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Abstract

This paper deals with cell identifier (ID) estimation for narrowband-Internet of things (NB-IoT) system. It is suggested
to transform the usual maximum likelihood (ML) estimator expression in order to highlight a discrete Fourier
transform (DFT), which can be computed with fast algorithms. Therefore, the proposed method is a DFT-based
low-complexity cell ID estimator that can be qualified as optimal in the ML sense. The principle is extended to the
practical case where the channel is unknown and must be estimated. In this scenario, the concentrated likelihood
function needs to be maximized, in which the ML channel estimate is a function of the unknown cell ID parameter.
This operation only involves a few additional multiplications. Simulation results reveal that the performance of the
proposed method actually matches the optimal one of the ML cell ID estimator. Furthermore, the technique is robust
to residual frequency offset up to several hundreds of Hertz. We also show that the mean square error of channel
estimation reaches its Cramér-Rao bound (CRB).
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1 Introduction
The Internet of things (IoT) market is growing rapidly
as the number of applications increases in various
domains such as industry, smart home, smart cities, and
agriculture. Among the low-power wide area (LPWA)
technologies allowing for long-range applications [1–3],
narrowband-IoT (NB-IoT) is a promising solution as it
is inherited from long-term evolution (LTE) [4–7]. Thus,
similar to LTE, NB-IoT devices work in licensed frequency
bands, occupying one resource block of the LTE sys-
tem. Moreover, every device must be synchronized with
an evolved node B (eNB) to connect the network. The
synchronization process is carried out according to two
main steps: the devices physically synchronize with the
eNBs using the narrowband primary synchronization sig-
nal (NPSS) [8–11] and then seek the cell identifier (ID) of
the neighboring eNBs through the narrowband secondary
synchronization signal (NSSS). In this paper, we focus on
the cell ID estimation process.
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The cell ID can take 504 different values and is trans-
mitted through the NSSS as a combination (multiplica-
tion) of a Zadoff-Chu (ZC) sequence and a Hadamard
sequence. Few papers dealing with the cell ID estima-
tion in NB-IoT have been proposed in the literature
yet. In [12], the exhaustive maximum likelihood (ML)
cell ID search is suggested, and computational simpli-
fications are established in [13, 14]. The ML leads to
a cross-correlations between the observations (i.e., the
received NSSS) and all the possible combinations of ZC
and Hadamard sequences. The presented reductions of
complexity in [13, 14] are based on the fact that the
Hadamard sequences composing the NSSS consist in ± 1
elements. As a consequence, all the multiplications of the
NSSS observation by the Hadamard sequences do not
need to be computed as it only changes the sign of the
observation samples. Despite their advantageous reduc-
tion of complexity, the methods in [13, 14] are based on
cross-correlation and do not take further advantage of the
NSSS features to simplify the cell ID estimation.
In this paper, we suggest to rewrite the cross-correlation

in the cell ID ML estimator as a discrete Fourier trans-
form (DFT) of the observations. To do so, we first notice
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that the ZC sequence consists in complex exponential
samples that can then be transformed and reformulated
as the coefficients ωkn = e−2jπ kn

N of the DFT. It results
that algorithms for fast computations of DFTs [15, 16]
can be used, therefore reducing the complexity of the
ML estimator. Furthermore, the suggested method is also
compatible with other simplifications based on the prop-
erty of Hadamard sequences [13, 14]. In addition, we deal
with the practical case where the channel is unknown and
must be jointly estimated with the cell ID. It is proved
that the complex argument of the channel only needs
to be estimated, as the modulus of the channel is not
involved in the maximization of the likelihood function.
Besides, we show that the cell ID can then be estimated by
maximizing the so-called concentrated-likelihood func-
tion in which the channel argument is substituted by
the estimated one and whose value only depends on the
cell ID value. This operation only slightly increases the
complexity of the proposed ML estimator. The simula-
tion results show that the performance of the suggested
method actually matches that of the exhaustive ML and
that it remains accurate for residual frequency offset of
several hundreds of Hertz. Moreover, it is verified through
simulations that the mean square error (MSE) of the
estimator of the channel phase reaches the Cramér-Rao
bound (CRB).
The rest of the paper is organized as follows: Section 3

