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parameters, and derive a mean square error (MSE) optimal Wigner-Ville spectrum (WVS)
estimator for the signals. The estimator is compared with state-of-the-art TF
representations: the spectrogram, the Welch method, the classically estimated WVS,
and the Morlet wavelet scalogram. First, we evaluate the MSE of each spectrum
estimate with respect to the true WVS for simulated data, where it is shown that the
LSP-inference MSE optimal estimator clearly outperforms other methods. Then, we use
the different TF representations to extract the features which feed a neural network
classifier and compare the classification accuracies for simulated datasets. Finally, we
provide an example of real data application on EEG signals measured during a visual
memory encoding task, where the classification accuracy is evaluated as in the
simulation study. The results show consistent improvement in classification accuracy
by using the features extracted from the proposed LSP-inference MSE optimal
estimator, compared to the use of state-of-the-art methods, both for simulated
datasets and for the real data example.
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1 Introduction

The analysis of electroencephalography (EEG) signals is one of the main methodolog-
ical tools for understanding how the electrical activity of the brain supports cognitive
functions [1]. One of the main reasons for the importance of the EEG is the outstanding
temporal resolution. Additionally, the procedure of measuring EEG on the scalp surface
is non-invasive and low-cost, which makes it excellent both for clinical practice and for
cognition studies.

Extensive literature supports the possibility to investigate the cognitive functions, such
as episodic memory, through neural activity recordings [2—4]. In cognitive psychology,
event-related potentials are indicators of cognitive processes. For the transient responses
which are not specifically time-locked, the time-frequency (TF) images of EEG signals
have become one of the more popular techniques of today’s research. The TF images are
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often used for extracting the features to feed a neural network classifier, and most TF
methods are based on the short-time Fourier transform (spectrogram) and the wavelet
transform (scalogram). The quality of the TF representation is crucial for the extraction
of robust and relevant features [1, 5-7], thus leading to the demand for high-performing
spectral estimators. The wavelet transform, using the Morlet wavelet, is the most popular
TF method today [8-11].

Recently, it has been argued that the sine waves and the wavelets of the spectrogram
and scalogram should be replaced with physiologically defined waveform shapes which
could be related to an individual-based physical model [12, 13]. With more sophisticated
techniques and advanced applications, the increase in the individual-based tailoring of
the methods becomes even more critical. We consider an individual-based stochastic
model for the signals, based on the definition of locally stationary processes (LSPs), intro-
duced by Silverman in [14]. LSPs are characterized by a covariance function that is the
modulation in time of an ordinary stationary covariance function.

The optimal kernel for the estimation of the Wigner-Ville spectrum (WVS) for a cer-
tain class of LSPs is obtained in [15]. Based on this result, we derive the mean square
error (MSE) optimal WVS for our model covariance. The use of a proper time-frequency
kernel offers a valuable approach to address the fundamental problem in stochastic
time-frequency analysis, which is the estimation of a reliable time-frequency spectrum
from only a few realizations of a stochastic process. The derivation of the optimal time-
frequency kernels of stochastic models has been a research field of signal processing
interest for a long time [16, 17]. An efficient implementation is based on an equiva-
lent optimal multitaper spectrogram [18—20]. The kernels are parameter-dependent, and
thanks to the HAnkel-Toeplitz Separation (HATS) inference method introduced in [21],
we are able to estimate the MSE optimal WVS from measured data. The derivation of the
corresponding multitapers for the kernel is of great interest in the signal processing com-
munity, as their main advantages include computational efficiency of spectral properties
and real-time use.

In a simulation study, we compare the MSE optimal WVS with state-of-the-art TF rep-
resentations. Some preliminary results are presented in a previous conference paper [22].
Here, we extend the study by including the classical estimator of the WVS and the wavelet
transform among the TF representations compared. Since the wavelet transform is one of
the most popular representations used for EEG signal classification, its inclusion among
the state-of-the-art methods considered in the comparison is especially relevant for eval-
uating the advantages offered by the proposed approach. Additionally, we extend the
quantitative comparison in terms of MSE with the evaluation of the classification accu-
racy of simulated signals based on the TF features extracted with the different methods.
The controlled setting of a simulation study allows evaluating how the quality of the TF
estimate affects the classification accuracy of classes of signals indistinguishable in the
time-domain but having distinct TF spectra. The classifier implemented is a multilayer
perceptron neural network, which has been previously used for the classification of EEG
signals based on TF features, e.g., [5, 23, 24]. The real data example considered consists
of three categories of EEG signals measured during a memory encoding task [8, 25, 26].

