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Abstract
The paper proposes a novel approach for extraction of useful information and blind
source separation of signal components from noisy data in the time-frequency domain.
The method is based on the local Rényi entropy calculated inside adaptive, data-driven
2D regions, the sizes of which are calculated utilizing the improved, relative intersection
of confidence intervals (RICI) algorithm. One of the advantages of the proposed
technique is that it does not require any prior knowledge on the signal, its components,
or noise, but rather the processing is performed on the noisy signal mixtures. Also, it is
shown that the method is robust to the selection of time-frequency distributions (TFDs).
It has been tested for different signal-to-noise-ratios (SNRs), both for synthetic and
real-life data. When compared to fixed TFD thresholding, adaptive TFD thresholding
based on RICI rule and the 1D entropy-based approach, the proposed adaptive method
significantly increases classification accuracy (by up to 11.53%) and F1 score (by up to
7.91%). Hence, this adaptive, data-driven, entropy-based technique is an efficient tool
for extracting useful information from noisy data in the time-frequency domain.

Keywords: Rényi entropy, Time-frequency distributions, Relative intersection of
confidence intervals, Adaptive thresholding

1 Introduction
Various real-life phenomena produce signals that contain information on the systems
of their origin. When analyzing underlying dynamics of these signals, most of them are
non-stationary, meaning that their spectrum is time-varying and have dynamical spectral
behavior (e.g., bio-medical signals, signals from radars, sonars, seismic activity, audio).
In addition, many real-life signals are also multicomponent and may be decomposed to
multiple amplitudes and/or frequency modulated components.
When dealing with signal interpretation, signals are commonly represented in one of

two domains, namely time domain or frequency domain. In classical representations, the
variables representing time and frequency are mutually exclusive. The time-frequency
distribution (TFD) of the signal, when the signal has time-varying frequency content
and dynamical spectral behavior, allows us to represent the signal jointly in time and
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frequency domain and to detect frequency components at each time instant [1]. TFDs are
used in various fields, such as nautical studies [2], medicine [3, 4], electrical engineering
[5, 6], and image processing [7, 8].
One of the simplest TFDs is the short-time Fourier transform (STFT) proposed by

Gabor in 1946 which introduces a moving window and applies the Fourier transform
(FT) to the signal inside the window [9]. However, the performance of the STFT is
highly dependant on the window size and, according to the Heisenberg uncertainty
principle, there exists a compromise between time and frequency resolution (increas-
ing window size increases frequency resolution and reduces time resolution and vice
versa). This has motivated the development of numerous other high-resolution TFDs,
many of which are quadratic. The main shortcoming of the quadratic class of TFDs is
the inevitable appearance of cross-terms or interferences caused by the TFD quadratic
nature (this has led to the development of a wide range of reduced interferences
quadratic TFDs).
In nonstationary signal analysis in the time-frequency domain, one of the fundamental

problems ismeasuring the signal information content, both globally and locally (e.g., com-
plexity and the number of signal components). Knowing the information content allows
efficient pre-processing and dynamic memory allocation prior to signal features extrac-
tion (e.g., instantaneous frequency and amplitude estimation) in blind source separation,
machine learning, automatic classification systems, etc.
A challenging problem in signal analysis is blind source separation, i.e., separating sig-

nal components from a noisy mixture without any a-priori knowledge about the signal.
Some of the algorithms that are considered standard in solving this problem are greedy
approach [10, 11], relaxation approach [12, 13], smoothed approach [14], and component
analysis method [15–17]. A time-frequency approach has been proposed in [18]. There
is a variety of different methods and several new approaches have been studied in the
last few years [19–22]. Methods exploring the use of entropy measures in separating the
source signal have also been investigated in many studies.
Flandrin et al. [23] in their paper from 1994 gave a detailed discussion on the Rényi

information measure for deterministic and random signals. In this study, authors have
indicated the Rényi entropy measure general utility as a complexity indicator of signals in
the time-frequency plane. Extensive research has shown that the most suitable entropy
measure for TFD of a signal is the Rényi entropy [24].
In [25, 26] and later on in [27, 28], authors present and analyze a method based on

the Rényi entropy for blind source separation as well as an extensive comparison of the
proposed method with several different methods. Authors state that the method based
on Rényi’s entropy should be preferred over other methods. Methods in the mentioned
papers are not related to the signals TFD.
A modification of sparse component analysis based on the time-frequency domain was