presents the NSSS reception model, including the exhaus-
tive ML cell ID search. Section 4 introduces the suggested
low-complexity ML estimator, and it is extended to the
practical case where the channel needs to be estimated.
The performance of the estimator is shown and discussed
in Section 5, and Section 6 concludes this paper.
Notation: the vectors and matrices are written in bold-

face x and uppercase boldface X, respectively, and the
scalars are written in normal font x. ‖.‖ represents the
Euclidian norm, |.| the modulus (of complex scalar), and
Re{.} the real part. Moreover, x∗, arg(.), and (.)H stand for
the conjugate, the argument, and the Hermitian (complex
conjugate) operators, respectively. The modulo is written
mod , the mathematical expectation is denoted by E{.},
and ⊗ is the Kronecker product.

2 Method
The aim of this study is to prove that the ML esti-
mation of the cell ID in NB-IoT system can be car-
ried out through a simple DFT without loss of perfor-
mance compared with the exhaustive search. The paper
includes a theoretical development that describes the
DFT-based ML cell ID estimator and simulation results
that show the relevance of the suggested method. The
theoretical study does not require any specific material,
and the simulations have been carried out with MatLab
R2016a.

3 NSSS reception
3.1 Systemmodel
This section describes the received NSSS, which is also
detailed in [17]. The NSSS is composed of 11 OFDM sym-
bols of 12 subcarriers, namely 11 × 12 = 132 resource
elements. It is assumed that the time-frequency synchro-
nization has been accurately performed thanks to the
NPSS [8–11], in such way that the residual synchroniza-
tion errors are negligible. Otherwise, the effect of the
potential residual errors will be discussed in Section 5.
Furthermore, since the signal is narrowband, it is reason-
able to suppose that the frequency response of the channel
is constant over the NSSS resource block of 12 subcarri-
ers. Thus, after the cyclic prefix removal and the DFT over
the 11 OFDM symbols, the received NSSS column vector
y of size N =132 can be expressed as

y = αd + w, (1)

where α is the complex channel coefficient, w is the addi-
tive white Gaussian noise (AWGN) vector of size N ×
1 containing the samples wn ∼ CN (0, σ 2), and d is
the transmitted NSSS sequence, whose elements dn are
defined in [17] as

dn = bq(m)e−2jπθf ne−j πun
′(n′+1)
131 , (2)

where {bq(m) ∈ {−1, 1}} is one of the four Hadamard
sequences defined in Table 10.2.7.2.1-1 in [17], which has
been reproduced in Table 1. Moreover, we have

θf = 1
4
((
nf
2

) mod 4), (3)

Table 1 Definition of bq(m)

qbq(m)

0[11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

1[1 -1-1 1-1 1 1-1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1

-1 1-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1

-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1

-1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

2[1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1

1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1

-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1

-1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

3[1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1

1 -11 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

1 -1-11 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1

1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1]
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where nf is the frame number, which is always even.
Furthermore, we have:

n′ = n mod 131
m = n mod 128

u = NNcell
ID mod 126 + 3

q = �N
Ncell
ID
126

	, (4)

with NNcell
ID the cell ID of the eNB.

For a sake of clarity, we can rewrite (1) in a detailed form
as follows:

y = α Bθ
︸︷︷︸

X(q,θf )

e(u) + w, (5)

where B, θ , and X(q, θf ) are the N × N diagonal
matrix composed of the elements bq(m), e−2jπθf n, and
bq(m)e−2jπθf n, respectively. Note that the diagonal ele-
ments of X(q, θf ) are taken from a finite set {±1,±j}. The
N × 1 vector e(u) contains the ZC sequence [18, 19]
en(u) = e−j πun

′(n′+1)
131 , where the parameter u is called the

root of the sequence. In the following, the estimation of
the cell ID results in finding the parameters (u, q) from the
observation y, as the cell ID can be expressed from (4) as

NNcell
ID = 126q + u − 3. (6)

It can be noticed that the estimation of the cell ID does
not require that of the parameter θ , but it must be nev-
ertheless properly estimated in order to unscramble the
received NSSS sequence, i.e., remove the sequence θ .