The paper is structured as follows. In Section 2, we present the different TF representa-
tions, the model of LSPs used both in the simulation study and in the real data case study,
the expression for the MSE optimal WVS, and the neural network used for classification.
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The results for the simulation studies and for the real data case are presented in Section 3.
In Section 3.1, the performance of the derived spectral estimator is evaluated in terms of
MSE, whereas in Section 3.2, the performance is evaluated as classification accuracy in a
simulated study. In Section 3.3, we present the results of the classification of EEG signals
collected within a study on human memory encoding and retrieval. Final comments and
directions for further research are given in Section 4.

2 Methods

This section is dedicated to the exposition of the theory and methods. First, we present
the different TF representations considered. Then, the definition of LSP [14] is recalled,
and the inference problem discussed. We proceed by presenting the MSE optimal ker-
nel for the general LSP case, based on [15, 27], together with the MSE optimal kernel
derived for the parametric model used in this paper. Finally, we specify the neural network
classification approach.

2.1 Time-frequency representations
The spectrogram is a natural extension of the periodogram for non-stationary signals.
The spectrogram of a zero-mean signal x(¢), t € R, is calculated as:

00 2
Sx(t,a))z‘ / x(s)H* (s — t)e ds| , 1)

where /(t) is a window function, commonly a Hanning window or Gaussian window
centered around zero. The Welch method [28], first introduced for stationary spectral
estimation, aims at reducing the variance of the spectral estimate by calculating the
average of the spectrum estimates obtained on shorter segments of the data, possibly
overlapping. It can be implemented in TF analysis for computing the spectral estimates
of each shorter sub-sequence of the spectrogram.

We can write any TF representation belonging to Cohen’s class, including the spectro-
gram, as:

ch(t, w) = / / /x (u + %) x* (u — g) 0, 7)e 0T gy dr do, (2)

where all integrals run from —oo to oo and ¢ (0, 7) is an ambiguity kernel [29]. With
¢ (0, 7) = 1 for all values of 6 and 7, the classical Wigner-Ville distribution is received as:
_/“ TN o (p T pivo
Wie(t, w) = x(t+ )x (t— )e dr. (3)
- 2 2

An extension of the uncertainty principle holds in TF analysis, implying a trade-off
between frequency and temporal resolution. The wavelet transform is an approach to
address the resolution limits posed from the uncertainty principle, by prioritizing the
time resolution for high-frequency events and the frequency resolution for low-frequency
events. The continuous wavelet transform is based on the correlation between the signal

and the wavelet translated at time t and scaled by a. The scalogram is defined as:

Sult,a) ' =/ (W*(”_t)d 2 @
,a4) = |—— x(u — | du| ,
i Vial J-ce a
where the unite energy function v should fulfill the admissibility condition:
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with F representing the Fourier transform. Larger scale values offer higher frequency res-
olution and are used for determining the frequency of long-term events, such as baseline
oscillations. Smaller scales provide a high temporal resolution, necessary for determining
short-time events, such as spikes and transients.

A scale-to-frequency conversion allows recovering a time-frequency representation
from the scalogram, where the constant g = % depends on the wavelet.

2.2 Locally stationary processes

The stochastic model proposed for episodic memory data and used for the simulation
study belongs to the class of locally stationary processes in Silverman’s sense [14]. A zero
mean stochastic process X (¢) is a locally stationary process (LSP) in the wide sense if its

covariance:
C(s,t) = E[ X ()X (2)"] (6)
can be written as:
s+t
C(S,t)Zq( )'r(s—t)Zq(n)-r(f), (7)

with s,¢ €[ Ty, Ty] € R, where g(n) is a non-negative function and r(t) is a stationary
covariance function. When ¢(n) is a constant, (7) reduces to a stationary covariance. The
proposed model is determined by the functions g(n) and r(z) as:

, £+
q(n) =L +a, - exp (_Cq (n — by)* /2) with = — §

r(t) = exp (—% . 12> witht =1 —35, (8)

’

and parameters L > 0,a, > 0, b; €[ Ty, Tf], ¢ > ¢4 > 0. The latter assumption is
necessary to assure that the resulting covariance is positive semi-definite. This choice of
functions is motivated by the case study presented in Section 3.3.

