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Abstract

Neural networks based on the attentional encoder-decoder model have good capability in abstractive text
summarization. However, these models are hard to be controlled in the process of generation, which leads to a lack of
key information. And some key information, such as time, place, and people, is indispensable for humans to
understand the main content. In this paper, we propose a key information guide network for abstractive text
summarization based on a multi-task learning framework. The core idea is to automatically extract the key information
that people need most in an end-to-end way and use it to guide the generation process, so as to get a more
human-compliant summary. In our model, the document is encoded into two parts: results of the normal document
encoder and the key information encoding, and the key information includes the key sentences and the keywords. A
multi-task learning framework is introduced to get a more sophisticated end-to-end model. To fuse the key
information, we propose a novel multi-view attention guide network to obtain the dynamic representations of the
source text and the key information. In addition, the dynamic representations are incorporated into the abstractive
module to guide the process of summary generation. We evaluate our model on the CNN/Daily Mail dataset and
experimental results show that our model leads to significant improvements.
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1 Introduction
Text summarization is the task of automatically generat-
ing a brief summary from a given text while maintaining
the key information. There are two main approaches to
text summarization: extractive and abstractive. Extractive
models [1, 2] generally obtain a summary by extracting
a few sentences from the original text, while abstractive
models [3, 4] produce a summary by generating new sen-
tences. Recently, the neural encoder-decoder framework
[5] inspires the research on abstractive text summariza-
tion. It is generally believed that the language of this
model is more fluent. Moreover, the encoder-decoder
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framework is also convenient for automatically adjusting
the parameters.
Both the original text and the summarization are human

languages. In order to generate a higher quality result, the
model must be able to “understand” and represent the
original text in a human-likemanner. Entities such as time,
place, and person are the keys for human to understand
the main content. Therefore, it is essential to generate
these key information into the summary. Although cur-
rent abstractive models proved to be capable of capturing
the regularities of the text summarization, they are hard to
be controlled in the process of generation. In other words,
without external guidance, it is difficult to ensure that
those abstractive models could identify key information
and generate them into the output [6].
Some studies have tried to solve these problems. Zhou

et al. [7] proposed a selective gate network to retain
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more key information in the summary. However, the
selective gate network, which is controlled by the rep-
resentation of the input text, controls the information
flow from encoder to decoder for just once. If some
key information does not pass the network, it is hard
for them to appear in the summary. See et al. [8] pro-
posed a pointer-generator model, which uses the pointer
mechanism [9] to copy words from the input text, to
deal with the out-of-vocabulary (OOV) words. Without
external guidance, it is hard for the pointer to identify
keywords. In previous work, we combine the extractive
model and the abstractive model and use the former one
to obtain keywords as guidance for the latter one [10].
However, this model is not sophisticated enough. And it is
a pipelined system that extracts keywords by the TextRank
algorithm.
In addition, the decoder model, especially the atten-

tion mechanism, is also crucial for generating a summary
containing all the key information. Hsu et al. [11] pro-
posed a unified model which combines sentence-level and
word-level attentions by simple scalar multiplication and
renormalization. Their sentence-level attention is fixed,
which means it will be the same for each generated word.
However, the focus of the abstractive model on sentence
should be constantly changing during the summary gen-
eration. Tan et al. [6] proposed a graph-based attention
method that can discover the salient information of a doc-
ument in the encoder-decoder framework. They also use
the TextRank algorithm to identify key sentences in the
input text. We argue that the abstractive summarization
model should contain key information extraction and then
use the key information to dynamically guide the process
of summary generation.
In this paper, we propose a key information guide net-