given in [29]. The blind source separation problem in the time-frequency domain has also
been investigated in [30], as well as in [31]: the mixed signals were transformed from the
time domain to the time-frequency domain. Both the effectiveness and superiority of the
proposed algorithmwere verified, but under the assumption that there are several sensors
and that there are single-source points. Both methods are dependent on the number of
sensors. Other methods dependent on the number of sensors for blind source separation
based on the mixing matrix are presented in [32, 33].
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Amethod of combining wavelet transformwith time-frequency blind source separation
based on the smooth pseudo-Wigner-Ville distribution is investigated in [34] to extract
electroencephalogram characteristic waves, and the result is used to construct the sup-
port vector machine. In the paper written by Saulig et al. [35], the authors propose an
automatic adaptive method for identification and separation of the useful information
contained in TFDs. The main idea behind the method is based on the K-means clustering
algorithm that performs a 1D partitioning of the data set. Instead of hard thresholding,
authors use blind separation of useful information from background noise with the local
Rényi entropy. The advantage of this approach is that there is no need for any prior knowl-
edge of the signal. The results show that this method acts as a near-to-optimal automatic
hard-threshold selector.
Combining a data-driven method for adaptive Rényi entropy calculation with the rel-

ative intersection of confidence intervals (RICI) method could allow the user to extract
useful content without the need of any information about the signal source. The method
could automatically adapt to the data obtained from the signal TFD. In this paper, we
present a method for blind source separation based on the local 2D windowed Rényi
entropy of the signals TFD. The method is self-adaptive in terms of choosing the appro-
priate window for the entropy calculation. It has been tested on the spectrogram and
reduced interference distribution (RID) based on the Bessel function. Results are obtained
for multicomponent signals. The results are compared to both fixed TFD thresholding
and RICI based selection of fixed TFD thresholds without entropy calculations. In addi-
tion, comparison to the recently introduced [35] entropy-based method is performed.
The method is adaptive and no prior knowledge of the signal is required. It can be applied
to various multicomponent frequently modulated signals both in noisy and noise-free
environments. This blind-source separation method could potentially be applied to dif-
ferent real-life problems, such as biomedical signals (EEG, ECG, etc.) and seismology
(earthquake seismographs). The method performance remains stable when considering
different TFDs.
The rest of the paper is structured as follows. Section 2.1 provides a brief overview of

time-frequency signal representations starting from the spectrogram and focusing on the
RID with Bessel function. Entropy measures, in particular, the Rényi entropy, is defined in
Section 2.2. Next, the proposed method is described in Section 2.3, followed by the RICI
based adaptive thresholding procedure given in Section 2.4. Section 3 elaborates in detail
numerical results achieved by the proposed technique. Finally, conclusions are found in
Section 4. Nomenclature used in the paper is given in Table 1.

2 Methodology
2.1 Time-frequency distributions

The majority of real-life signals are non-stationary signals, meaning that their frequency
content changes with time. The classic time or frequency representation does not display
the dependencies between the two.
TFDs are used for the representation of the signal’s frequency contents w.r.t. time,

allowing the analyst to see the start and end time of each signal component in the time-
frequency domain. Unlike in classical representations, TFD can showwhether the signal is
monocomponent or multicomponent which can be hard to achieve with spectral analysis.
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Table 1 Nomenclature

α Entropy order

β Constant

χ Entropy mask

δ Window size

δ+ Optimal window size

� Threshold parameter

ω(t) Smoothing window

L The largest lower limit of D

σ Estimation variance

τ Continuous lag

τ+ Optimal threshold

U The smallest upper limit of D

C(t, f ) TFD of the signal

D Confidence interval

E Energy

f Continuous frequency

FN False negatives

FP False positives

g Time smoothing window

H Entropy

h Frequency smoothing window

H(s) Shannon entropy

Hδ
ρ Rényi entropy for window size

HRICI
ρ(t,f ) Optimal Rényi entropy

L Lower limit of D

M Frequency bins

Mp Distribution

N Number of samples

O Overlapping confidence intervals

pi Probability value

R(n, δ) Ratio of finite interval and confidence interval

Rc Threshold

t Continuous time

TN True negatives

TP True positives

U Upper limit of D

x(t) Signal

Two different distributions were used for the algorithm validation, namely the spectro-
gram and the reduced interference distribution (RID) based on the Bessel function.

2.1.1 The spectrogram

Computation of the spectrogram from the signal’s time domain essentially corresponds
to the squared magnitude of the STFT of the signal [1, 36, 37].

Sx(t, f ) =| STFTx(t, f ) |2

=
∣
∣
∣
∣

∫ ∞

−∞
x(τ )ω(t − τ)e−j2π f τdτ

∣
∣
∣
∣

2 (1)

x is the analyzed signal and ω is the smoothing window. The spectrogram introduces
nonlinearity in the time-frequency representation. The spectrogram of the sum of two
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signals does not correspond to the sole sum of the spectrograms of the two signals but
presents a third term if the two components share time-frequency supports. Also, the
representation is dependent on the window function ω(t). A smaller window produces
better time resolution, while a wider window gives a better frequency resolution. In other
words, the observation window ω(t) allows localization of the spectrum in time but also
smears the spectrum in frequency.