In Fig. 1, we illustrate how different parameter settings affect the LSP realizations
obtained from the model covariance (8). Each set of realizations presented has power
centered at time b; = 0.20 s, but different parameters determining the functions g and
r result in a slowly varying behavior in “a” and “b,” compared to a much faster variation
in “c” given by a larger value of ¢,. The models generating the realizations shown in “a”
and “b” differ only for the parameter L, representing the minimum energy level. A higher
parameter L, as in “b” and “c;” is more realistic and illustrates the possibility of using the
level L to include the additional on-going spontaneous EEG activity.

For the practical use of the LSP model, the parameters defining the covariance need to
be estimated. A maximum likelihood approach is not feasible since a closed-form expres-
sion of the process distribution is not known. A natural approach is the least square fitting
of the model covariance to the classical sample covariance matrix (SCM). Unfortunately,
the SCM is not a reliable estimator when the sample size is smaller than the number of
elements to be estimated [30]. Additionally, even when the sample size would be sufficient
to produce reliable estimates, the initialization of the starting point for the optimization
problem is computationally expensive. The inference method HATS [21], based on the
separation of the two factors defining the LSP covariance function in order to take advan-
tage of their individual structure, allows to overcome the mentioned disadvantages of the

least square fitting to the SCM.
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Fig. 1 Simulated realizations. Example of simulated realizations with model covariance defined by (8) and
parameters (L, dq, bg, ¢q, ;) €qual to a (0, 500, 0.20, 800, 15,000), b (120, 500, 0.20, 800, 15,000), and € (120, 500,
0.20, 800, 50,000)

2.3 Mean square error optimal kernel
The Wigner-Ville spectrum (WVS) is the stochastic version of the classical Wigner-Ville
distribution in (3) [29], defined as:
* T * T —itw
W)= [ E[X(t4+ )X (¢= )] e . )
o 2 2

The traditional estimate of the WVS based on one realization of the process is equivalent
to estimating the Wigner-Ville distribution (WV) (3). For LSPs, the WVS assumes the

advantageous expression:
W(t,w) = q(t) - Fr(w) (10)

and the ambiguity spectrum, defined as:

A6, 7) = /jo E [X (t+ %) X* (t - %)] ey, (11)
is given by:
A0, 7) = Fq@) -r(t) (12)

[14, 15]. Any TF representation member of Cohen’s class can be expressed in terms of the

ambiguity spectrum and kernel as:

Wt w) = / / A®, 1) (0, 1)e T dr dp. (13)
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The MSE optimal kernel for LSP having Gaussian functions as factors of the covariance
is expressed as:

|Fg@PIr@)?

14
|Fq@)Ir(0) |2 + (FIr2 @) (F 1 Fql* (7)) -

$o0,7) =

[15].
Thanks to (14), we are able to compute the parameter-dependent optimal kernel
¢0(0, 7) for the introduced model (8), as:
A©, DI
|A(6,7)|> + B@®,1)’

¢0 (6’ T) =
with

JA@©,T)1> = |Fq@®)Ir(t)?
27'[61; _ﬁ 2T _ﬁ crtz
= | L?80(0) + e @ +2a,l | =—8(0)e ¥ |e T
Cq Cq

B#,7t) = (FIr*@)(F [ Fql*(v))

T 62 L? 5 [T _a? 2
=\2,/—e v )| —+a, |—e & +al |—|,
cr 2 N ¢4 ¢q

where §y denotes the Dirac delta function.

and

The efficient implementation and estimation are based on multitapers, i.e., a weighted
sum of windowed spectrograms, as:

K 2
Wt w)=E |:Z o i| , (15)
k=1

with weights ox and windows /i (¢), Kk = 1...K [18-20]. The weights and windows are

0 .
/ X(s)hi(t —s)e”"ds
—00

derived from the solution of the eigenvalue problem:

o
/ W% (s, Yh(s)ds = ah(t), (16)
—00
where the rotated time-lag kernel is Hermitian and defined as:
t
\l/rOt(s,t):\I/(S—; ,s—t), (17)
with
0 .
U(t,1) = / 0, 7)e"do. (18)
—00

The multitaper spectrogram solution is an efficient solution from implementation aspects
since only a few ay differ significantly from zero. In the implementation for real signals,
the corresponding analytic signal is used.