work for abstractive text summarization based on a multi-
task learning framework. Our core idea is to automatically
extract the key information that people need most in an
end-to-end way and use it to guide the generation pro-
cess, so as to get a more human-compliant summary. In
our model, the document is coded into two parts: the
result of the document encoder and the key informa-
tion encoding, and the key information includes the key
sentences and the keywords. Multi-task learning frame-
work is introduced to get a more sophisticated end-to-end
model. The main part is an abstractive model based on
encoder-decoder structure, in which a normal document
encoder is employed. The second task is the key sentence
extraction, and an extractive method is included here.
Another extractive model is used to extract keywords.
The extractive models and the abstractive model will be
trained jointly in this multi-task framework, so they can
benefit each other. In this encodermodel, several semantic
coding layers are naturally formed, i.e., word layer, sen-
tence layer, and document layer. In order to simplify the

model, our key information, i.e., key sentences and key-
words, is extracted from the outputs of sentence layer
encoder. In the decoder, the key information will guide the
generation process by two ways: the attention mechanism
and the pointer mechanism. To fuse the key informa-
tion, we propose a novel multi-view attention guide net-
work to obtain the dynamic representations of the source
text and the key information. In addition, the dynamic
representations are incorporated into the abstractive
module to guide the process of summary generation.
Experiments show that our model achieves significant
improvements.
Our contributions are as follows:

• We propose a key information guidance network
model to obtain more human-compliant summaries.
In this model, a document is represented as keyword
encoding, key sentence encoding, and document
encoding, and then, they work together to guide the
generation of the summary.

• Multi-task learning framework is introduced to get a
more sophisticated end-to-end model. Extractive
models and the abstractive model are fused in an
end-to-end model, which can make full use of various
training data to adjust model parameters.

• In the decoder, we propose a novel multi-view
attention guide network to obtain the dynamic
representations of the source text and the key
information. In addition, the dynamic
representations are incorporated into the abstractive
module to guide the process of summary generation.

The rest of the paper is structured as below: Section 2
will review the related work. Section 3 introduces the
key information guide network, which is our baseline.
Section 4 presents our detailed model description, fol-
lowed by experiments and analysis in Section 5. At last, we
conclude our work in Section 6.

2 Related work
2.1 Abstractive summarization
Since Rush et al. [3] first bring up the encoder-decode
framework in the task of text summarization, abstrac-
tive models [6, 10, 12] have been widely used to gen-
erate the summary like human being. Hsu et al. [11]
propose a unified model combining sentence-level and
word-level attentions to take advantage of both extractive
and abstractive summarization approaches. Most meth-
ods select content at the sentence level [11] and the
word level [10]. Current state-of-the-art models use the
pointer-generator mechanisms. Our model selects the key
information including keywords and key sentences and
then incorporates the key information in the abstractive
module to guide the process of summary generation.
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2.2 Extractive summarization
Yasunaga et al. [2] use a graph-based neural model to
extract salient sentences. Nallapati et al. [4] use recur-
rent neural networks to read the article and get the
representations of the sentences and article to select
sentences. Most models utilize side information (i.e.,
image captions and titles) to help the sentence clas-
sifier choose sentences. In addition, Tan et al. [6]
combined recurrent neural networks with graph convo-
lutional networks to compute the salience (or impor-
tance) of each sentence. Neural models are able to
leverage large-scale corpora and achieve better perfor-
mance than traditional methods. While some extractive
summarization models are able to achieve better per-
formance, they all suffer from low relevance between
sentences.

2.3 Content selection
Since text summarization requires key information selec-
tion, the abstractive models first select key information
and then generate the summary based on it. Some recent
work solves the sentence extraction and document mod-
eling in an end-to-end framework. Nallapati et al. [4]
propose an encoder-decoder approach where the encoder
hierarchically learns the representation of sentences and
documents while an attention-based sentence extractor
extracts salient sentences sequentially from the original
document. Then, based on the above work, they propose
a recurrent neural network-based sequence-to-sequence
model for sequential labeling of each sentence in the doc-
ument. However, some key information may be lost in
the selection process, which leads to an inability of the
generation.

