)ek(i)uTk (i), (16)

where the relation in (15) is extended for�k(i). Expanding
the error term, ek(i), and rearranging gives

�̃k(i + 1) =
[
IM − μk(i)uTk (i)uk(i)

]
w̃k(i)

−μk(i)uTk (i)vk(i). (17)

Fig. 2 Performance comparison for the proposed VSQDLMS vs VSSDLMS [6] algorithms for white input
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Applying the expectation operator to (17) and using the
independence assumption gives, after simplification

E
[
�̃k(i + 1)

]
= [

IM − E [μk(i)]Ruk
]
E
[
w̃k(i)

]
, (18)

where Ruk = E
[
uTk (i)uk(i)

]
is the autocorrelation of the

input data at node k.
The algorithm will be stable in the mean sense if the

term
[
IM − E [μk(i)]Ruk

]
is bounded. This means that the

algorithm will not diverge if this term is bounded. Thus,
for the algorithm to be stable in the mean, the following
condition needs to be satisfied:

0 < E [μk(i)] <
2

λmax
(
Ru,k

) , 1 ≤ k ≤ N , (19)

where λmax
(
Ru,k

)
is the maximum eigenvalue of the auto-

correlation matrix Ru,k .

4.2 Mean-square analysis
The mean-square analysis in [16] assumes Gaussian input
data. The auto-correlation matrix is decomposed into its
component eigenvector and eigenvalue matrices as RU =
T�TT , with � being the diagonal eigenvalue matrix and
T being the eigenvector matrix, such that TTT = I.
The eigenvector matrix T is then used to transform the
remaining variables as follows:

w(i) = TT w̃(i) U(i) = U(i)T
G = TTGT � = TT�T
�

′ = TT�′T D(i) = TTD(i)T = D(i),

where � and �
′ are weighting matrices. The final iterative

update equation for the mean-square transient analysis is
given by [16]

E
[‖w(i + 1)‖2σ

] = E
[‖w(i)‖2σ̄

] + bT (i) σ

+
∥∥∥w(o)

∥∥∥
2

A(i)
[
F(i)−IM2N2

]
σ

+B(i)
[
F(i) − IM2N2

]
σ , (20)

where

b(i) = bvec
{
RvE

[
D2(i)

]
�

}
, (21)

F(i) = [
IM2N2 − (IMN � �E [D (i)])

− (�E [D (i)] � IMN )

+ (E [D (i) � D (i)])A] .
(
GT � GT

)
, (22)

A(i + 1) = A(i)F(i), (23)
B(i + 1) = B(i)F(i) + bT (i)IM2N2 , (24)

Table 1 Computational complexity comparison for step-size
update equations

Algorithm Multiplications Additions

VSSDLMS [6] 3 1

Proposed 6 3

Table 2 Parameter values for Experiment 1

SNR Algorithm Parameter Value

VSSDLMS [6] αwhite 0.95

αcorrelated 0.95

γ 10−3

0 Proposed αwhite 0.96

αcorrelated 0.961

γ 10−3

a 0.99

b 1 − 10−3

VSSDLMS [6] αwhite 0.97

αcorrelated 0.99

γ 10−3

10 Proposed αwhite 0.96

αcorrelated 0.9675

γ 10−3

a 0.99

b 1 − 10−3

VSSDLMS [6] αwhite 0.99

αcorrelated 0.99

γ 10−3

20 Proposed αwhite 0.99

αcorrelated 0.9725

γ 10−3

a 0.9

b 1 − 10−3

where� denotes the block Kronecker product,Rv = �v�
IM, �v is a diagonal noise variance matrix for the network
and σ = bvec

{
�

}
. The matrix A is given in [2, 16] as

A = diag {A1,A2, . . . ,AN }, with each component matrix
defined as

Ak = diag
{
�1 ⊗ �k , . . . ,λkλ

T
k + 2�k ⊗ �k ,

. . . ,�N ⊗ �k} , (25)

where �k is the diagonal eigenvalue matrix and λk is the
corresponding eigenvalue vector for node k.
In order to find the mean square deviation (MSD), the

weighting matrix is chosen as � = IN2M2 . To get the
excess mean square error (EMSE), the weighting matrix is
chosen as � = �.

4.3 Steady-state analysis
At steady-state, (20) becomes

E
[‖wss‖2σ

] = E
[
‖w̄ss‖2Fssσ

]
+ bTssσ , (26)
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Fig. 3 Performance comparison for the proposed VSQDLMS vs VSSDLMS [6] algorithms for correlated input

where

Fss = [
IM2N2 − (IMN � �E [Dss]) − (�E [Dss] � IMN )

+ (E [Dss � Dss])A] .
(
GT � GT

)
, (27)

bss = RvD2
ss�. (28)

To get the steady-state MSD, we choose σ =
bvec

{
IN2M2

}
, and to get the steady-state EMSE, we

choose σ = bvec {�}.