2.4 Pattern recognition neural networks

Pattern recognition networks are feed-forward networks, i.e., networks in which the
information flow is only directed forward, which can be trained to classify inputs accord-
ing to target classes [31]. The input and target vectors are divided into three separate sets
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for training, validation, and testing. After the training of the neural network, the valida-
tion phase is necessary to ensure that the network is generalizing and not overfitting, and
the testing phase consists of a completely independent test of the network.

As in standard networks used for pattern recognition, in this study, we consider a mul-
tilayer perceptron, with the input layer where the TF features are inserted, two hidden
layers each consisting of 20 neurons, and an output layer for classification of the signals
into three categories. The network structure is exemplified in Fig. 2. The activation func-
tion of the nodes in the hidden layers is the logistic function, also called sigmoid function,
defined as:

(19)

asigmoid(z) = lte?

As usual for multiclass classification, the output node j converts its total input z; into a
class probability p; by using the softmax function, defined as:

e
N .’
Zk:1 ek

where N is the total number of classes. The cost function is the categorical cross-entropy

asoftmax(zj) =pi= (20)

between the target probabilities p; and the outputs of the softmax gy:

N,
C=-) plogqn), (21)
k=1

and the learning technique is back-propagation [32, 33].

Input Hidden Hidden Output
layer layer 1 layer 2 layer

Fig. 2 Feed-forward network with an input layer where the TF features are inserted, two hidden layer
consisting of several hidden nodes, and an output layer for classification into three categories
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3 Results and discussion

In this section, first we present the results of the evaluation of the proposed method in
a simulation study where the true WVS, as given in (9), is known, and the MSE of the
estimators can be calculated. The second part of the simulation study is the classification
of simulated datasets based on features extracted from the different TF estimators. The
same approach is then used in a real data application to classify the EEG signals measured
during a memory encoding task.

3.1 Mean square error evaluation
The first part of this simulation study focuses on evaluating the proposed method
performance in terms of MSE, in comparison with state-of-the-art estimators.

We simulate M = 100 realizations of an LSP with covariance function defined by (8),
sampled with f; = 512 Hz in 256 equidistant points during the time interval [T, T¢] = [0,
0.5] seconds. The model parameters for simulating the data are (L, a4, by, ¢4, cr) = (120,
500, 0.20, 800, 15,000), and a few realizations from this parameter setting can be seen in
Fig. 1b. The parameters (L, a4, by, ¢4, ¢;) are estimated with the inference method HATS.
Based on the parameter estimates, the MSE optimal ambiguity kernel and corresponding
multitapers according to (15) are calculated. In Fig. 3, the MSE optimal multitapers and
weights for this parameter set are shown.

The state-of-the-art estimators considered for comparison are the single Hanning win-
dow spectrogram (HANN), calculated as in (1); the Welch 50% overlapped segment
averaging with Hanning windows (WOSA); the classical Wigner-Ville spectrum estimate

(a)
0 N /v%
'0-2 n 1 1 1 1 '
0 50 100 150 200 250

samples

(b)

Fig. 3 a MSE optimal multitapers and b weights evaluated for the model parameters (L, aq, bg, ¢q, ¢;) = (120,
500, 0.20, 800, 15,000)
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(WV); and finally the continuous wavelet transform using the Morlet wavelet (CWT). To
allow the comparison with the other TF methods, the scales for evaluating the scalogram
(4) are computed as a = jé, where f denotes the frequency in hertz and the constant g is
the center frequency of the Morlet wavelet [34].