3.2 Maximum likelihood cell ID estimation
The ML estimation of u, q, and θf leads to an exhaustive
search of the optimal parameters through the likelihood
function of complex observation y, denoted by L, which
can be expressed as

(û, q̂, θ̂f ) = arg max
u,q,θf

Ce−
1

σ2
‖y−αX(q,θf )e(u)‖2

︸ ︷︷ ︸

L

, (7)

where C is a constant that can be omitted in the following
developments since it does not depend on (u, q, θf ). Since
|Xn|2 = 1 and |en(u)|2 = 1 for any Xn ∈ {±1,±j}, we can
develop (7) as

(û, q̂, θ̂f ) =arg max
u,q,θf

e−
1

σ2
‖y‖2e−

|α|2N
σ2

× e
2

σ2
Re{yHαX(q,θf )e(u)}

=arg max
u,q,θf

Re{yHαX(q, θf )e(u)}, (8)

which can be rewritten in a scalar form as

(û, q̂, θ̂f ) = arg max
u,q,θf

Re
{ 131

∑

n=0
y∗
nαXn(q, θf )en(u)

}

. (9)

The cross-correlation in (9) requires Nm = 16 × 126 ×
132 = 266112 complex multiplications, where 16 corre-
sponds to q × θf possible values, and 126 corresponds
to u possible values. Furthermore, it requires the a pri-
ori knowledge of the channel coefficient α or it must
be estimated. In the following, we take advantage of the
ZC sequence en(u) = e−j πun

′(n′+1)
131 to rewrite (9) as a

DFT, therefore simplifying the process. Furthermore, the
estimation of the channel is tackled as well.

4 Suggested low-complexML cell ID estimation
This section presents the way to reformulate the ML esti-
mator (9) into a simplest form using DFT. The principle
of the method is first detailed in an ideal case where the
channel is supposed to be known (or at least accurately
estimated), and we then extend to a more general case
where both the cell ID and the channel are estimated
through ML using DFT formulation.

4.1 Ideal case: known channel
In order to reduce the complexity of the cell ID estimation,
we can rewrite (9) by means of a DFT. For clarity purpose,
we note zn = y∗

nαXn(q, θf ), then (9) can be expressed as

(û, q̂, θ̂f ) = arg max
u,q,θf

Re
{ 131

∑

n=0
zne−

jπun′(n′+1)
131

}

= arg max
u,q,θf

Re
{ 131

∑

n=0
|zn|ej arg(zn)e−

jπun′(n′+1)
131

}

.

(10)

To further develop the sum in (10), it should be noticed
that n′(n′ + 1) is always even, for every even or odd n′ and
can be expressed as

n′(n′ + 1) = 2
(

n′ + 1
2

)

. (11)

To recognize a DFT, we define ñ = (n′+1
2

)

mod 131 such
that the sum in (10) can be rewritten as

131
∑

n=0
|zn|ej arg(zn)e−

jπun′(n′+1)
131 =

131
∑

n=0
|zn|ej arg(zn)e−

2jπuñ
131 .

(12)

We show in Fig. 1 ñ = n′(n′ + 1) mod 131 versus n,
with n′ = n mod 131. Thus, we can observe that ñ is
symmetrical according to n = 65, i.e., for any n1 < 65,
there exists a 65 < n2 ≤ 130 such as n1 + n2 = 130
and ñ1 = ñ2. Moreover, the set �n = {ñ = (n′+1

2
)

mod 131|n = 0, 1, ..,N − 1} is a subset of [[ 0, 131]]. As
a consequence, we can rearrange the elements |zn|ej arg(zn)
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Fig. 1 ñ = n′(n′ + 1) mod 131 versus n, with n′ = n mod 131

in order to highlight the DFT. To this end, we define pk as

pk =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

|z0|ej arg(z0) + |z130|ej arg(z130)
+|z131|ej arg(z131), ifk = ñ = 0
|zn1 |ej arg(zn1 ) + |zn2 |ej arg(zn2 ),
ifk = ñ1 ∈ {�n \ {0}}, n1 + n2 = 130
0, if k /∈ �n

. (13)

Finally, from (12) and the rearrangement in (13), we
obtain:

131
∑

n=0
|yn|ej arg(zn)e−

2jπuñ
131 =

130
∑

k=0
pke−

2jπuk
131 , (14)

where we recognize the DFT of pk . By defining the vector
p =[ p0, p1, . . . , pN−1], theML estimator of u, q, and θf can
be simply expressed as

(û, q̂, θ̂f ) = arg max
u,q,θf

Re{DFT(p)}. (15)

Figure 2 illustrates Re{DFT(p)} versus u, for a ZC
sequence featuring a root u = 7. We can see a peak at
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Fig. 2 Re{DFT(p)} versus u, ZC sequence has root u = 7



Savaux EURASIP Journal on Advances in Signal Processing         (2020) 2020:14 Page 5 of 12

u = 7, which proves the relevance of the suggested trans-
formation. The direct computation of (15) using DFT has
a complexity of 16 × 66 × 126 = 133056 complex multi-
plications, which is very similar to the exhaustive search
in (9). This is because 131 is a prime number. However,
this can be reduced by using an algorithm for fast calcu-
lation of prime DFT, such as FFTW1, chirp-z algorithm
[15], or generalized Goertzel algorithm [16]. Thus, con-
sidering the complexity analysis of the chirp-z algorithm
[15] for instance, the computation of (15) requires 2 mul-
tiplications of size 132, one of size 256 (the first power
of 2 larger than 132), and 2 FFTs of size 256. Therefore,
the complexity of (15) is of order 16 × 4016 = 73856
where 16 correspond to the estimation of (u, θf ) and 4016
to the chirp-z algorithm. This is of order four times less
complex than the exhaustive search (9) and could be
even simplified. In fact, it must be noted that the FFT is
sparse, as only 66 samples over 131 are non-zero in the
input vector p; therefore, numerous multiplications can
be avoided. Furthermore, we can take advantage of the
fact that Xn(q, θf ) ∈ {±1,±j} to further simplify (15) since
the 16 possible combinations (q, θf ) can be tested with
straightforward changes of signs in the different sums that
compose the FFTs. The complexity could then be reduced
by eight, namely 9232 multiplications, leading to a com-
putation cost similar to that in [13, 14]. However, note that
the different FFT implementations are out of the scope of
this paper and then not further dealt with in this work. In
the following, we extend the suggested solution to a more
realistic case where the channel is unknown and must be
estimated.

4.2 ML cell ID and channel estimation
From (9), we can notice that the substitution α = |α|ejφα

with φα the argument of α, yields:

(û, q̂, θ̂f ) = arg max
u,q,θf

Re
{ 131

∑

n=0
y∗
ne

jφαXn(q, θf )en(u)

}

,

(16)

since |α| is independent of (u, q, θf ) and can then be
removed from (9). We deduce that it is sufficient to focus
on the estimation of φα to, in turn, estimate (û, q̂, θ̂f ).
Thus, the ML estimation of φα can be expressed, after
straightforward developments, as

φ̂α = max
φα

L

= max
φα

Re
{ 131

∑

n=0
y∗
ne

jφαXn(q, θf )en(u)

}

︸ ︷︷ ︸

f (φα)

. (17)

1see FFTW site http://www.fftw.org/

Hence, solving ∂
∂φα

f (φα) = 0 leads to

e2jφα =
∑131

n=0 ynX∗
n(q, θf )e∗n(u)

∑131
n=0 y∗

nXn(q, θf )en(u)

⇒φ̂α = 1
2
arg

(
∑131

n=0 ynX∗
n(q, θf )e∗n(u)

∑131
n=0 y∗

nXn(q, θf )en(u)

)

⇔φ̂α = arg
( 131

∑

n=0
ynX∗

n(q, θf )e∗n(u)

)

, (18)

since the denominator is the conjugate of the numer-
ator. The CRB [20, 21] of this estimator is given by
CRB = σ 2

2|α|2N , such as proved in Appendix 6. In
the following, we note the estimate φ̂α(u, q, θf ) in order
to highlight its dependency to the unknown discrete
parameters. Furthermore, we can rewrite the ML esti-
mator (16) by substituting the likelihood function L by
the concentrated-likelihood one (including the estimate
φ̂α(u, q, θf )), leading to

(û, q̂, θ̂f ) = arg max
u,q,θf

Re
{

ejφ̂α(u,q,θf )
131
∑

n=0
y∗
nXn(q, θf )en(u)

}

.