2.4 Pointer-generator network
The pointer network [9] is a sequence-to-sequencemodel,
which uses a soft attention distribution to produce an out-
put sequence consisting of elements in the input sequence.
Pointer networks have been used to create a hybrid
approach to NMT (neural machine translation), language
models, and abstractive models. This method is close to
the mandatory note compression model and the CopyNet
model. The pointer-generator model [8] has some small
differences: they calculate the explicit switching proba-
bility to copy words from the input text. In addition,
the recycling of attention distribution is distributed as
a copy, which decides whether to generate a word from
the vocabulary or the input text. When multiple words
appear in the source text, we obtain the probability mass
of all corresponding parts of the attention distribution.
They believe that calculating explicit switch probability
is useful for improvement. In this way, they reduce the
probability of all generated words or all copied words at
once, rather than reducing them separately. These two

distributions are very useful, and they find that their sim-
pler approach is sufficient for similar purposes. From the
experimental results, they observe that the pointer mech-
anism often copies a word andmultiple occurrences of the
word appear in the source text.
The pointer-generator model is very different from the

method of other pointer network. These jobs train their
pointer components to activate only vocabulary words
or named entities, and they do not mix the probabil-
ity of replicating distributions and lexical distributions.
The pointer-generator model proposes a hybrid approach
described here and is more suitable for abstract summa-
rization. In addition, they demonstrate that replication
mechanisms are critical for accurately replicating rare but
vocabulary words.

2.5 Prediction-guide mechanism
He et al. [13] propose a prediction network to predict the
long-term value in the final generation summary. In addi-
tion, they propose to use a prediction network to improve
beam search, which takes the source sentence, the cur-
rently available decoded output, and the candidate words
at step t as inputs and predicts the long-term value of the
partial target sentence (e.g., the BLEU score) if it is done
by the NMT (neural machine translation) model. In accor-
dance with the practice of reinforcement learning, they
call it the network value network. Specifically, they pro-
pose a recurring structural network of values and train
their parameters from bilingual data. During the test time,
when selecting the word w for decoding, they consider
the conditional probability given by the NMT model and
the long-term value predicted by the value network. Our
forecasting guidance mechanism is used to ensure more
critical information covered in the final summary.

2.6 Multitask learning and joint training
Multi-task learning and joint training are also unavoidable
problems in this paper. However, this paper mainly refers
to [14–22] to construct our own algorithm, which cannot
be regarded as a new model.

3 The key information guide network
In this section, we will introduce the key information
guide network (KIGN) [10] (Fig. 1), which is served as our
baseline.

3.1 Encoder-decoder model based attention
Our encoder-decoder framework is similar to that of [4].
The tokens of the input article x = {w1,w2, ...,wn} are
entered into the encoder, which maps the text into the
encoder hidden state sequence {h1, h2, ..., hn}. At each
decoding time step t, the previous word embedding wt−1
and the previous context vector ct−1 as input to obtain the
decoder hidden state st . The context vector ct is obtained
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Fig. 1 The key information guide network. In the key information guide network, we encode the keywords to the key information representation [10]

by using the attention mechanism :

eti = vT tanh(Whhi + Wsst) (1)
αe
t = softmax(et) (2)
ct = ∑n

i=1 αe
tihi (3)

where v,Wh, andWs are learnable parameters and hi is the
hidden state of the input token wi.
The context vector ct , which represents what has been

read from the source text, is concatenated with the
decoder hidden state st to predict the next word with a
softmax layer over the whole vocabulary:

P(yt|y1, ..., yt−1) = softmax(f (st , ct)) (4)

where f represents a linear function or a neural network.

3.2 Key information guide network
Most encoder-decoder models [7, 8] simply take the
source text as input and then output a summary, which is
difficult to control during the generating process, result-
ing in missing key information in the summary. We pro-
pose a key information-guided network which can guide
the generation process by the attention mechanism and
the pointer mechanism.
Firstly, keywords are extracted by TextRank algorithm.