Each method is optimized to evaluate it at its best performance in terms of MSE. For
HANN, the window length N,, € {16,32,64,128,256} is optimized, while for WOSA,
the optimized parameter is the number of windows K € {2,4, 8,12, 16}, where the total
length of all included windows is the total data length of 256 samples. For WV and CWT,
a spectral magnitude scaling parameter is used to adjust the estimate magnitude to the
true spectrum magnitude.

The expected value of the MSE, or mean MSE (mMSE), is computed approximated as
the average of 100 independent realizations. The boxplots of the MSE achieved with the
different methods in the 100 simulations are presented in Fig. 4. The mMSE value for
the MSE optimal estimator with the true parameters (LSP) is 1.606 and with parameters
estimated from the 100 realizations with HATS (LSP-HATS) is 1.655. Not only the spec-
tral estimate obtained using LSP-based MSE optimal kernels achieves the best mMSE as
expected, but using the true parameters or those estimated with HATS leads to almost
the same result.

The optimal mMSE for HANN and WOSA is 3.438 and 2.061, respectively, obtained
with N, = 32 for HANN and K = 8 for WOSA. The worst mMSE of 4.434 is, as expected,
obtained with WV. The CWT performance is in between HANN and WOSA, with a

mMSE of 2.431.
16 i +l- T T T T T i
14} )
12 )
%
10} .
+
0
= 8

=

+
4r N -
i - -

2 —T = — _— E-
. -1 1 ] L | 1
0 . .

HANN WOSA wv LSP LSP-HATS CWT

Fig. 4 Boxplots of the MSE on 100 simulations for the spectral estimators considered, all with parameters
optimized. Average MSE is mMSE 3.438 for HANN (N,, = 32), 2.061 for WOSA (K = 8), 4.434 for WV, 1.606 for
the true LSP parameter optimal estimator, 1.655 for LSP-HATS, and 2.431 for CWT
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1510 20 30 40 50 100

Fig. 5 The mMSE for LSP-HATS as function of the number of realizations used to produce the model
parameter estimates with HATS. Red lines are 95% confidence intervals

In order to establish how the number of realizations used to estimate the model param-
eters with HATS affects the results in the TF domain, we study the decrease of the
MSE of LSP-HATS based on the parameter estimates obtained using an increasing num-
ber of realizations M € {1,5,10,25,50,100}. The mMSE, computed as average on 100
independent simulations, is plotted as function of the number of realizations used with
corresponding 95% confidence interval in Fig. 5. The values are reported in Table 1. The
mMSE is extremely low even with only M = 10 realizations. However, the number of
realizations required for a reliable estimate in real data cases might be higher especially
in the case of a low signal-to-noise ratio.

3.2 Classification of simulated stochastic signals

Three classes of stochastic signals are simulated from the model (8), using slightly differ-
ent parameters and center frequency fy, reported in Table 2. The parameters L and ¢, are
the same for the three classes, whereas different parameters define the function g describ-
ing the instantaneous power, plotted in Fig. 6. The center frequency fy for each class is

Table 1 mMSE and standard errors (SE) for LSP-HATS with an increasing number of realizations M
used

M

1 5 10 20 30 40 50 100
mMSE 4.365 2677 1.931 1.683 1.652 1.643 1.660 1.624
SE 1.121 0.500 0.073 0.025 0.016 0.016 0.014 0.009
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Table 2 Parameters for the three classes of simulated signals.

L dg bg Cq ¢ fo
Class 1 100 400 0.21 800 60,000 U8, 22)
Class 2 100 1000 0.18 1000 60,000 U(12,16)
Class 3 100 800 0.24 8000 60,000 U, 10)

uniformly distributed around a mean fp, with a jitter frequency from the mean of maxi-
mum 2 Hz, i.e., fy ~ U(fo — 2, fo+2). A few random realizations from the three classes and
their true WVS are presented in Figs. 7 and 8, respectively. Even though the classes cannot
be distinguished by looking at the time-domain realizations, their true WVS is different.

The simulated dataset consists of 100 realizations for each class. A random partition in
80 realizations for training and 20 realizations for testing the neural network classifier is
repeated 10 times. The LSP parameters are re-estimated from the 20 realizations used for
independent testing and used in the computation of their LSP-HATS spectral estimates.
The use of 20 realizations assures reliable estimates as shown in the simulation study, see
Fig. 1, and it is compatible with the typical scenario in studies on physiological signals as
EEG, where multiple trials of an experiment are available. The classification is repeated
with the 10 different independent random sets of testing realizations.