2.1.2 The reduced interference distribution (RID) based on Bessel function

The RID is a quadratic TFD in which the cross-terms are constricted w.r.t. the auto-terms.
In this paper, the Bessel function of the first kind has been used [38]. The distribution is
defined as

RIDBx(t, f ) =
∫ +∞

−∞
h(τ )Rx(t, τ)e−j2π f τdτ , (2)

where h is the frequency smoothing window and Rx represents the kernel

Rx(t, τ) =
∫ t+|τ |

t−|τ |
2g(υ)

π |τ |

√

1 −
(

υ − t
τ

)2
x

·
(

υ + τ

2

)

x∗ (

υ − τ

2

)

dυ,
(3)

g is the time smoothing window and x∗ denotes the complex conjugate of x. The paper
provides the comparison of the results for the simple spectrogram and high-resolution
RID. Note, however, that other quadratic, high-resolution TFDs can also be used with
similar performances.

2.2 The Rényi entropy

Entropymeasures aremost commonly used in the analysis of medical signals such as EEG,
heart-rate variability, blood pressure, and similar.
The entropy estimation is a calculation of the time density of the average information

in a stochastic process.
Shannon in [39] presents the concept of information of a discrete source without mem-

ory as a function that quantifies the uncertainty of a random variable at each discrete
time. The average of that information is known as Shannon entropy. The Shannon entropy
is restricted to random variables taking discrete values. A discrete random variable s,
which can take a finite numberM of possible values si ∈ {s1, . . . , sM} with corresponding
probabilities pi ∈ {p1, ..., pM}, has the Shannon entropy defined as

H(s) = −
M

∑

i=1
pilog2(pi). (4)

From the Shannon entropy, many other entropy measures have emerged. One of the
extensions of the Shannon entropy has been presented by Rényi [40].
The Rényi entropy of order α, where α ≥ 0 and α �= 1 [23], is defined as

H(s) = 1
1 − α

log2
M

∑

i=1
pα
i . (5)

Depending on the chosen α, different entropy measures are defined. For α = 0, the
obtained entropy is known as Hartley entropy. H(s) as α −→ 1 is the Shannon entropy,
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while α = 2 is the collision entropy used in quantum information theory and it bounds
the collision probability of the distribution.
When α −→ +∞, the obtained entropy is known as the min-entropy.
When the TFD entropy is calculated, odd integer values are suggested for the parameter

α as the contribution of cross-terms oscillatory structures cancels under the integration
with odd powers [24, 40].
The definition of Rényi entropy can be extended to continuous random variables by

H(s) = 1
1 − α

log2
∫ +∞

−∞
pα
i (x)dx. (6)

When it is applied to a normalized TFD, the Rényi entropy is defined as

Hα,(t,f ) = 1
1 − α

log2
∫ +∞

−∞

∫ +∞

−∞
Cα(t, f )dtdf , (7)

where Cα(t, f ) is TFD of the signal.

2.3 The proposedmethod

The proposed method, aimed at extracting useful information from noisy signals, relies
on the hypothesis that a two-dimensional entropy map could provide a more suitable
substrate for a sensitive extraction procedure, compared to the classical extraction proce-
dures from TFDs. After obtaining the TFD of the signal, for each point in the distribution,
the local entropy is calculated over square window sizes ranging from one to the one tenth
of the signal size as

H

ρ(t,f ) = 1

1 − α
log2

∫ t+
/2

t−
/2

∫ f+
/2

f−
/2
Cα(t, f )dtdf . (8)

The different window sizes are defined as


 = {
1,
2, ...
n}, (9)

where


1 = 2 × 2

and


n = signal length
10

× signal length
10

.

The entropy values H

ρ(t,f )(t, f ) for each window size are given as input to the RICI

algorithm to determine the window size for the given point based on the entropy changes.
The window chosen by the RICI algorithm, in this case, corresponds to the first inflection
point when entropy values are modeled as a curve, suggesting that a change in entropy
behavior has occurred. In this case, the change in entropy behavior is an indicator of the
point where noise starts to influence the entropy measure.
For every t and f the Rényi entropy HRICI

ρ(t,f )(t, f ) is calculated so that

HRICI
ρ(t,f )(t, f ) = RICI

{

H

ρ(t,f )(t, f )

}

, (10)

where

H

ρ(t,f ) =

{

H
1
ρ(t,f ),H


2
ρ(t,f ), ...,H


n
ρ(t,f )

}

. (11)
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H
 represents the entropy calculation at the desired point for a specified window size.
The algorithm results are produced by observing the intersection of confidence inter-

vals of the signal entropy for the given window size in comparison with the confidence
intervals of the other proposed window sizes. The aim of applying the RICI rule to
H


ρ(t,f )(t, f ) is to track the interval in which the change in the growth of the entropy occurs.
After the calculation is performed for every pair of t and f, the optimal entropy picture

is obtained

M = HRICI
ρ(t,f )(t, f ), t = 1..N , f = 1..M, (12)

where N represent number of samples, andM represents frequency bins. The RICI algo-
rithm selects the desired window size for entropy calculation by tracking the existence
and estimating the amount of the intersection of confidence intervals.
In the RICI algorithm, the number of overlapping confidence intervals is calculated

to reduce the estimation bias. The method calculates N confidence intervals for each
M(n). To produce the functionM(n) with a noticeable difference between the signal and
the noise entropy, the overlapping of confidence intervals is calculated and the interval