(19)

Interestingly, it must be noticed that the sum
∑131

n=0 y∗
nXn(q, θf )en(u) is found in both (18) and (19). It

can then be computed only once by using the DFT-based
method leading to (15) with zn = y∗

nXn(q, θf ) and (19)
then becomes

(û, q̂, θ̂f ) = arg max
u,q,θf

Re
{

ejφ̂α(u,q,θf )DFT(p)
}

. (20)

The joint ML cell ID and channel estimation algorithm
can be summarized as follows:

1. Compute DFT(p) with zn = y∗
nXn(q, θf ) by using an

algorithm such as the chirp-z transform. This step
has the same complexity as that discussed after (15).

2. Estimate φ̂α(u, q, θf ) in (18). The computation of
φ̂α(u, q, θf ) requires the ratio of the real and the
imaginary parts of

∑131
n=0 ynX∗

n(q, θf )e∗n(u) to feed the
arc-tangent function. The computational cost is then
16 × 126 = 2016multiplications, corresponding to
all possible (u, q, θf ) values.

3. Estimate (u, q, θf ) in (20). This also requires 2016
multiplications.

The general algorithm for joint cell ID and channel
estimation then requires 4032 more complex multiplica-
tions than the ideal case where the channel is supposed
to be known. This is a reasonable additional complexity
compared to the ML, even in simplified implementations
such as the suggested one or those presented in [13,
14]. Table 2 summarizes the achievable complexity of the

http://www.fftw.org/
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Table 2 Complexity comparison of the suggested DFT-based cell
ID estimator with [12–14], in a number of complex multiplications

Cell ID Channel

Exhaustive ML [12] 266112 N/A

[13] 66528 N/A

[14] 16632 N/A

Suggested ML < 73856(1) 4032

Notes: (1) This value is a loose upper bound of the achievable complexity. Such as
aforementioned, this could be reduced by 8, namely 9232

suggested DFT-based cell ID estimator compared with
[12–14], given in a number of complex multiplications.
The indicated value 73856 is given considering the chirp-
z algorithm for the computation of the DFT. In that
case, the computation cost is of the same order as [13].
Moreover, if we consider further simplifications (sparse
DFT and Xn(q, θf ) ∈ {±1,±j}, not dealt with in this
paper), the complexity could be reduced to 9232, i.e., of
the same order as [14]. In addition, the channel estima-
tion has been added as well, which is not considered
in [12–14].
Unfortunately, we cannot theoretically predict the esti-

mation performance in case of discrete unknown param-
eters (except in binary detection), such as done through
CRB for continuous parameters. In fact, it is only tractable
to asymptotically predict the probability of estimation
errors, such as hereby presented. As a consequence, we
will show the accuracy of the estimators (15) and (20)
through simulations in Section 5.

4.3 Asymptotic error probability analysis
In this section, we carry out an asymptotic analysis of the
probability of error of cell ID estimation for the ML esti-
mators (9) and its DFT-based version (15). An error of
cell ID estimation occurs if q, u, or both parameters are
badly estimated. We denote by P this probability, then it
is expressed as

P =P(N̂Ncell
ID 
= NNcell

ID )

=P(û = u ∩ q̂ 
= q) + P(û 
= u ∩ q̂ = q)
+ P(û 
= u ∩ q̂ 
= q). (21)

We can reasonably assume that the events are inde-
pendent (this assumption will be verified in Section 5),
therefore P simplifies to

P =P(û = u)P(q̂ 
= q) + P(û 
= u)P(q̂ = q)
+ P(û 
= u)P(q̂ 
= q)

=P(q̂ 
= q) + P(û 
= u)P(q̂ = q). (22)

Unfortunately, the probabilities P(q̂ 
= q) and P(û 
=
u) (respectively P(q̂ = q) and P(û = u)) do not
have tractable expressions, as they involve multiple inte-
grals of multivariate Gaussian distributions. However,

we can straightforwardly obtain the upper bound of the
probabilities in (22) when σ 2 tends to +∞. In that case,
the events q̂ = q and û = u are equiprobable for
any q and u, respectively. As a consequence, we have
limσ 2→+∞ P(q̂ 
= q) = 3

4 and limσ 2→+∞ P(û 
= u) =
125
126 , yielding limσ 2→+∞ P = 503

504 . In fact, this corre-
sponds to the probability of missing the cell ID in a
random choice of the cell ID among the 504 possible
values.