4.4 Steady-state step-size analysis
The step-size matrices, Dss = diag

{
μk,ssIM

}
and D2

ss =
diag

{
μ2
k,ssIM

}
, are defined by the individual node values

for the steady-state step-size. The step-size update for the
proposed algorithm is defined by (5), (7)-(9). Taking the
expectation gives

Table 3 Steady-state results for Figs. 1 and 2

SNR No coop VSSDLMS [6] Proposed

White input

0 − 21.85 − 23.73 − 34.38

10 − 26.95 − 32.22 − 39.39

20 − 35.96 − 37.78 − 49.05

Correlated input

0 − 21.79 − 24.77 − 34.22

10 − 26.04 − 30.21 − 38.72

20 − 30.38 − 37.85 − 43.04

E [Ak(i)] = aE [Ak(i − 1)] + E
[
e2k(i)

]

= aE [Ak(i − 1)] + EMSE(i) + σ 2
v,k , (29)

E [Bk(i)] = bE [Bk(i − 1)] + EMSE(i) + σ 2
v,k , (30)

E [θk(i)] ≈ E [Ak(i)]
E [Bk(i)]

, (31)

E [μk(i + 1)] = αE [μk(i)] + γ E [θk(i)] . (32)

At steady-state, the EMSE value is assumed to go to
0, the expectation operator is removed and after simple
manipulations, we get

Ak,ss = 1
1 − a

σ 2
v,k , (33)

Bk,ss = 1
1 − b

σ 2
v,k , (34)

θk,ss = Ak,ss
Bk,ss

= 1 − b
1 − a

, (35)

μk,ss = γ (1 − b)
(1 − α)(1 − a)

, (36)

where the term ss indicates steady-state value. Thus, the
steady-state step-size value is given by (36) and the value
for μ2

k,ss is simply the square of (36).

5 Results and discussion
This section presents experimental results for the pro-
posed algorithm. The algorithm is tested in four different
scenarios. First, the proposed algorithm is compared with
the algorithm from [6] as well with the no cooperation
case, in which each sensor applies the variable step-size
quotient strategy for estimation without cooperating with
any other sensor. The reason for the comparison with only
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Fig. 4 Steady-state results for varying N withM = 5 and SNR 20 dB

the algorithm of [6] is that the computational complex-
ity for both algorithms is similar. However, it is shown
that with a small increase in computational complexity,
the proposed algorithm performs much better. Next, the
theoretical transient analysis of (20) is compared with sim-
ulation results. In the third experiment, the steady-state
results from (26) are compared with steady-state simu-
lation results. Finally, the performance of the proposed

algorithm is tested in a scenario where the exact value of
M is unknown.

5.1 Experiment I
In the first experiment, the proposed VSQDLMS algo-
rithm is compared with the variable step-size diffusion
LMS (VSSDLMS) algorithm from [6]. A comparison of
computational complexity is given in Table 1. As can

Fig. 5 Steady-state results for varyingM with N = 20 and SNR 20 dB
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Fig. 6 Performance comparison for Gaussian and uniform input data

be seen, the increase in computations is small. The per-
formance of the two algorithms is compared through
simulations. The no cooperation case has been added
to compare the performance of the proposed algorithm
with the scenario where each sensor operates as if it
were acting in a stand-alone environment. The size of
wo is chosen as M = 5. The size of the network is
N = 20. The SNR value is varied from 0 dB to 20 dB. The

parameters defining the step-size update equations are
shown in Table 2. The values of the parameters are cho-
sen such that the convergence speed is the same for all
algorithms and the performance is measured on the basis
of the steady-state MSD, as shown in the figures. Results
are shown for white Gaussian input regressor data as well
as colored input regressor data, with the correlation fac-
tor of 0.5. As can be seen from Figs. 2 and 3, the proposed

Fig. 7 Theory (20) vs simulation for a network of size N = 5
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Fig. 8 Theory (20) vs simulation for a network of size N = 10

algorithm clearly outperforms the VSSDLMS algorithm
from [6]. At low SNR, the performance of the proposed
algorithm at 0 dB is even better than the performance
of the VSSDLMS algorithm at 10 dB. The steady-state
results for these experiments are given in Table 3. As can
be seen, the proposed algorithm gives an improvement in
performance of almost 10 dB for the case of white input
and 5 dB for the case of colored input. This significant

improvement in performance clearly justifies the trade-off
between complexity and performance.

5.2 Experiment II
In this experiment, the performance of the proposed algo-
rithm is tested for different network sizes with a fixed
unknown vector length, M = 5. The performance of the
proposed algorithm is then tested for a fixed network size,

Fig. 9 Steady-state theory (26) vs simulation for a network of size N = 5
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Fig. 10 Steady-state theory (26) vs simulation for a network of size N = 10

N = 20, while the length of the unknown vector, M is
varied. Finally, the performance of the algorithm is com-
pared for Gaussian and Uniform input data. The results
are shown in Figs. 4, 5, and 6. For varying N and M, the
steady-state MSD results are plotted. As expected, perfor-
mance improves as N increases as each sensor has more

neighboring nodes for sharing data and improving its esti-
mate. However, the performance degrades with increase
in M as it becomes difficult to obtain an accurate esti-
mate as the number of unknown parameters increases.
The results shown use the same control parameters as in
Experiment I.

