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1 Introduction

Filter banks play an important role in signal processing and are used in many areas. In
general, the main purpose of filter banks is to divide an input signal into sub-bands con-
taining distinct frequency domains. They are known for their applications in the area of
image processing, such as image compression and denoising, and many more. Different
filter bank designs can be implemented depending on the application. This process is
famous under different names: sub-band decomposition, sub-band transform, sub-band
filtering, and multiscale transform.

In general, a filter bank consists of an analysis and a synthesis stage. During the anal-
ysis stage, the input signal is divided into sub-bands depending on the requirements of
the application. The respective synthesis stage is the inverse transform to reconstruct
the input signal from the sub-bands. Depending on the use case, there is a processing
stage between the analysis and the synthesis stage. The processing stage is tailored to
one of many possible applications, such as extraction of edges, removal of details, image
compression, and compressed sensing.

A comprehensive book [1] of 2018 surveys widely used types of multiscale (sub-band)
transform methods according to the historical development process: fourier analysis and
fourier transform, wavelets together with different types of wavelet transform (discrete,
continuous, undecimated, biorthogonal, complex, dual-tree complex, and quaternion),
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and “New Multiscale Constructions” (ridgelet, curvelets, contourlet, and shearlet trans-
form). In the field of image processing, filter banks are traditionally based on different
types of wavelets, highlighted in many old and worldwide famous books [2-5].

Wavelet-based filter banks have a complex structure, require a huge amount of memory,
and lack a perfect reconstruction for finite sequences of data. In parallel to the research
of wavelet-based filter banks, Kakarala and Ogunbona investigated in new approaches of
sub-band decomposition methods based on SVD. In 2001, they published “multiresolu-
tion SVD” (MR-SVD [6]) to overcome these issues. This laid the base for hybrid methods
combining a wavelet-based core and SVD, such as “hybrid wavelet-SVD” (Ashino et al.,
2004 [7]) and “SVD-wavelet” (Arandiga et al., 2005 [8]). Later, subsequent filter banks
that solely base on SVD were proposed by Singh and Kumar (2011 [9]) and Bhatnagar et
al,, (2014 [10]). Their algorithms show good results in image compression, image encryp-
tion, lossy image compression, and face recognition. It was also claimed that SVD-based
algorithms are able to outperform wavelet-based filter banks.

This work introduces a set of novel filter banks that build on “singular spectrum anal-
ysis” (SSA) [11], an algorithm that implements “singular value decomposition” (SVD).
These filter banks are referred to as “singular spectrum analysis-based image sub-band
decomposition filter banks” (“SSA-iSBD filter banks”).

To adapt one-dimensional Basic SSA for a processing of two-dimensional image data,
the two-dimensional image data has to be transformed into a one-dimensional vector
first. The choice of a vectorization scheme (scanning order) determines the properties of
the filter bank. Four such transformation schemes are realized and form the core of four
“SSA-iSBD 2-channel filter banks” These are used as building blocks to create “SSA-iSBD
multi (4 and 6)-channel filter banks” capable of extracting directional features.

Good directional selectivity is achieved on the basis of “SSA-iSBD 6-channel filter
banks” that decompose an input image into an approximation and high-frequency com-
ponents. The approximation contains the low frequency components and the latter
highlight specific directional features as well as uncaught remains. The distinct high-
frequency components contain the horizontal (0°), vertical (90°), and diagonal (+ 45°
and — 45°) directional features, respectively. Directional features regarding the directions
+ 45° and — 45° are clearly separated from each other. This transform is invertible, and
the reverse transform is implemented as a trivial addition of the created sub-band images.

The property of good directional selectivity is useful for image processing applications
such as edge and object detection, face and gesture recognition, and feature extraction in
machine learning.

To demonstrate the mode of operation of filter banks, the well-known synthetic
“Octagon” image shown in Fig. 1a is used as the input. It was chosen for all experiments. It
is a black-and-white PNG image with 600 x 600 pixels with a shape providing horizontal,
vertical, and diagonal directional features.

Additionally, the natural “Cameraman” image, a black and white PNG image with 256 x
256 pixels shown on Fig. 1b, is used to demonstrate the performance of the developed
algorithms. All experiments were conducted with the MATLAB toolkit.