5 Simulations and discussion
5.1 Simulations results
The simulation results have obtained using MatLab,
and 105 independent runs per point have been per-
formed. The channel coefficient obeys a zero-mean
complex Gaussian distribution with unitary variance.
The signal to noise ratio (SNR) is defined as SNR =
E{‖αd‖2}
E{‖w‖2} . In the simulations, the chirp-z algorithm [15]
has been used, but we remind that other fast DFT
techniques could be applied. Note that for simplicity
matter, we use a descriptive shortcut in all the fol-
lowing comments. Thus, we mention the “ML cell ID
estimation” whereas we refer to the ML estimations of
(u, q, θf ) (e.g., in (9) or (15)). The actual cell ID estima-
tion is obtained from the estimate (û, q̂) using (6), i.e.,
N̂Ncell
ID = 126q̂ + û − 3.

5.1.1 Known channel
In Fig. 3, we compare the ML exhaustive cell ID search
(9) and the suggested DFT-based implementation (15)
through the probability of error of estimation versus SNR
in the range [−15,−2] dB. We assume the ideal case
where the channel is known. It can be verified that both
trajectories match, as a very slight difference (< 0.1 dB)
can be observed. The latter can be due to the computation
in transformed domains that are involved in the suggested
algorithm. In fact, it can be seen for instance in Fig. 2
that Re{DFT(p)} is not null around the peak at u = 7,
which may lead to few errors in low SNR range. How-
ever, this result shows that the suggested implementation
of the ML estimator does not change its performance as
the difference is negligible. We can observe that the prob-
ability of estimation error dives below 10−3 for SNR values
larger than – 7.5 dB, showing the robustness of the ML
estimator.
Figure 4 shows P versus SNR from – 20 to – 8 dB, the

different probabilities of error developed in (21) and (22)
and the corresponding asymptotes in very low SNR range.
It can be observed that it is more likely to badly estimate
both u and q than one of the parameter for any SNR value.
Moreover, the asymptotes 0.744, 0.248, and 0.006 well fit
P(û 
= u ∩ q̂ 
= q), P(û 
= u ∩ q̂ = q), and P(û = u ∩ q̂ 
=
q), respectively, in a very low SNR range. This shows that
the assumption of independence of the events holds, as for
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Fig. 3 Error probability versus SNR (dB) of cell ID ML estimator using (9) and the suggested DFT-based implementation (15). A known channel is
assumed

instance

lim
σ 2→+∞

P(û 
= u ∩ q̂ 
= q) = lim
σ 2→+∞

P(û 
= u)P(q̂ 
= q)

= 125
126

× 3
4

= 0.744.

The assumption of independence of the events is also
verified in Fig. 4 as we can see that (22) holds.
In fact, the behaviors of P and P(q̂ 
= q) +
P(û 
= u)P(q̂ = q) exactly match for any SNR
value.

Fig. 4 Probabilities of error versus SNR (dB),P and developments from (21), (22), and asymptotes
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5.1.2 Estimated channel
Figure 5 compares the probability of error of the suggested
cell ID estimation versus SNR in the ideal cases where
the channel is supposed to be known with the more prac-
tical case where the channel phase is estimated. It can
be observed that the performance of the cell ID estima-
tion where the channel is estimated is only 0.8 dB weaker
than the ideal case. This shows that the substitution of the
likelihood function by the concentrated-likelihood func-
tion only slightly degrades the performance and that the
channel phase is accurately estimated in (18).
In order to confirm the previous statement, we show in

Fig. 6 theMSE of the channel phase estimator versus SNR,
where the MSE is defined as

MSE = E{|φ̂α − φα|2}. (23)

Moreover, it is compared with the CRB previously
defined. It can be seen in Fig. 6 that the MSE matches the
CRB, the phase estimator is then optimal in the ML sense.