+(n) defines the ideal interval. 
+(n) presents the last index that has the lowest esti-
mation error [41]. The estimation error is calculated as the pointwise mean squared error
(MSE) as

MSE(n,
) = (σ (n,
))2 + (ω(n,
))2, (13)

where σ(n,
) represents the estimation variance and ω(n,
) is the estimation bias.
In [42–44], the asymptotic estimation error is shown to demonstrate the following

properties, where β is a constant and it is not signal-dependent

|ω(n,
+)|
σ(n,
+)

= β . (14)

When 
 > 
+, β is defined as β > 1 and β < 1 if 
 < 
+. The ideal window size 
+

is the one providing the optimal bias-to-variance trade-off resulting in the best estimate
M(n,
+).
Every confidence interval is defined by its lower and upper limits

D(n,
) =[ L(n,
),U(n,
)] . (15)

The lower confidence interval L(n,
) limit is defined as

L(n,
) = M(n,
) − � × σ(n,
), (16)

and upper confidence interval limit U(n,
) is defined as

U(n,
) = M(n,
) + � × σ(n,
), (17)

where � is the threshold parameter of the confidence intervals.
The RICI rule, when compared to the original intersection of confidence interval (ICI)

rule, introduces additional tracking of the amount of overlapping of confidence intervals,
defined as

O(n,
) = U(n,
) − L(n,
), (18)


 = 1, 2, · · · , L. In order to obtain the value belonging to the finite interval [ 0, 1],
O(n,
) is divided by the size of the confidence interval D(n,
) resulting in R(n,
)
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defined as

R(n,
) = U(n,
) − L(n,
)

U(n,
) − L(n,
)
. (19)

For the optimal window width selection by the RICI rule, the previously described
procedure can be expressed as

R(n,
) ≥ Rc, (20)

where Rc is a chosen threshold [41, 45, 46]). The window width 
+ obtained by the RICI
rule is defined as


+ = max {
 : R(n,
) ≥ Rc} . (21)

This results in an image of the signal entropy. The flowchart of the algorithm is reported
in Fig. 1.
Next, the mask for the original signal is extracted from the previously obtained time-

frequency image again by using the RICI thresholding method.

2.4 The RICI thresholding method

To extract a mask from the optimal entropy map, the RICI method is used once again.
Namely, the threshold is defined as

τ = 0.01 × max(M), 0.02 × max(M), ...0.99 × max(M). (22)

For every τ , E(Mρ(t, f , τ)) is calculated and it represents the signal energy when a
threshold is applied on the entropy map. E(Mρ(t, f , τ)) is the energy of the distribution
for the chosen threshold τ . The energy calculation for every threshold is given as input to
the RICI algorithm

τ+ = RICI
{

E(Mρ(t, f , τ))
}

. (23)

With that, the entropy mask is extracted

χ = Mρ(t, f , τ+). (24)

The next section estimates the performances of the proposed approach.

3 Results and discussion
3.1 Experimental setup

The method has been tested on four different types of signals, where two of them were
synthetic signals. The resulting error shows the difference between the non-zero elements
when the mask of the noise-free signal is subtracted from the mask obtained by the tested
method. The correct extraction presents all zeros in the resulting error map, where 1 is
false negative and −1 is a false positive. Two measures were used to evaluate the per-
formance of the proposed method. The first one is accuracy, calculated as the difference
between a given result and the correct result. In this case, the points where the signal and
noise were correctly classified are the 0 elements in the subtraction mask. In the metric
calculations they present TruePositives(TP) + TrueNegatives(TN). TruePositives(TP) are
correctly classified signal points and TrueNegatives (TN) are correctly classified points
where the signal is not present. FalseNegatives(FN) are points where the signal is present
but the mask obtained from this method discarded them as noise and the value of those
points is 1 in the subtraction matrix. FalsePositives(FP) are points where the method
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Fig. 1 Flowchart of the proposed algorithm

misclassified noise as a signal and are defined as −1 values in the subtraction matrix.
Description of the used points is given in Table 2. In that case, accuracy is calculated as
follows

accuracy = TP + TN
TP + TN + FP + FN

(25)

As can be seen from the expression above, accuracy is not suitable for unbalanced data
sets. In mask extraction, the useful signal takes only a portion of the whole set. F1 score is
more suitable in cases when there is an uneven class distribution; in this specific case, it is
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Table 2 Explanation of points in the map used for validation

TP Classified as a signal component correctly

TN Not classified as a signal component correctly

FP Noise classified as signal component

FN Signal component classified as noise

more suitable as the useful signal takes only a smaller portion of the signal TFD. F1 score
considers both precision and recall of the result. It is a harmonic mean between the two