The neural network classifier described in Section 2.4 is fed with TF features extracted
with HANN (N,, = 32), WOSA (K = 8), WV, LSP-HATS, and CW T, where each feature
is the spectral power at each TF point in the time interval [0, 0.5] seconds and frequency
up to 40 Hz. For computing the LSP-HATS kernels, the model parameters L, a4, by, ¢4, ¢y
were inferred from training and testing realizations independently.

The total classification accuracies of each method are summarized in Table 3, from
which is evident how the LSP-HATS outperforms the state-of-the-art estimators with an
accuracy of 86%. Similar performance is achieved with HANN and CWT, with accuracy
of 65.0% and 69.7%, respectively. The methods with the worst classification performance
are WOSA and WV, with an accuracy just above 50%. The confusion matrices for each
method are reported in Tables 4, 5, 6, 7, and 8. The signals correctly classified appear on
the diagonal of each confusion matrix; therefore, an ideal classifier would have 200 on
each diagonal entry and 0 otherwise.

function q
class 1
1000 f class 2|
class 3
500 1 1
\¥
0 L L L L
0 0.1 0.2 0.3 04 0.5
time (s)
Fig. 6 Functions g for the three classes of simulated stochastic signals
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Fig. 7 Examples of realizations from the three classes of simulated stochastic signals
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Fig. 8 True WVS for the three classes of simulated stochastic signals
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Table 3 Total classification accuracy obtained using features extracted with the different TF
estimators in the simulation study, obtained on 10 independent simulations

Page 13 0f 18

Method
HANN WOSA WV LSP-HATS CWT
Accuracy 65.0% 50.7% 54.8% 86.0% 69.7%
Table 4 Confusion matrix using features obtained with HANN (N,, = 32). Total classification
accuracy is 65.0%
Actual
Class 1 Class 2 Class 3
Predicted Class 1 108 32 59 54.3%
Class 2 31 143 2 81.3%
Class 3 61 25 139 61.8%
54.0% 71.5% 69.5% 65.0%

Table 5 Confusion matrix using features obtained with WOSA (K = 8). Total classification accuracy is

50.7%
Actual
Class 1 Class 2 Class 3
Predicted Class 1 136 25 21 74.7%
Class 2 32 161 172 44.1%
Class 3 32 14 7 13.2%
68.0% 80.5% 3.5% 50.7%

Table 6 Confusion matrix using features obtained with WV. Total classification accuracy is 54.8%

Actual
Class 1 Class 2 Class 3
Predicted Class 1 100 58 61 45.7%
Class 2 39 109 19 65.3%
Class 3 61 33 120 56.1%
50.0% 54.5% 60.0% 54.8%

Table 7 Confusion matrix using features obtained with LSP-HATS. Total classification accuracy is

86.0%
Actual
Class 1 Class 2 Class 3
Predicted Class 1 168 33 13 78.5%
Class 2 27 162 1 85.3%
Class 3 5 5 186 94.9%
84.0% 81.0% 93.0% 86.0%
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Table 8 Confusion matrix using features obtained with CWT. Total classification accuracy is 69.7%

Actual
Class 1 Class 2 Class 3
Predicted Class 1 116 30 28 66.7%
Class 2 35 138 8 76.2%
Class 3 49 32 164 66.9%
58.0% 69.0% 82.0% 69.7%

3.3 Application: classification of EEG signals
The data considered have been collected within a study on human memory retrieval, con-
ducted at the Department of Psychology of Lund University, Sweden, during the spring of
2015. The EEG signals have been measured from one subject participating in the experi-
ment. The encoding task consisted in associating a non-related word with a target picture
belonging to one of three categories (“Faces,” “Landmarks,” “Objects”). A total of 180 trials
were performed, 60 for each class. The EEG measurements were recorded from channel
O1 according to the International 10-20 system, as primary visual areas can be found
below the occipital lobes, and sampled with f; = 512 Hz. Analogously to the simula-
tion study, each time series has 256 equidistant samples during the time interval [0, 0.5]
seconds. A few signals from each class are shown in Fig. 9.