Then, a max-pooling CNN model [23, 24] is employed to
merge the key information. As shown in Fig. 1, the key-
words are entered one by one into the key information
guide network, and then, we connect the last forward hid-
den state

−→
hn and the backward hidden state

←−
h1 as key

information representation k:

k =
[ ←−
h1−→
hn

]

(5)

The traditional attention mechanism is difficult to iden-
tify keywords, which only use the decoder state as a query

to obtain the attention distribution of the encoder hid-
den state. We use the key information to represent k as an
extra input to the attention mechanism and change Eq. (1)
to:

eti = vT tanh(Whhi + Wsst + Wkk) (6)

where Wk is a learnable parameter. We use the new eti
to obtain new context vector ct (Eq. 3) and attention
distribution αe

t (Eq. 2) .
Then, we apply k to represent the key information and

use the new context vector ct to calculate the probabil-
ity distribution of all words in the vocabulary, changing
Eq. (4) to:

Pv(yt|y1, ..., yt−1) = softmax(f (st , ct , k)) (7)

where v represents that yt is from the target vocabulary.
The KIGN makes the attention mechanism more focus

on the keywords, which is similar to introduce prior
knowledge to the model.

3.3 Pointer mechanism
In order to deal with the OOV (out-of-vocabulary) prob-
lem, we combine the pointer network [9] with our key
information-based generating method, which enable us to
copy words as well as generate text. In the pointer genera-
tor model, we need to compute a soft switch psw to select
between the generated words and the duplicated words:

psw = σ(wT
k k + wT

c ct + wT
st st + bsw) (8)

where wT
k ,w

T
c ,wT

s , and bsw are parameters and σ is the
sigmoid function.
Our pointer mechanism is equipped with a key infor-

mation representation that identifies the keyword. We use
the new attention distribution αe

ti as the probability of
entering the token wi and obtain the following probability
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distribution to predict the next word:

P(yt = w) = pswPv(yt = w) + (1 − psw)
∑

i:wi=w
αe
ti (9)

Note that if w is an OOV word, Pv(yt = w) is zero.
In the process of training, we train the model by min-

imizing the maximum likelihood loss in each decoding
time step t, which is the most widely used in the task of
generation. In addition, we define y∗

t as the target word for
the decoding time step t, and the overall loss is:

L = − 1
T

T∑

t=0
logP(y∗

t |y∗
1, ..., y∗

t−1, x) (10)

4 Multi-task learning for abstractive text
summarization with KIGN

The KIGN introduced in Section 3 enables the text sum-
mary generator to pay more attention to the key infor-
mation that humans are most concerned about. However,
this model is not sophisticated enough. For example, key
information is obtained through the Textrank algorithm
rather than a learning-based approach. In this section, we
propose a multi-task learning model (Fig. 2) for abstrac-
tive text summarization based on the KIGN framework,
which includes a novel document encoder, a key informa-
tion extractor, and some methods such as joint training
and prediction-guide mechanism.
As shown in Fig. 2, firstly, we propose a document

encoder which includes a word-level encoder and a
sentence-level encoder. In this way, we can obtain global

features for each word and each sentence’s encoding
respectively. Then, the key information extraction layer
selects keywords and key sentences. Next, a multi-source
attention will guide the process of generation. Finally, the
abstracter and key information extractors, which includes
a keyword extractor and a key sentence extractor, are
trained by minimizing three loss functions in an end-to-
end manner.

4.1 Document encoder
We propose a novel document encoder to encode words
and sentences respectively instead of only using the hier-
archical encoder to encode both [4]. This method will
facilitate the subsequent keyword extraction and key sen-
tence extraction.