F1 = 2 × precision × recall
precision + recall

, (26)

where

precision = TP
TP + FP

, (27)

and

recall = TP
TP + FN

. (28)

Accuracy and F1 score are usually used as metrics in machine learning for evaluating
classification models. In this case, it has been used to determine the fit of the obtained
mask for the given noise-free signal. FP and FN are the classification version of statis-
tical error types 1 and 2. This metrics are used in several papers that deal with image
[47, 48] and signal processing [49], such as EEG signals [50, 51]. In addition to numerical
results, images of the obtained signal masks are shown of Figs. 3, 4, 5, 6, 7, and 8 where
the obtained masks are emphasized in yellow.

3.2 Simulation results

The first signal to be tested was the combination of three atoms as shown in Fig. 2.
Noise was added with different signal-to-noise ratios (SNRs) and the extracted useful
information content from signals, for SNR’s −3 dB and 3 dB are shown in Figs. 3 and 4.
Results are shown in Tables 3 and 4 for the spectrogram distribution and in the Tables 5

and 6 for the RIDB distribution. Methods are compared by means of accuracy and F1
score from −3 dB to 10 dB SNR.
The proposed method was compared to the state-of-the-art algorithm based on local

entropy in one dimension described in [35] as well as to the RICI thresholding of the TFD

Fig. 2 TFD of the first noise-free signal (a), TFD of the second noise-free signal (b), RIDB distribution
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Table 3 Comparison of the accuracy measure applied on the spectrogram

SNR Proposed method Local entropy-based
algorithm

RICI TFD threshold 5% 10% 15%

Signal 1

−3 dB Acc= 0.983 Acc= 0.964 Acc= 0.982 Acc= 0.887 Acc= 0.959 Acc= 0.969

0 dB Acc= 0.985 Acc= 0.974 Acc= 0.984 Acc= 0.897 Acc= 0.97 Acc= 0.979

3 dB Acc= 0.993 Acc= 0.978 Acc= 0.992 Acc= 0.988 Acc= 0.985 Acc= 0.978

6 dB Acc= 0.993 Acc= 0.965 Acc= 0.992 Acc= 0.919 Acc= 0.919 Acc= 0.919

10 dB Acc= 0.994 Acc= 0.986 Acc= 0.972 Acc= 0.919 Acc= 0.919 Acc= 0.919

Signal 2

−3 dB Acc= 0.961 Acc= 0.967 Acc= 0.953 Acc= 0.868 Acc= 0.933 Acc= 0.942

0 dB Acc= 0.973 Acc= 0.967 Acc= 0.973 Acc= 0.91 Acc= 0.956 Acc= 0.955

3 dB Acc= 0.983 Acc= 0.95 Acc= 0.981 Acc= 0.972 Acc= 0.961 Acc= 0.948

6 dB Acc= 0.983 Acc= 0.983 Acc= 0.975 Acc= 0.912 Acc= 0.912 Acc= 0.912

10 dB Acc= 0.987 Acc= 0.982 Acc= 0.983 Acc= 0.912 Acc= 0.912 Acc= 0.912

and the fixed thresholding of the signal TFD. The RICI TFD thresholding is performed
similarly to the described procedure in Section 2.4 with the only difference that the input
to the RICI operator in Eq. 23 is not the energy calculation for different τ of the optimal
entropy map, but the energy calculation for different τ of the signal TFD

τ+ = RICI
{

E(ρ(t, f , τ)))
}

(29)

The extracted mask is then

χ = ρ(t, f , τ+). (30)

A comparison of the obtained results for the signal spectrogram shows that the pro-
posed method overperforms the fixed TFD thresholding, local entropy-based approach,
and the RICI TFD threshold method in most cases.
Figure 3 shows the results obtained for the first synthetic signal with SNR=-3 dB.

Figure 3a shows the spectrogram of the noisy signal. Figure 3b and c represent the optimal

Table 4 Comparison of the F1 measure applied on the spectrogram

SNR Proposed method Local entropy-based
algorithm

RICI TFD threshold 5% 10% 15%

Signal 1

−3 dB F1= 0.865 F1= 0.778 F1= 0.868 F1= 0.673 F1= 0.785 F1= 0.792

0 dB F1= 0.909 F1= 0.869 F1= 0.896 F1= 0.706 F1= 0.85 F1= 0.872

3 dB F1= 0.873 F1= 0.884 F1= 0.939 F1= 0.936 F1= 0.91 F1= 0.853

6 dB F1= 0.924 F1= 0.887 F1= 0.94 F1= 0.479 F1= 0.479 F1= 0.479

10 dB F1= 0.932 F1= 0.939 F1= 0.918 F1= 0.479 F1= 0.479 F1= 0.479

Signal 2

−3 dB F1= 0.769 F1= 0.763 F1= 0.768 F1= 0.699 F1= 0.764 F1= 0.742

0 dB F1= 0.864 F1= 0.823 F1= 0.864 F1= 0.772 F1= 0.838 F1= 0.798

3 dB F1= 0.913 F1= 0.793 F1 =0.9 F1= 0.9 F1= 0.829 F1= 0.74

6 dB F1= 0.943 F1= 0.915 F1= 0.93 F1= 0.477 F1= 0.477 F1= 0.477

10 dB F1= 0.959 F1= 0.942 F1= 0.943 F1= 0.477 F1= 0.477 F1= 0.477
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Table 5 Comparison of the accuracy measure applied on the RIDB