5.2 Discussion
5.2.1 Performance of themethod under residual frequency

offset hypothesis
In this section, we consider the non-idealistic case where
a residual frequency offset still remains after the physical
synchronization stage thanks to NPSS. Thus, Fig. 7 shows
the performance of the suggested ML cell ID estimator
(20) (i.e., the channel phase is estimated) in the presence
of a phase offset
f taken in the set {100, 200, 400}Hz.We

can observe in Fig. 7 that the estimation error behaviors
corresponding to 
f = 100, 200, and 400 Hz experience
performance losses of 0.1, 0.4, and 1.3 dB, respectively.
These results show the robustness of the DFT-based ML
cell ID estimator to the residual errors, in particular, if it is
below 200 Hz.

5.2.2 Sub-optimal ML-based estimator
In order to avoid the channel phase estimation step, we
suggest to rewrite (20) by substituting the real part by the
modulus operator as follows:

(û, q̂, θ̂f ) = arg max
u,q,θf

|ejφ̂α(u,q,θf )DFT(p) |

= arg max
u,q,θf

|DFT(p) |. (24)

This new expression is referred as the “alternative form” of
the ML estimator. It is supposed to be sub-optimal com-
pared with the DFT-based ML method in (20), as it is
not obtained from the maximization of the (concentrated)
likelihood function. However, it is shown in Fig. 8 that
the performance of the alternative form actually matches
that of the DFT-based ML estimator. This could be due to
the channel model we assumed: we considered an invari-
ant channel over 12 subcarriers. Thus, taking the modulus
removes the channel phase in the expression of the esti-
mator. We draw from Fig. 8 that in very low frequency
selectivity conditions, if the channel does not need to be
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Fig. 5 Error probability versus SNR (dB) of cell ID ML estimator using the suggested DFT-based implementation with channel estimation (20)
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Fig. 6MSE of channel phase estimation using (18). Comparison with the CRB

estimated, then the alternative ML form (24) can be used
without loss of performance compared with (20).
5.2.3 Performance in frequency selective channel
The channel was considered constant over the 180 kHz
bandwidth in previous simulations. This is justified by the

fact that it can be reasonably assumed that the channel is
shorter than the cyclic prefix duration of 4.7 μs. It results
that the coherence bandwidth of the channel is larger
than 1

4.7×10−6 ≈ 212.7 kHz, i.e., larger than the 180 kHz
bandwidth of the NSSS signal. However, more realistic

Fig. 7 Error probability versus SNR (dB) of the suggested DFT-based implementation (15) assuming residual frequency offsets
f ∈ {100, 200, 400}Hz
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Fig. 8 Error probability versus SNR (dB) of the suggested DFT-based implementation (15) compared with the alternative form

channel models should be considered, taking into account
the slight frequency selectivity within the 180 kHz. To this
end, a four taps channel h =[ h0, h1, h2, h3] has been sim-
ulated, where the coefficients hi are zero-mean complex
Gaussian variables (i.e., h is a Rayleigh channel) with the

same variance E{|hi|2} = 1
4 . The delay between two taps

has been set to 1 μs, such that the maximum delay is
shorter than the cyclic prefix. Note that in that case, (1)
should be rewritten to highlight the frequency selectivity.
Thus, if the channel is supposed to be temporarily static
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Fig. 9 Error probability versus SNR (dB) of the suggested DFT-based implementation (15) compared with the alternative form in a frequency
selective channel
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over the 11 OFDM symbols, then (1) becomes

y = H̄d + w, (25)

where H̄ is a 132 × 132 diagonal channel matrix which
can be expressed as H̄ = I ⊗ H, with I the 11 × 11 iden-
tity matrix, andH the 12 × 12 diagonal matrix containing
the channel frequency response [H0,H1, ..,H11]. There-
fore, each subcarrier is weighted by a complex coefficient
Hm = rmejφm ,m = 0, 1, .., 11.
Figure 9 shows the corresponding error probability ver-

sus SNR (dB) for both the suggested DFT-based imple-
mentation (15) compared with the alternative form. It can
be observed that the probability of error is larger in Fig. 9
than in Fig. 8, due to the effect of the frequency selectiv-
ity. The error probability is even lower bounded for higher
SNR values. Once again, both trajectories match, but this
behavior is not further investigated in this paper. How-
ever, the advantage of the DFT-based implementation
using the channel estimation compared with the modu-
lus form is that it can be adapted to cope with frequency
selective channels. Thus, the phase estimation (18) can be
redefined for any subcarrier indexm ∈ {0, 1, .., 11} as