The remainder of this paper is structured as follows: Section 2 observes the image
sub-band decomposition methods with directional selectivity properties, regarding the
directions 0°, 90°, + 45°, and — 45°. Section 3.1 provides the algorithm of SSA. Section 3.2
reviews how SSA is applied to vectors (one-dimensional data) and to two-dimensional
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(a) “Octagon” (b) “Cameraman”

Fig. 1 The input test images

image data. Four schemes of how to apply one-dimensional Basic SSA to two-dimensional
image data are introduced in Section 3.3. In Section 3.4, a novel scheme of creating “SSA-
iSBD 2-channel filter banks” is presented. The outputs of the respective filter banks are
visualized and discussed in Section 4, where “SSA-iSBD multi (4 and 6)-channel filter
banks” are introduced, offering good directional selectivity. The paper concludes with
Section 5.

2 Related work

Today, the classical “discrete wavelet transform” (DWT) is still a commonly used scheme
for sub-band decomposition of signals (1989, Mallat’s dyadic filter tree [2, 12]). For
image processing, 2D-DWT is an extension of DWT for two-dimensional input sig-
nals. Typically used mother wavelets (classes of wavelet bases) are Haar-, Daubechies-,
Biorthogonal-, Coiflet-, and Symlet-wavelets [12]. 2D-DWT is suited well for image
compression in JPEG2000 [12, 13], denoising, and the creation of sparse images for
compressed sensing [12, 14]. However, 2D-DWT is not good enough for some spe-
cific applications such as pattern recognition. The reasons for that are discussed in the
following.

In Fig. 2, the “Octagon” input image was decomposed using 2D-DWT [15] with
“Daubechies D4” as the mother wavelet, showing the first level of 2D-DWT decomposi-
tion. Every sub-band image has a size of 300 x 300 pixels as a result of down-sampling in
the filter banks (decimation).

The two major drawbacks of 2D-DW T in image processing are:

e Shift sensitivity: Shift sensitivity or the lack of shift invariance or shift variance causes
unpredictable changes in the output coefficients if the input image is shifted slightly
[16, 17].

e Lack of directionality: A lack of directionality or a poor directional selectivity of a
filter bank leads to a non-ideal separation of directional features. Two aspects of poor

directional selectivity are distinguished:

— Horizontal and vertical directional components also contain diagonal features
as depicted in Figs. 2b, c. A cleaner extraction of those features is a goal.

— The filter bank can not separate diagonal features of — 45° and + 45°. Such a
compound of both orientations is shown in Fig. 2d. It is preferred to get distinct
outputs for — 45° and + 45° diagonal features.

These drawbacks motivated scientists and researches to develop extensions of 2D-
DWT as well as other sophisticated wavelet-based filter banks.
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(a) Approximation—low resolu- (b) Vertical orientation sub- (c) Horizontal orientation sub- (d) Diagonal orientation sub-
tion sub-image image image image

Fig. 2 2D-DWT (Daubechies D4) of the “Octagon”

Many other types of image sub-band decomposition schemes were developed, being
beneficial in specific applications each. Only a few of them focus on directional selectivity,
such as a clear separation of horizontal and vertical directional features, or even diagonal
and antidiagonal directional features. Such algorithms are:

¢ One of DWTs extensions, providing shift invariance, referred to as both “undecimated
discrete wavelet transform” (UDWT) and “stationary wavelet transform.” Its extension
to two dimensions (2D-UDWT) is implemented most efficiently by the “algorithme
a’trous” [12]. It was introduced by Holschneider et al., (1989 [18]). Fowler [19] pro-
vides an overview of different names for this transform. Without downsampling and
aliasing, this filter is shift invariant by the cost of redundancy in the output informa-
tion. The first level of 2D-UDWT applied to the “Octagon” image is similar to the
result of processing the “Octagon” image with 2D-DWT (Fig. 2), with the difference
that every sub-band image created with 2D-UDWT has the same size as the decom-
posed image: 600 x 600 pixels. 2D-UDWTT still suffers from poor directional selectivity,
but due to its shift invariance, it was successfully implemented in applications such as
feature extraction [20] and image classification [21]. Furthermore, 2D-UDWT offers a
substantial performance improvement in denoising [22, 23].