4.1.1 The global word encoder
The task of keyword extraction requires the informa-
tion of the whole document as well as the information
of one single word. In order to encode global informa-
tion into a hidden state to represent a word, the encoding
of each word must be based on at least one layer of
neural network. Therefore, we use a bidirectional LSTM
as the global word encoder. The tokens of the input
text {w1,w2, ...,wn} are forward fed into the global word
encoder, which maps the text into a sequence of hidden
states {−→hw1 ,

−→
hw2 , ...,

−→
hwn }:

−→
hwi = BiLSTM(

−−→
hwi−1, e

w
i ) (11)

Fig. 2 Architecture of the document encoder and key information extraction. The document encoder includes a global word encoder and a
sentence encoder. Key information extraction consists of keyword extractor and key sentence extractor, and then two kinds of key information
representation are obtained
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where
−→
hwi and ewi denote the forward hidden state and

embedding of word wi, respectively, and i = 1, · · · , n.
Likewise, backward hidden states can also be obtained,
i.e.,

←−
hwi i = 1, · · · , n. Therefore, the encode of the ith

word is:

hwi =
[ ←−
hwi−→
hwi

]

(12)

We concat the forward and backward final states in the
global word encoder to obtain the representation of the
document:

dw =
[ ←−
hw1−→
hwn

]

(13)

4.1.2 The sentence encoder
The sentence encoder is a hierarchical encoder, which
consists of the word-level encoder and the sentence-
level encoder. A document can be seen as a sequence
of words {w1,w2, ...,wn}. And this document also can
be seen as a sequence of sentences {s1, s2, ..., sm} and
si = {wi,1,wi,2, · · · }. As shown in Fig. 2, the word-level
encoder is a bidirectional LSTM that encodes the words
of each sentence into the sentence representation:

hwi,j = BiLSTM(
−−→
hwi,j−1,

←−−
hwi,j+1, e

w
i,j) (14)

where hwi,j and ewi,j denotes the hidden state and embedding
of wordwi,j, respectively.We concat the forward and back-
ward final hidden states in the word-level encoder as the
sentence representation:

xsi =
[ ←−
hwi,1−→
hwi,ni

]

(15)

Then, we use another bidirectional LSTM as the sentence-
level encoder, which updates each sentence representa-
tion:

hsi = BiLSTM(
−−→
hsi−1,

←−−
hsi+1, x

s
i) (16)

where hsi denotes the hidden state of sentence si. The
representation of the document based on the sentence
encoder is:

ds =
[ ←−
hs1−→
hsm

]

(17)

4.2 Key information extraction
The task of text summarization needs to remove the
unnecessary information and retain key information from
the input document. Since it is difficult for the encode-
decoder framework to find keywords and key sentences,
we employ a key information extraction model to extract
keywords and key sentences. Key information extractors
can be trained by supervised learning in a multi-task
framework.

4.2.1 Keyword extraction
First, we use the results of the global word encoder, i.e., hwi
i = 1, · · · , n, and dw, to extract keywords in the sequence
to sequence model:

gwi = σ(Wghwi + Ugdw + bg) (18)

where Wg and Ug denote weight parameters, bg the bias
vector, and σ the sigmoid activation function. Then, the
top N words {wk

1, ...,w
k
N } are obtained as the keywords.

4.2.2 Key sentence extraction
Similarly, the codes based on the sentence encoder, i.e., hsi
i = 1, · · · ,m, and ds, are used to extract key sentences.
For each sentence si, the gate network takes the ds and hsi
as inputs to calculate the probability value:

gsi = σ(Wshsi + Usds + bs) (19)

where Ws and Us denote weight matrices, bs the bias vec-
tor, and σ the sigmoid activation function. We also regard
the topM sentences {sk1, ..., skM} as the key sentences based
on the probability value of each sentence.

4.3 Improved key information guide network
Based on the abovementioned methods, the KIGN intro-
duced in Section 3 can be improved. The first is to update
the presentation of key information. Now, two kinds of
key information are obtained, i.e., keywords and key sen-
tences. According to Section 3, we can get keyword rep-
resentation kw and key sentence representation ks, and kw
and ks are substitutes for k.
The second is to update the document representation.