Fig. 11 Steady-state theory (26) vs simulation for a network of size N = 15
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Fig. 12 Steady-state theory (26) vs simulation for a network of size N = 20

5.3 Experiment III
The next experiment compares the transient behavior of
the proposed algorithm obtained from (20) with the sim-
ulation results. For this experiment, the network size is
chosen as N = 5 and N = 10. The length of the
unknown parameter vector is taken to be M = 2 and
M = 5. The SNR is fixed at 20 dB. The step-size con-
trol parameters are set as α = a = 0.99, γ = 10−3 and
b = 1 − 10−3. The results are shown in Figs. 7 and
8. As can be seen, the theoretical results closely match
the simulation results. The mismatch during the transient
stage is a result of the assumptions from [16]. However,
this is expected, as shown in the results of [16], and
is acceptable as the two curves are closely matched at
steady-state.

5.4 Experiment IV
Next, we compare the steady-state results obtained
using (26) with the steady-state results obtained through

Table 4 Steady-state results for N = 5 and N = 10

N = 5 N = 10

M SNR Eq. (26) Sim. Eq. (26) Sim.

0 − 23.74 − 23.73 − 26.24 − 26.48

2 10 − 28.74 − 28.83 − 31.24 − 31.44

20 − 33.74 − 33.79 − 36.24 − 36.37

0 − 19.72 − 19.79 − 22.22 − 22.46

5 10 − 24.72 − 24.84 − 27.22 − 27.44

20 − 29.72 − 29.72 − 32.22 − 32.45

simulations. The SNR values are varied from 0 dB to
30 dB. The network size is varied from N = 5 to
N = 20. The results are shown in Figs. 9, 10, 11,
and 12. There is a very close match for all results. For
an exact comparison, some of these results have been
tabulated in Tables 4 and 5. As can be seen, the results
for the theory match closely with those obtained through
simulation.

5.5 Experiment V
In the last experiment, the robustness of the proposed
algorithm is tested in the case that the exact num-
ber of unknown parameters are not known. This means
that the exact value for M is unknown. In such a case,
there are three possible scenarios. First, an underdeter-
mined case, where the value of M is chosen as less
than the actual value. Second, an overdetermined case,
where the value of M is chosen as more than the actual
value. Finally, the case where the value of M is chosen

Table 5 Steady-state results for N = 15 and N = 20

N = 15 N = 20

M SNR Eq. (26) Sim. Eq. (26) Sim.

0 − 41.38 − 41.37 − 42.69 − 42.71

2 10 − 46.38 − 46.71 − 47.69 − 47.69

20 − 51.38 − 51.04 − 52.69 − 52.59

0 − 37.40 − 37.19 − 38.71 − 38.66

5 10 − 42.40 − 42.39 − 43.71 − 44.00

20 − 47.40 − 47.68 − 48.71 − 48.96
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Fig. 13 Steady-state results for a mismatch in the value ofM for a network of size N = 10

correctly. For this experiment, the network size is cho-
sen as N = 10 and the unknown parameter vector
length as M = 10. The range for M is varied between
5 and 15, and the steady-state results are compared for
SNR values of 0 dB, 10 dB, and 20 dB. The results are
shown in Fig. 13. It can be seen that for the underde-
termined case, the value of SNR does not matter, as the
algorithm converges very quickly to give a large error. The
best result is achieved for an exact match, as expected.
However, the results for the overdetermined case are very
close to the best result. As the value of M increases, the
value of the steady-state error also increases. However,
it is clear from these results that in case of a mismatch,
it is better to have an overdetermined system rather than
an underdetermined system.

6 Conclusion
This work proposes a new variable step-size diffusion
least mean square algorithm, based on the quotient form,
for distributed estimation in adaptive networks. The
mean, mean-square, and steady-state analyses have pre-
sented. The proposed algorithm has been compared with
the algorithm from [6], and a computational complexity
analysis has been shown to justify this comparison. It
has been shown that the proposed algorithm easily out-
performs the algorithm from [6] and provides a much
better trade-off between complexity and performance.
Results show an improvement in steady-state MSD of
almost 10 dB for white input data and almost 5 dB
for correlated input. Results are also shown for differ-
ent network sizes as well as for different sizes of the
unknown vector. A comparison between theoretical and

simulation results has been shown and the two were
found to be closely matched, as shown by the figures
as well as the tables. Finally, the performance of the
algorithm has been tested in case of a mismatch in the
value of M. The proposed algorithm has been shown
to perform well in a Gaussian noise environment. How-
ever, for non Gaussian environments, a variable step-size
algorithm based on the least mean fourth algorithm be
developed.
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