e “Dual-tree complex wavelet transform” (DT-CWT) is an extension to DWT capa-
ble of approaching both shift invariance and good directional selectivity, proposed
by Kingsbury (1998 [24—30]). This complex wavelet-based method offers a combina-
tion of properties that was not available in earlier approaches: a principally perfect
reconstruction and good directional selectivity together with near shift invariance.
According to Kingsbury [29], DT-CWT involves six complex wavelets oriented along
the directions £ 15°, & 45°, and £ 75°. DT-CWT is suited well for numerous appli-
cations in image [16] and video [31] processing. A scheme based on DT-CWT in
combination with a complex spline, developed by Chaundhury and Unser (2010 [32]),
is able to detect the directions 0°, 90°, — 45°, and + 45°. An “Octagon” image decom-
posed with DT-CWT, based on a complex spline, was compared to an “Octagon”
image decomposed with 2D-DWT [33].

e The Gabor-like transform proposed by Chaundhury and Unser (2009 [34]) also pro-
vides good directional selectivity. They presented examples of transformed “Octagon”
and “Cameraman” images. The Gabor-like transform is based on analytic B-spline
wavelets, referred to as Gabor-like wavelets, that are oriented along the four princi-
pal directions: 0°, 90°, — 45°, and + 45°. The added redundancy along the horizontal
and vertical directions yields shift invariance along these directions. However, the



Evers et al. EURASIP Journal on Advances in Signal Processing (2020) 2020:29 Page 5 of 18

Gabor-like transform is not invertible. An example of Gabor-like transform imple-
mentation in the industry is the identification of damaged elements made of polymer
and polymeric composites [35].

e “Multiresolution SVD” (MR-SVD), presented by Kakarala and Ogunbona (2001 [6]),
is an SVD-based method, demonstrating properties of directionality. Sub-images con-
tain the mix of 0°, 90°, — 45°, and + 45° directional features. A comparison of the
directional selectivity of MR-SVD with that of 2D-DWT, incorporating the “Octagon”
image, is presented in [7].

3 Methods

3.1 Singular spectrum analysis

“Singular spectrum analysis” (SSA) is a technique initially designed for the analysis of
time series. It is a signal processing technique based on “singular value decomposition”
(SVD) that decomposes an input signal into several components. These components can
be grouped and merged to compose subsequent components. These results can be inter-
preted as for example a trend, as an oscillation within the input signal, or as noise. SSA
can be used for the extraction of trends, for smoothing, for the extraction of periodic
components, or for finding structures in time series. It has been applied in physics, signal
analysis, and mathematics, but it is also a valuable tool for market research, economics,
and meteorology [36].

SSA was initiated by Broomhead and King (1986 [37]), but it was independently intro-
duced by the researchers Danilov and Zhigljavsky in Russia as the “Caterpillar” method
[38]. Today, comprehensive descriptions of the theoretical and practical concepts of SSA
are available in [11].

Basic SSA (or SSA) is tailored to one-dimensional input signals referred to as a 1D-
array [39]. Images, however, are two-dimensional signals. For such 2D-arrays, 2D-SSA
is available. Basic SSA and 2D-SSA are widely used [40]. 2D-SSA has been suggested by
Danilov and Zhigljavsky(1997 [38]) and was further discussed in [40—43].

In this paper, a preprocessing step is introduced that allows analyzing images with Basic
SSA, by transferring the input image into a 1D-array first. This scheme of transforming
2D-arrays into 1D-arrays and vice versa is discussed later.

Both Basic SSA and 2D-SSA rely on the same four processing steps, as described in [39]
and [41]. They only differ in step 1 and 4. This difference will also be discussed afterwards.

1. Compute the trajectory matrix X from the input array

® The case of an input 1D-array
1D-array is represented as a vector F of length N:

F=(fiff) )

Here, the trajectory matrix X'P is a Hankel matrix constructed from the input
1D-array F. The dimensions of this Hankel matrix are defined only by the window
length L that must confirmto1 < L < N.Let K = (N — L+ 1) to get a Hankel
matrix of dimensions L x K. The elements of the input 1D-array F are arranged
into the Hankel matrix X'P according to the following scheme [39]:
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e The case of an input 2D-array
Computing the trajectory matrix regarding a 2D-array, we have a matrix I of

size Nx X Ny:
1 i e DN,
i1 i22 - 2Ny
=1 . . . . 3)
ING,1 IN2 * 0 INNy

The trajectory matrix is the “Hankel-block-Hankel” (HbH) matrix X" con-
structed from the input 2D-array I The dimensions of the HbH matrix are
defined by two window sizes Ly and Ly, chosen that 1 < Ly < Ny, 1 <Ly < N,,
and 1 < LxLy < NxNy. Let again be Ky = (Nx —Lx +1) and Ky = (Ny — Ly, + 1)
for convenience.