SNR Proposed method Local entropy-based
algorithm

RICI TFD threshold 10% 15% 20%

Signal 1

−3 dB Acc= 0.987 Acc= 0.94 Acc= 0.885 Acc= 0.763 Acc= 0.828 Acc= 0.849

0 dB Acc= 0.99 Acc= 0.947 Acc= 0.91 Acc= 0.859 Acc= 0.864 Acc= 0.856

3 dB Acc= 0.994 Acc= 0.953 Acc= 0.939 Acc= 0.9 Acc= 0.88 Acc= 0.87

6 dB Acc= 0.994 Acc= 0.932 Acc= 0.993 Acc= 0.98 Acc= 0.98 Acc= 0.98

10 dB Acc= 0.994 Acc= 0.940 Acc= 0.993 Acc= 0.98 Acc= 0.98 Acc= 0.98

Signal 2

−3 dB Acc= 0.912 Acc= 0.918 Acc= 0.854 Acc= 0.718 Acc= 0.793 Acc= 0.821

0 dB Acc= 0.932 Acc= 0.926 Acc= 0.896 Acc= 0.812 Acc= 0.848 Acc= 0.851

3 dB Acc= 0.948 Acc= 0.936 Acc= 0.931 Acc= 0.872 Acc= 0.871 Acc= 0.858

6 dB Acc= 0.959 Acc= 0.932 Acc= 0.956 Acc= 0.92 Acc= 0.92 Acc= 0.92

10 dB Acc= 0.964 Acc= 0.938 Acc= 0.959 Acc= 0.92 Acc= 0.92 Acc= 0.92

entropy maps for the spectrogram and RIDB respectively. Results for the RICI threshold-
ing are in Fig. 3d for the spectrogram, and in Fig. fig:atomi-3fixe for the RIDB. The result
of fixed thresholding is in Fig. 3f.
Comparison of the methods metrics for the spectrogram distribution is reported

in Tables 3 and 4. The fixed thresholding has the highest error, while the proposed
method gives similar results to the RICI TFD thresholding. The local entropy-based
algorithm does not perform as well as the proposed method. While the proposed
method has a higher accuracy of 0.001, the RICI TFD threshold has a slightly higher F1
score. The local entropy-based method seems to perform worse than the fixed thresh-
old as well as the proposed method when applied to spectrogram in this case when
SNR=−3 dB.
The proposed method performs far better on the RIDB distribution in Tables 5 and 6.

The local entropy-based algorithm does not appear to be sui for the RIDB distribu-
tion. When compared to the proposed method and RICI TFD threshold, the difference

Table 6 Comparison of the F1 measure applied on the RIDB

SNR Proposed method Local entropy-based
algorithm

RICI TFD threshold 10% 15% 20%

Signal 1

−3 dB F1= 0.685 F1= 0.577 F1= 0.667 F1= 0.648 F1= 0.675 F1= 0.658

0 dB F1= 0.756 F1= 0.665 F1= 0.757 F1= 0.723 F1= 0.677 F1= 0.617

3 dB F1= 0.845 F1= 0.772 F1= 0.791 F1= 0.794 F1= 0.722 F1= 0.66

6 dB F1= 0.915 F1= 0.81 F1= 0.823 F1= 0.495 F1= 0.495 F1= 0.495

10 dB F1= 0.928 F1= 0.827 F1= 0.92 F1= 0.495 F1= 0.495 F1= 0.495

Signal 2

−3 dB F1= 0.688 F1= 0.553 F1= 0.769 F1= 0.608 F1= 0.634 F1= 0.621

0 dB F1= 0.778 F1= 0.649 F1= 0.721 F1= 0.693 F1= 0.691 F1= 0.654

3 dB F1= 0.834 F1= 0.782 F1= 0.813 F1= 0.768 F1= 0.722 F1= 0.659

6 dB F1= 0.869 F1= 0.826 F1= 0.863 F1= 0.479 F1= 0.479 F1= 0.479

10 dB F1= 0.885 F1= 0.868 F1= 0.827 F1= 0.479 F1= 0.479 F1= 0.479
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Fig. 3 Results for the first tested signal with SNR=-3dB, TFD of the noisy signal (a), obtained optimal entropy
map from spectrogram (b), obtained optimal entropy map from RIDB (c), mask obtained from applying RICI
threshold on spectrogram (d), mask obtained from applying RICI threshold on RIDB (e), and mask from
applying fixed threshold of 15% on signal spectrogram (f)