In Section 4.1, the document is encoded into the hidden
states of words, i.e., {hwi |i = 1, · · · , n}, and the hidden
states of sentences, i.e. ,{hsi |i = 1, · · · ,m}. By replacing hi
in (1)(3) with hwi , the word encoder-based context vector
cwt is obtained:

ewti = vT tanh(Ww
h h

w
i + Wsst + Wkwkw + Wksks) (20)

cwt =
n∑

i=1
α
e,w
ti hwi (21)

In the same way, the sentence encoder based context vec-
tor cst can also be obtained. As a result, (7) is updated by:

Pv(yt|y1, ..., yt−1) = softmax(f (st , cwt , cst , kw, ks)) (22)
In addition, there are still some trivial parts that need to
be updated, such as (8), which will not be repeated here.

4.4 Joint training the model
We jointly train the abstract generator, keyword extrac-
tor, and key sentence extractor by minimizing three loss
functions: Labs, Lkw, and Lks. The final loss is as below:

Ls2s = λ1Labs + λ2Lkw + λ3Lks (23)
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where λ1, λ2, and λ3 are hyper-parameters.
Similar to [8], we use the pointermechanism to calculate

the final word distribution Pfinal(ŷt). Then, we train the
abstracter by minimizing the negative log-likelihood:

Labs = − 1
T

T∑

t=1
logPfinal(ŷt) (24)

where ŷt is the tth token in the reference summary.
In our model, the losses of the keyword extraction Lkw

and the key sentence extraction Lks are the binary cross
entropy:

Lkw = − 1
N

N∑

i=1
(rwi loggwi + (1 − rwi )log(1 − gwi )) (25)

Lks = − 1
M

M∑

i=1
(rsi loggsi + (1 − rsi )log(1 − gsi )) (26)

whereM, N are hyper-parameters.
Ground truth label. To obtain the keywords, we filter the

stop words in the reference summary and use the remain-
ing as keyword ground truth labels rw = {rwi }i. For the
key sentence ground truth label rs = {rsi }i, we measure the
informativity of each sentence in the text and select key
sentences similar to [11]. In order to obtain the ground
truth label, we first measure the informativeness of each
sentence in the article by calculating the ROUGE-L recall
score between the sentence and the reference abstract
summary. Second, we sort the sentences according to the
amount of information and select sentences in order of
information from high to low. If the new sentence can
increase the amount of information for all selected sen-
tences, we add a sentence at a time. Finally, we obtained
the ground truth label and trained our extractor by min-
imizing the loss function. Our method is similar to [11]
that aims to extract the final summary of the article so that
they use the ROUGE F-1 score to select the real sentence.
In our model, we use the ROUGE recall score to get as
much reference summary information as possible.

4.5 Prediction-guide mechanism at test time
In the process of test time, when the model predict the
next word, we not only consider the above probability
(Eq. 9), but also consider the long-term value predicted
by the prediction guidance mechanism. The predictive
guidance mechanism is based on [13].
Our predictive guidance mechanism is a single layer

feedforward network with the sigmoid activation func-
tion that predicts the range of critical information covered
in the final summary. At each decoding time step t, we
perform a mean summation of the decoder hidden state.
s̄t = 1

t
∑t

l=1 sl, the encode states h̄n = 1
n

∑n
i=1 hi, and the

key information k as inputs to obtain the long-term value.

We sample the two parts for each x summary yp1 and yp2
and randomly stop to get s̄t . Then, we complete the build
from yp to get theM average decoder hidden state s̄ com-
pleted summary S(yp)(using beam search) and calculate
the average score:

AvgCos(x, yp) = 1
M

∑

s̄∈S(yp)
cos(s̄, k) (27)

where cos is the function of cosine similarity.
We hope the predicted value of v(x, yp1) can be larger

than v(x, yp2) if AvgCos(x, yp1) > AvgCos(x, yp2). There-
fore, the loss function of the predicted boot network is as
follows:

Lpg =
∑

(x,yp1,yp2)
ev(x,yp2)−v(x,yp1) (28)

where AvgCos(x, yp1) > AvgCos(x, yp2).
In testing, we first calculate the normalized logarithm

probability for each candidate and then linearly combine
it with the predicted guidance network predictive values.
In addition, given the abstract model P(y|x) (Eq. 9), pre-
dict the boot network v(x, y) and the hyperparameter α ∈
(0, 1). The score of the sequence y of x is calculated by:

α × logP(y|x) + (1 − α) × log v(x, y) (29)

where α ∈ (0, 1) is a hyperparameter.