The input 2D-array I is arranged into the HbH matrix X?P of size
(LxLy x KxKy) according to the following rule [41]:

Hy Hy --- Hg,

H, Hs --- Hg+1
= - - (4)

Hy, Hy,41 -+ Hy,
Each Hj is a Hankel matrix of size Ly x Ky consisting of elements from the

input 2D-array I:

i1 dgj e UKy
foj  I3j o IKtl

Hj = . . . (5)
Ly i1 " 0 Ny

2. Singular value decomposition (SVD) of the trajectory matrix X.
Denote A1, ..., AL as eigenvalues of XXT taken in the decreasing order (A; > --- >
AL > 0)and Uy, ..., UL denote as corresponding eigenvectors. Set d = rank(X), for
simplicity is considered d = L.

Xi = /alhvt 6)
where V; is defined as
Vi = XU/ . (7)

SVD of the trajectory matrix X is represented by
X=X ++Xi+- +Xa. ®

/A; — is the ith singular value of X; U; and V; — are the associated left and right
singular vectorsof X, fori =1,...,d.
The collection (4/A;, U;, V;) is defined as the ith eigentriple of the SVD.

Page 6 of 18
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3. Eigentriple grouping
The grouping procedure splits the set of indices {1, . .., d} into m subsets I, . . ., ;5,.
Let I = {i1,...,ip}. Then, corresponding to group I, the resultant matrix X; can be
written as X; = Xj, + - - - + X;,. The resultant matrices are calculated for each group

L,...,I, and the expansion( 8) provides the decomposition
X=X+ --+X, &)
The choosing procedure of the sets I1, . . ., I, is defined as eigentriple grouping.

e The case of an input 1D-array: X'P = X}ID +-+ X}y]n)
o The case of an input 2D-array: X?P = XIZID +- 4 Xzy]n)

4. Reconstruction of the signal, regarding each group.

e The case of an input 1D-array
Opposed to the trajectory matrix X'P, the approximated matrix X}E is not
necessarily a Hankel matrix anymore. To “hankelize” it, all elements of each
antidiagonal are replaced with their respective averaged value. Then, the recon-
structed 1D-array F can be assembled by simply arranging elements from this
created Hankel matrix. Finally, the original 1D-array F can be reconstructed by:

F=P1+P2-|—”-+ﬁM (10)

e The case of an input 2D-array
The matrices XIZ,],,D is not necessarily a HbH matrix anymore. To allow repro-
jection, which is again a rearrangement of elements to create the reconstructed
2D-array I, Xlsz must be transferred to a HbH matrix first. This is performed
in two steps. First, each sub-matrix of XIZE (see Eq. (4)) is “hankelized” individ-
ually by averaging the elements of their antidiagonals. At second, all hankelized
sub-matrices with the same index are averaged element-wise. I is the 2D-array

projected from group XIQVE’ .

I=h+hL+---+1y (11)

3.2 Grouping of eigentriples

In Section 3.1, the step of grouping the eigentriples was not specified yet. The algorithm
proposed in this paper separates the set of eigentriples into two groups. Each of both
groups is used to reconstruct an output signal, resulting in two reconstructed output
signals for each given input signal.

The first group of eigentriples contains only the first eigentriple related to the most
significant singular value +/A; of the trajectory matrix X. The reconstructed signal is
referred to as main vector ﬁmain for the 1D-array and main component T rnain for the 2D-
array, respectively.

The second group of eigentriples contains all eigentriples except the first one. The
reconstructed signal is referred to as residual vector Fres (1D-array) and residual compo-
nent Ires (2D-array).

An interesting feature of this grouping scheme is that F = Fmain + Fres and I = Iopain +
Ires. In consequence, this scheme implements a two-channel filter bank with a simple
reverse transform. This property can be exploited to lower the computational efforts: if
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only Frnain OF Imain is calculated, then Fyes or Ires can be calculated through a substraction:
Fres = F — Fain and jres =1- jmain'

3.3 Processing images with Basic SSA

An input image I, being a 2D-array, can directly be filtered using 2D-SSA. Thus, it can be
presented as a sum of a main and a residual component. In this section, four schemes are
proposed that allow processing 2D-arrays with Basic SSA.