φ̂m = arg
( 10

∑

n=0
ym+12nX∗

m+12n(q, θf )e∗m+12n(u)

)

, (26)

where the sum corresponds to the 11 OFDM symbols.
The modulus rm could be also estimated similarly (know-
ing that ZC sequences have unitary modulus) and inte-
grated in the concentrated-likelihood function to jointly
estimate the channel coefficients Hm and the cell ID.
However, this is not further detailed in this paper.

5.2.4 Possible use of themethod in other applications
We hereby discuss the possible application of such a
suggestedmethod in other applications. As a general com-
ment, it must be noted that the DFT-based algorithm can
be used to solve any problem where the root u of a ZC
sequence must be estimated from noisy observations y.
For instance in LTE, ZC sequences are used to generate
signals in both downlink and uplink. Thus, in downlink,
the cell ID is split into two values: one is transmitted
through the PSS generated with ZC sequences and the
other one is transmitted through the SSS generated with
binary sequences [17]. The PSS in LTE is then used for
both physical synchronization and part of the cell ID esti-
mation, by estimating the ZC root value u among {0, 1, 2}.
The suggested technique could then be used to estimate
u from PSS, but with some limitations in the presented
form. First the reduction of complexity is effective when
the set of possible ZC roots is large, which is not the case
as u ∈ {0, 1, 2}. Second, the proposed method requires
a prior physical synchronization, and it is not adapted to
perform both synchronization and estimation yet.

In uplink-LTE [17] and 5G-new radio (5G-nR) [22], ZC
sequences are also used by UEs to generate preambles that
are transmitted to start the random access procedure, i.e.,
to inform the eNBs that UEs intend to access the net-
work. To this end, each UE randomly chooses a preamble
among a predefined list, and the corresponding ZC root
u defines a random access preamble identifier (RAPID).
This RAPID is then re-transmitted by the eNB to initiate
contention resolution among UEs. The eNBs then require
to properly estimate the root u, and the suggested method
could therefore be used to accurately perform this step.

6 Conclusion
In this paper, we have presented a DFT-based low-
complexity estimator of the cell ID in NB-IoT, which
is optimal in the ML sense. In fact, the ML estimator
leads to a cross-correlation between the observation and a
ZC sequence defined as a complex exponential. Thus, by
transforming and interchanging the samples of the obser-
vation, the cross-correlation can be rewritten as a DFT.
It follows that an algorithm for fast computation of DFTs
can be used, reducing the complexity of the ML estima-
tor. This principle has been extended to the case where
the channel must be estimated. The channel estimate is
then introduced in the likelihood function, leading to
the maximization of the concentrated likelihood function.
This operation can be carried out with a slight additional
complexity. The simulation results have shown that the
proposed method indeed reaches the performance of the
exhaustive ML cell ID search. Furthermore, other series of
simulations have revealed that the DFT-based technique
is robust to the residual frequency offset, as it experiences
≤ 0.5 dB loss up to 200 Hz offset. Further investigations
will be undertaken in future works in order to adapt the
estimator to frequency selective channels.

Appendix: cramér-Rao bound of φα estimator
The CRB [20, 21] is defined as

CRB = −E

{

∂2 ln(L)

∂φ2
α

}−1
, (27)

where L is defined in (7), and then

∂2 ln(L)

∂φ2
α

= − 2
σ 2Re

{ 131
∑

n=0
y∗
n|α|ejφαXn(q, θf )en(u)

}

.

(28)

Since for any n = 0, 1, .., 131, we have

E{Re{w∗
nXn(q, θf )en(u)}} = 0,

then we obtain CRB = σ 2

2|α|2N where N = 132.
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