5 Experiments
5.1 Experiment setup
The CNN/Daily Mail dataset [4, 25] is employed here,
and the data is processed in the same way as [8]. We
use three 300-dimensional LSTMs for the global word
encoder and sentence encoder. And a 50k-word vocabu-
lary is used. During the training and testing, we truncate
the text to 400 tokens for word encoder and limit the
length of the summary to 100 tokens. We train the model
using Adagrad [15] with learning rate 0.15 and an initial
accumulator value of 0.1. The batch size is set to 16, and
the number of keywords and key sentences are 40 and
10. We jointly train the three tasks and set λ1 = 1 and
λ2 = λ3 = 0.5. Following the previous work, our major
evaluation metric is F-score of ROUGE.
In addition, for the prediction mechanism, we use the

single-layer feed forward network and set the number of
nodes with 800. For the hyperparameter α, we use a differ-
ent α to test the performances of KIGN+prediction-guide
model during the decoding time. As can be seen from
Fig. 3, the performance of our model is stable for the α

ranging from 0.8 to 0.95. In addition, when we set the α as
0.9, we can get the highest F-score. We can see that when
we setM as 8 and adaptmini-batch training with the batch
size of 16. The network is trained with AdaDelta.
During the process of the training and testing, we trun-

cated the input token to 400 and limited the length of the
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Fig. 3 The performance of our model. ROUGE-1, ROUGE-2, and ROUGE-L F1 scores of KIGN+prediction-guide model w.r.t different hyperparameter α

output summary to 100 tokens. Similar to [8] at the time
of the test, we truncated the input token to 400 and lim-
ited the length of the output summary to 120 tokens. We
trained the keyword network model with training itera-
tions of less than 200,000. Then, we train a single-layer
feed forward network based on the KIGN model. Finally,
during the test, we combine the KIGN model with the
predictive guidance mechanism to generate a summary.

5.2 Results and discussion
The experimental results are shown in Table 1. The first
five are commonly used sequence to sequence methods:
Seq2Seq model enhanced by attention mechanism with
a 150k vocabulary, Seq2Seq model enhanced by atten-
tion mechanism with a 50k vocabulary, Seq2Seq model
with a graph-attention, hierarchical attention networks

method [4], and Seq2Seq model equipped with pointer-
mechanism.
Table 1 shows that our baseline model, named key

information guide network (shown in Fig. 1), obtain bet-
ter scores than Seq2Seq model equipped with pointer-
mechanism by + 1.3 ROUGE-1, + 0.9 ROUGE-2,
and + 1.0 ROUGE-L. With the help of the pointer-
mechanism (shown in Fig. 1), key information guide net-
work (KIGN+Prediction-guide) has achieved much better
results by + 2.5 ROUGE-1, + 1.5 ROUGE-2, and + 2.2
ROUGE-L, while Key Information Guide Network with
a multi-task learning frame (shown in Fig. 2) obtains the
best scores, and the additional improvements are + 0.2
ROUGE-1, + 0.2 ROUGE-2, + and 0.2 ROUGE-L. We
can also see in Table 1 that if the keywords and sen-
tences are given, the result can be better (40.34 ROUGE-1,

Table 1 ROUGE F1 scores for models on the CNN/Daily Mail test set

Model ROUGE-1 ROUGE-2 ROUGE-L

Seq2Seq + attention (150k vocab) 30.49 11.17 28.08

Seq2Seq + attention (50k vocab) 31.33 11.81 28.83

Graph-attention 38.1 13.9 34.0

Hierarchical attention networks 35.46 13.30 32.65

Seq2Seq with pointer mechanism 36.44 15.66 33.42

Key information guide network 37.76 16.56 34.49

KIGN+prediction-guide 38.95 17.12 35.68

Our model (joint training) 39.15 17.34 35.92

Our model (given keywords and key sentences) 40.34 17.70 36.57

All our ROUGE scores have a 95% confidence interval of at most ± 0.25 as reported by the official ROUGE script
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17.70 ROUGE-2, 36.57 ROUGE-L), which also proves that
it is reasonable to use the key information to guide the
generation of text summarization.