To achieve that, the 2D-array [ is transformed to a 1D-array F first to be able to per-
form Basic SSA. Then, after grouping the eigentriples into two groups as described in
Section 3.2, the resulting 1D-arrays f-"main and Fres are rearranged element-wise into the
2D-arrays Imain and I, respectively. Thus, Basic SSA is used to represent an input image
I as a sum of a main (Imain) and a residual component (Ires).

As there is no unique scheme defining how to convert a 2D-array into a 1D-array and
vice-versa, four possible ways of creating F from [ are introduced now. They allow pro-
cessing an input 2D-array with Basic SSA. They also offer the respective reverse transform
to derive the output images from the resulting 1D-arrays:

1. f; are the elements of all columns of I, transposed and arranged one after the other as
depicted in Fig. 3a. This modification of SSA is referred to as “Vertical-SSA.”

2. f; are the elements of all rows of I, one after the other, as demonstrated in Fig. 3b. This
modification of SSA is referred to as “Horizontal-SSA.”

3. f;is the ith element of I regarding the path shown on Fig. 3c. This modification of SSA
is referred to as “Diagonal-SSA.”

4. f; is the ith element of I regarding the path shown on Fig. 3d. This modification of
SSA is referred to as “Antidiagonal-SSA.”

3.4 Presentation of “SSA-iSBD 2-channel filter bank”

As mentioned in Section 3.2, the proposed SSA-based algorithms decompose an image
into a main and a residual component, configurable by selecting one of the introduced
eigentriple grouping schemes. The decomposition is considered a “SSA-iSBD 2-channel
filter bank as depicted in Fig. 4. Here, and in all following diagrams of this type, the main
and residual component are reflected by a dashed and a solid line, respectively. Impor-
tant to mention, the theory of SSA does not propose an optimal value for the window
size/length. Instead, the window size/length depends on the application, and all win-
dow sizes/lengths used in this paper were chosen empirically to achieve a good visual

presentation.
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(a) for “Vertical-SSA” (b) for “Horizontal-SSA” (c) for “Diagonal-SSA” (d) for “Antidiagonal-SSA™
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Fig. 3 These walking paths of “Vertical-SSA," “Horizontal-SSA," “Diagonal-SSA," and “Antidiagonal-SSA” convert
the pixels of an input image / into a vector F to allow processing of images with Basic SSA
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| Input image |

!

( "Chosen-SSA" )

Main component | | Residual component

Fig. 4 The structure of the "SSA-iSBD 2-channel filter bank”

To demonstrate, the “Octagon” input image was processed with the “SSA-iSBD 2-
channel filter bank] where 2D-SSA is used as “chosen-SSA; which can be also called
“2D-SSA-iSBD 2-channel filter bank] with the window sizes (Ly, Ly) = (10, 10) and (30,
30). The resulting main and residual component are shown in Fig. 5.

Note that the smoothness of main components and the thickness of the lines highlight-
ing the edges of the “Octagon” in the residual components relate to the window size. The
“2D-SSA-iSBD 2-channel filter bank” operates as a filter bank that separates the input
image into a low-frequency and a high-frequency part. The cutoff frequency relates to the
chosen window size.

To present alternatives to incorporating 2D-SSA as the “chosen-SSA” building block,
four alternatives are presented here to create a “SSA-iSBD 2-channel filter bank”
These are “Vertical-SSA; “Horizontal-SSA, “Diagonal-SSA; and “Antidiagonal-SSA” The
resulting main and residual components of the “Octagon” input image are shown on Fig. 6.
The window length was L = 30 in all cases. A comparison of only the residual compo-
nents highlights the differences of these filter banks with the bank incorporating 2D-SSA,
Fig. 5d:

e “Vertical-SSA” (Fig. 6b): all vertical directional features are removed,

e “Horizontal-SSA” (Fig. 6d): all horizontal directional features are removed,

e “Diagonal-SSA” (Fig. 6f): all diagonal directional features are removed, and

e “Antidiagonal-SSA” (Fig. 6h): all antidiagonal directional features are removed.

Note that the “SSA-iSBD 2-channel filter bank” provides a “redundant form” of image
decomposition: every component (main and residual) contains the same amount of pixels
as the input image (N = NxNy). Thus, N input pixels are transformed to a total of 2N
output pixels. Independent from the type of SSA referred to by “chosen-SSA,” the input
image can always be reconstructed by just adding the main and the residual component.