Similarly to the simulation study, the LSP model parameters L, a4, by, ¢4, ¢, were inferred
from 40 randomly selected realizations out of the total 60 for each class. The estimated
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Fig. 9 Three random EEG signals, after 70 Hz low-pass filtering, corresponding to three different trials of a
memory task, from each category: a “Faces,” b “Objects,” and ¢ “Landmarks”
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Fig. 10 Example of LSP-based MSE optimal multitapers and weights for a random set of realizations from the
three categories: a multitapers and b weights for “Faces,” € multitapers and d weights for “Objects,” and e
multitapers and f weights for “Landmarks”

parameters are used to compute the LSP-HATS kernels and corresponding optimal multi-
tapers to be used for computing the training data TF spectra. The multitapers and weights
for the three classes, estimated from all available trials, are illustrated in Fig. 10. The spec-
tral estimates obtained with LSP-HATS, HANN (N,, = 128), WOSA (K = 8), WV, and
CWT are used to extract TF features, where each feature is the spectral power at each TF
point in the time interval [0, 0.5] seconds and frequency up to 40 Hz.

The remaining 20 realizations are used for independent testing of the network. The LSP
parameters are re-estimated from these realizations and used in the computation of their
LSP-HATS spectral estimates. The random partition in 40 realizations for training and 20
for testing is repeated 10 times, and the test is repeated with the different random sets of
testing realizations. Classification accuracy is based on the 10 independent splits of the
testing data.

The total classification accuracy of each method is reported in Table 9. The use the TF
features obtained with the proposed MSE optimal LSP-HATS estimator has resulted in
significantly higher classification accuracy, compared to the use of the other estimators.

Table 9 Total classification accuracy of the memory encoding EEG signals of one subject, obtained
on 10 independent different partition of the data

Method
HANN WOSA WV LSP-HATS CWT
Accuracy 52.5% 39.8% 51.0% 70.8% 48.2%
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As a note of caution, despite that the proposed approach is, in theory, optimal in
terms of MSE, the performance in real applications depends both on how appropriate
is the model for the data and on the purpose of the application. Nevertheless, in our
case study, the higher quality of the TF representation has improved the accuracy of
classification.

4 Conclusion

The purpose of this paper is to show how the MSE optimal WVS offers a signifi-
cant improvement in practical applications, leading to a higher classification accuracy
thanks to the greater quality of the TF features extracted with the proposed approach.
The estimation of the model parameters thanks to a novel inference method allows the
explicit computation of the corresponding MSE optimal kernel. The kernel is trans-
formed into a robust and computationally efficient multitaper spectrogram, and a
complete procedure for the LSP-inference MSE optimal spectral estimator from data is
achieved.

In a simulation study evaluating the performance of the method in terms of MSE,
the spectral estimate obtained using the optimal kernel achieves the best average MSE
compared to state-of-the-art TF estimators, such as the Hanning spectrogram, the
Welch method, the classical Wigner-Ville spectrum estimator, and the Morlet wavelet-
based scalogram, as expected. More critical, computing the MSE optimal kernel from
the parameters estimated with the novel HAnkel-Toeplitz Separation (HATS) inference
method gives a similar result, which holds for parameter estimation from the small
number of 10 realizations.

The performance of the proposed estimator is also evaluated in a classification sim-
ulation study, where it outperforms state-of-the-art estimators in terms of classification
accuracy. The higher classification accuracy is also achieved in the episodic memory case
study, where the parameter estimation on a suitable LSP model for EEG signals allows the
extraction of improved features for classification.

Extensions of this research could consider a multidimensional model for extracting

features from multichannel measurements.

Abbreviations

CWT: Continuous wavelet transform using the Morlet wavelet; EEG: Electroencephalography; HANN: Single Hanning
window spectrogram; HATS: Hankel-Toeplitz separation; mMSE: Mean MSE; MSE: Mean square error; LSP: Locally stationary
process; LSP-HATS: LSP with parameters estimated with HATS; TF: Time-frequency; WOSA: Welch 50% overlapped
segment averaging with Hanning windows; WV: Classical Wigner-Ville spectrum estimate; WVS: Wigner-Ville spectrum
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