between the method’s measurements are much greater than in the case of the spectro-
gram. The proposed method has higher accuracy for 0.102 and a higher F1 score for 0.018
when compared to the RICI TFD thresholding.
The fixed threshold method has a lower score in comparison to both the proposed

method and the RICI TFD threshold in the case of both spectrogram and RIDB distribu-
tion. The local entropy-based algorithm does not perform as well as the proposedmethod
or the RICI TFD thresholding for low SNR values.
The representation of obtained results for SNR=3 dB can be seen in Fig. 4. Figure 4a

reports the spectrogram of the noisy signal. The optimal entropymap for the spectrogram
and RIDB are in Fig. 4b and c. The results for the RICI thresholding are in Fig. 4d, for the
spectrogram, and in Fig. 4e for the RIDB. The result of fixed thresholding is in Fig. 4f.
For the spectrogram, Tables 3 and 4, RICI TFD threshold seems to have the best result

with the F1 score higher then the proposed method for 0.066 in case of the first signal

Fig. 4 Results for the first tested signal with SNR=3 dB, TFD of the noisy signal (a), obtained optimal entropy
map from spectrogram (b), obtained optimal entropy map from RIDB (c), mask obtained from applying RICI
threshold on spectrogram (d), mask obtained from applying RICI threshold on RIDB (e), and mask from
applying fixed threshold of 5% on signal spectrogram (f)
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spectrogram. The local entropy-based signal has the accuracy lower than the proposed
method by 0.015, but the F1 score is better by 0.011.
The proposed method still gives better results when applied to the RIDB distribution.

It outperforms the RICI TFD threshold by 0.055 in accuracy and by 0.054 in the F1 score
and fixed threshold by 0.094 in accuracy and by 0.051 in the F1 score. The entropy-based
method has lower accuracy by 0.041 and F1 score by 0.073.
As can be seen, the proposedmethod produces similar results as the RICI similar results

to the RICI TFD thresholding. Namely, it presents slightly better performance in all cases,
except for the first signal when SNR=3 dB (in this case, the F1 score is highest for the RICI
thresholding while the accuracy measure is still higher for the proposed method). Differ-
ences in the accuracy, for the first signal, range from 0.001, in case of the spectrogram, to
0.102 in the case of the RIDB distribution.
The results for the second multi-component synthetic signal with added noise with

SNR=−3 dB are reported in Fig. 5.
Figure 5a reports the spectrogram of the noisy signal. Figure 5b shows the obtained

optimal entropy map from the spectrogram, and Fig. 5c represents the obtained optimal
entropy map from the RIDB distribution. The map obtained from the RICI threshold is in
Fig. 5d for the spectrogram, and in Fig. 5e for the RIDB. The result of fixed thresholding
is in Fig. 5f.
The results for the spectrogram are presented in Tables 3 and 4. The accuracy measure

is larger for the proposed method for 0.008 when compared to the RICI TFD threshold,
and for 0.019 when compared to the best fixed threshold. The F1measure of the proposed
method is 0.001 higher than the RICI TFD threshold and 0.005 then the highest F1 score
for the fixed threshold. The local entropy-based method, in this case, has the highest
accuracy value but the lowest F1 score when compared to the proposed method and RICI
TFD threshold.
From Tables 5 and 6, it is visible that, just as in the case of the first signal, the pro-

posed method outperforms the other three. The difference between the accuracy is 0.058
and 0.091 for the RICI TFD threshold and fixed threshold. Even though the accuracy is

Fig. 5 Results for the second tested signal with SNR=-3 dB, TFD of the noisy signal (a), obtained optimal
entropy map from spectrogram (b), obtained optimal entropy map from RIDB (c), mask obtained from
applying RICI threshold on spectrogram (d), mask obtained from applying RICI threshold on RIDB (e), mask
from applying fixed threshold of 15% on signal spectrogram (f)
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higher for the proposed method, the F1 score is in favor of the RICI TFD threshold for
0.081. The local entropy-based method has a slightly higher accuracy measure than the
proposed method, but it also has a very low F1 score. In terms of the measures, the pro-
posed method, in this case, has higher accuracy than RICI TFD threshold and higher F1
score than the entropy-based method.
The results for SNR=3 dB are in Fig. 6. Figure 6a represents the spectrogram of

the noisy signal. The optimal entropy map is in Fig. 6b for the spectrogram and
in Fig. 6c for the RID. Figure 6d and e report the RICI TFD threshold result for
the spectrogram and RID while in Fig. 6f the results of the fixed threshold are
reported.
The difference in accuracy between the proposed method and the RICI TFD threshold

for the spectrogram is 0.002 (Table 3), while between the proposed method and fixed
threshold, it is 0.011. The F1 score (Table 4) is higher for the proposed method, compared
to all other methods.
When the methods are applied to the RID distribution, accuracy (Table 5) is higher for