(a) Main (10, 10) (b) Residual (10, 10) (c) Main (30, 30) (d) Residual (30, 30)

Fig. 5 These main and residual components of the “Octagon” image were created with the “SSA-iSBD
2-channel filter bank” using 2D-SSA with window sizes (10, 10) and (30, 30), respectively
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(a) Main (Vertical-SSA) (b) Residual (Vertical-SSA) (c) Main (Horizontal-SSA) (d) Residual (Horizontal-SSA)

(e) Main (Diagonal-SSA) (f) Residual (Diagonal-SSA) (g) Main (Antidiagonal-SSA) (h) Residual (Antidiagonal-SSA)

Fig. 6 These main and residual components show the “Octagon” image processed with “SSA-iSBD 2-channel
filter bank” with following types of “chosen-SSA": “Vertical-SSA," “"Horizontal-SSA," "Diagonal-SSA, "and
"Antidiagonal-SSA"

4 Discussion and results

In Section 3.4, “SSA-iSBD 2-channel filter banks” were presented. It was shown that in the
case of using “Vertical-SSA, “Horizontal-SSA, “Diagonal-SSA, or “Antidiagonal-SSA;
the residual component lacks one of the directional features. As such a removal is not
the goal, this section introduces that a chaining of multiple “SSA-iSBD 2-channel fil-
ter banks” perform an extraction of directional features. These filter banks implement a
multi-channel decomposition that deconstruct a given input image into a sum of multiple
sub-images.

4.1 "SSA-iSBD 4-channel filter bank”

As a first step to realize such filter banks, the proposed SSA types are organized into
orthogonal pairs. These pairs correspond to the properties of the residual components
they create, whereupon the removed directional features are orthogonal to each other.
The following orthogonal pairs are introduced:

e “Vertical-SSA” and “Horizontal-SSA” with the same window length L and
e “Diagonal-SSA” and “Antidiagonal-SSA” with the same window length L.

The first SSA type of such an orthogonal pair is referred to as “chosen-SSA” and the
remaining is referred to as “complement-SSA” Both members of the pair are equivalent,
so each can be selected to become the “chosen-SSA”

Figure 7 shows the “SSA-iSBD 4-channel filter bank? It performs a 2-stage decom-
position that decomposes an input image into a sum of four sub-images. Each output
sub-image is the result of having the input image passing two consecutive “SSA-iSBD
2-channel filter banks” implementing an orthogonal pair.

The first filter bank implements “Vertical-SSA” and “Horizontal-SSA” as its orthogonal
pair. This filter bank is referred to as “SSA-iSBD 4-channel filter bank; type “verti-
cal/horizontal] with “Vertical-SSA” picked as the “chosen-SSA” Figure 8 shows the four
generated sub-images, whereas a window length of L = 30 was used.
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| Input image |

‘ "Chosen-SSA" '

| Intermediate image 1 | | Intermediate image 2 |
5 s
| Sub-image 1 | | Sub-image 2 | | Sub-image 3 | | Sub-image 4

Fig. 7 The structure of the "SSA-iSBD 4-channel filter bank”

e Sub-image 1 is the approximation, containing the low-frequency components
(Fig. 8a),

e Sub-image 2 provides all vertical (90°) directional features (Fig. 8b),

e Sub-image 3 contains all horizontal (0°) directional features with orientation (Fig. 8c),
and

e Sub-image 4 consists of the remains. They contain all diagonal (+ 45° and — 45°)
directional features (Fig. 8d).

Sub-image 2 in Fig. 8b and sub-image 3 in Fig. 8c contain the extracted 0° and
90° directional features, respectively. Noticeably, sub-image 1 in Fig. 8a contains only
low-frequency components. This demonstrates that both “Vertical-SSA” (stage 1) and
“Horizontal-SSA” (stage 2) extract not only the desired directional features, but they also
let the low-frequency components pass. Furthermore, sub-image 4 in Fig. 8d contains
all diagonal directional components. This highlights that the directional selectivity of all
stages of the filter bank are good: if the low-frequency components, the vertical, and the
horizontal directional features are removed, then the “remains” must contain the omitted
diagonal directional features.