5.3 Case study
In order to demonstrate the ability of our method to
obtain key information, the processing results of a spe-
cific piece of text are shown in Fig. 4. The original is
listed in the top half of Fig. 4, and the key information is
identified in bold. Next are the given gold summary and
the outputs of the two models. The original text is about
Google handwriting input working on android handsets
and some function introduction, and the key information
is “google claims,” “read anyone’s handwriting,” “android
handsets can under 82 languages in 20 distinct scripts,”
and "works with both printed and cursive writing input
with or without a stylus.” We can see that the summary
of the baseline model equipped with pointer-mechanism
covers only “google have cracked the problem of reading
handwriting.” While our model summarizes almost all the
key information.

5.4 Ablation studies
We conduct ablation experiments to show the effect of our
multi-view attention guide network. As show in Table 2,
we can observe that all kinds of view contribute more
or less performance boost to the model. Apparently, we
can observe that the keyword view attention and guide
generation makes much contribution to the improvement
of our model. First, we can observe that the key infor-
mation extraction can improve the scores of ROUGE
(+ 1.1 ROUGE-1, + 0.6 ROUGE-2, + 0.9 ROUGE-L).

Second, the prediction guide can improve the scores of
ROUGE (+ 0.8 ROUGE-1, + 0.4 ROUGE-2, + 0.5 ROUGE-
L). Then, the guide generation can improve the scores
of ROUGE (+ 1.4 ROUGE-1, + 0.9 ROUGE-2, + 1.3
ROUGE-L). In addition, the guide pointer can improve
the scores of ROUGE (+ 0.4 ROUGE-1, + 0.2 ROUGE-2,
+ 0.3 ROUGE-L). Finally, the joint training can improve
the scores of ROUGE (+ 1.9 ROUGE-1, + 1.1 ROUGE-
2, + 1.5 ROUGE-L). From the results, we can observe
that our joint training can significantly improve the score
of ROUGE.

6 Conclusions
In this paper, we propose a multi-task learning model
with key information guide network that combines the
extractive method and the abstractive method in a novel
way. Our model is based on the key information guide
network. The key information guide network uses an
extractive method to obtain the keywords from the text.
Then, it encodes the keywords to the key information rep-
resentation and integrates it into the abstractive model to
guide the process of generation. The guidance is mainly
in two aspects: the attention mechanism and the pointer
mechanism. Based on the key information guide net-
work, we propose a multi-task learning model to jointly
train the extractive model and the abstractive model.
Specifically, we use a document encoder to encode words
and sentences of the input text respectively. Then, we
extract key information including keywords and key sen-
tences based on the encoder. In this way, our key infor-
mation extraction is not from the TextRank method.
We obtain the key information from our sequence to

Fig. 4 Comparison of the output of two models on a news article. Bold words in text are the key information (baseline: enc-dec+attn; our model:
KIGN+prediction-guide)
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Table 2 Ablation studies of our model on the test set

Model ROUGE-1 ROUGE-2 ROUGE-L

Our model 39.15 17.34 35.92

W/o prediction-guide 38.16 17.17 34.95

W/o key information extraction 37.25 16.15 34.19

W/o pointer network 37.83 16.52 34.68

W/o joint training 36.35 15.62 33.38

sequence model. Finally, we jointly train the three tasks
of keyword extraction, key sentence extraction, and sum-
mary generation. At test time, we use a prediction-guide
mechanism, which can obtain the long-term value for
future decoding, to further guide the summary genera-
tion. Experiments show that our model leads to significant
improvements.
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