0.058 when the proposed method is compared to the RICI TFD threshold and 0.012 when
compared to the entropy-based method.
The considerably larger improvement obtained by the proposed method can be

observed for the RID distribution. In the case of the RID distribution, the proposed
method exceeds all other approaches. Specifically, the proposed optimal entropy map
increases the accuracy for different SNRs, when compared to the RICI thresholding, from
0.055 to 0.1 in case of the first signal, and from 0.017 to 0.058 in the case of the second
signal, i.e., improvement from 5.86 to 11.53% in the case of the first signal and from 1.83
to 6.79% in the case of the second signal, and when compared to the local entropy-based
algorithm, from 0.041 to 0.062 in case of the first signal, and for up to 0.026 in the case of
the second signal, i.e., improvement from 4.03 to 6.65% in case of the first signal and up
to 2.77% in the case of the second signal.
Differences between the results obtained by the spectrogram and the RID distribution

are substantial. The RICI thresholding has considerably better performance on the signal

Fig. 6 Results for the second tested signal with SNR=3 dB, TFD of the noisy signal (a), obtained optimal
entropy map from spectrogram (b), obtained optimal entropy map from RIDB (c), mask obtained from
applying RICI threshold on spectrogram (d), mask obtained from applying RICI threshold on RIDB (e), mask
from applying fixed threshold of 10% on signal spectrogram (f)
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spectrogram, regardless of the tested signal. The proposed method in the case of the first
signal performs better on the RID, while in case of the second signal, the results are finer
for the spectrogram.
The optimal entropy map provides similar results to the local entropy-based method

and RICI TFD threshold when applied to the spectrogram, but it outperforms them
when applied to the RID distribution. All three methods are preferred to the fixed
thresholding.

3.3 Real-life examples

The proposed method has been applied to a real-life signal, i.e., dolphin sound and
seismology signals.
In Fig. 7, results obtained by the methods for the first real-life signal are displayed. In

Fig. 7a, the RID distribution of the original signal is shown. The optimal entropy maps
are in Fig. 7b and c for the spectrogram and RID distribution. Figure 7d and e present the
maps obtained on the same distributions but by means of the RICI TFD threshold. The
results for the fixed threshold of 30% is in Fig. 7f.
In Fig. 8, the extracted maps for a seismic signal are reported. Figure 8a shows

the original signal’s TFD. Figure 8b shows the optimal entropy map extracted from
the spectrogram and Fig. 8c shows the optimal entropy map extracted from the RID
distribution. Figure 8d and e present the maps obtained from the RICI TFD thresh-
old for the same distributions. The result for the fixed threshold of 5% is reported
in Fig. 8f.
It is difficult to draw conclusions in the case of the real-life signal as we can not obtain

numerical results. Visually, the results are similar in the case of the dolphin sound signal
analysis for all tested methods.
For the seismic signal, the largest difference between the obtained signal maps for the

different approaches seems to be in the case of the spectrogram, where the optimal map
preservesmore of the signal. The RID distribution, unlike in the case of the dolphin sound,
seems to preserve more of the signal.

Fig. 7 Results for the first real signal of the dolphin sound, TFD of the original signal (a), obtained optimal
entropy map from spectrogram (b), obtained optimal entropy map from RIDB (c), mask obtained from
applying RICI threshold on spectrogram (d), mask obtained from applying RICI threshold on RIDB (e), and
mask from applying fixed threshold of 10% on signal spectrogram (f)
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Fig. 8 Results for the second real seismology signal, TFD of the original signal (a), obtained optimal entropy
map from spectrogram (b), obtained optimal entropy map from RIDB (c), mask obtained from applying RICI
threshold on spectrogram (d), mask obtained from applying RICI threshold on RIDB (e), and mask from
applying fixed threshold of 10% on signal spectrogram (f)

4 Conclusion
Here, we introduced a method for blind source separation of signal components and
extraction of useful information from noisy TFDs based on a 2D local Rényi entropy. The
method uses adaptive windows, the size of which is calculated utilizing the RICI rule. One
of the advantages of the approach is that it does not require any specific knowledge of the
signal or noise. Also, the proposed technique performs well for different TFDs, as shown
in the paper for different SNRs. The method has been applied to both synthetic and real-
world signals. When compared to fixed TFD thresholding, the adaptive approach when
the RICI rule is applied directly to TFD thresholding, and the current 1D local entropy-
basedmethod, the proposed adaptive 2D Rényi entropy approach is shown to significantly
increase classification accuracy and F1 score. Hence, the method can be used as an effi-
cient tool for extracting useful information from noisy data in the time-frequency domain.
Future work prospects a combination of the proposed approach with machine learning
techniques to yield additional classification improvements.
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