The second filter bank incorporates “Diagonal-SSA” and “Antidiagonal-SSA” as its
orthogonal pair, with “Diagonal-SSA” as the “chosen-SSA” The resulting filter bank,
referred to as “SSA-iSBD 4-channel filter bank,’ type “diagonal/antidiagonal,’ extracts
+ 45° and — 45° directional features. The four resulting sub-images created with this filter
bank are as shown in Fig. 9.

e Sub-image 1 is the approximation containing the low-frequency components (Fig. 9a),

® Sub-image 2 provides all diagonal (+ 45°) directional features (Fig. 9b),

® Sub-image 3 contains all antidiagonal (— 45°) directional features (Fig. 9c), and

e Sub-image 4 consists of the remains, in this case vertical (0°) and horizontal (90°)
directional features (Fig. 9d).

(a) Sub-image 1: Approximation (b) Sub-image 2: Vertical (c) Sub-image 3: Horizontal (d) Sub-image 4: Remains

Fig. 8 Sub-images 1-4 of the "Octagon” image processed with the “SSA-iSBD 4-channel filter bank,” type
“vertical/horizontal” with L = 30
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(a) Sub-image 1: Approximation ) Sub-image 2: Diagonal (c) Sub-image 3: Antidiagonal (d) Sub-image 4: Remains

Fig.9 Sub-images 1-4 of the ’ Octagon image processed with the “SSA-iSBD 4-channel filter bank,” type
“diagonal/antidiagonal” with L = 30

Noticeably, the sub-images 2 and sub-images 3 created with both exemplary filter banks
highlight not only the desired directional components, but they also provide slightly
visible traces of the directional components contained in sub-images 4.

Regarding each of the “SSA-iSBD 4-channel filter banks,” N input pixels are transformed
to a total of 4N pixels. The sum of all four sub-images is again equal to the input image.

4.2 “SSA-iSBD 6-channel filter bank”

The next target is a clear separation 0°, 90°, + 45°, and — 45° directional features
with a single multi-stage filter bank. The “SSA-iSBD 4-channel filter bank; type “ver-
tical/horizontal] ispresented in Section 4.1, is already able to separate 0° and 90°
directional components and to provide a compound of all diagonal directional compo-
nents (see Fig. 8). However, there are still two issues: the directional features with + 45°
and — 45° are still not separated from each other, and the respective sub-image 4 does not
explicitly contain the diagonal features, but the remains. Thus, if there were subsequent
omitted components, they also would have been mixed into the remains. However, with
subsequent filtering steps, it is possible to extract and to separate all diagonal directional
features into distinct sub-images.

Here, “SSA-iSBD 6-channel filter banks” are created as an extension to a “SSA-iSBD
4-channel filter bank” The filter bank structure presented on the Fig. 10 shows such a fil-
ter bank that is based on a “SSA-iSBD 4-channel filter bank; type “vertical/horizontal”
The six resulting sub-images presented in Fig. 11 provide the following “Octagon”
decomposition:

e Sub-image 1 is the approximation containing the low-frequency components
(Fig. 11a),

e Sub-image 2 provides all vertical (90°) directional features (Fig. 11b),

e Sub-image 3 contains all horizontal (0°) directional features (Fig. 11c),

e Sub-image 4 highlights all diagonal (+ 45°) directional features (Fig. 11d),

e Sub-image 5 shows all antidiagonal (— 45°) directional features (Fig. 11e), and

e Sub-image 6 consists of the remains (Fig. 11f).

Obviously, other similar structures of “SSA-iSBD 6-channel filter banks” can be created,
for example, a filter bank that is based on a “SSA-iSBD 4-channel filter bank, type “diago-
nal/antidiagonal” Such a filter bank will differ in the order of extraction of the directional
features.

The presented “SSA-iSBD 6-channel filter bank” decomposes an image into a sum of
six sub-images and provides a clear separation of 0°, 90°, — 45°, and + 45° directional
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| Input image |

| Intermediate image 1 | | Intermediate image 2 |

Horizontal-SSA Horizontal-SSA
y 5
Sub-image 1 | Sub-image 2 | Sub-image 3 | [ itermediate image 3

Diagonal-SSA

y
Sub-image 4 | | Intermediate image 4

Antidiagonal-SSA
Vs
Sub-image 5 | | Sub-image 6

Fig. 10 The structure of the “SSA-iSBD 6-channel filter bank” implemented as an extension of the “SSA-iSBD
4-channel filter bank,” type “vertical/horizontal”

features. To compare, a related transform consisting of a combination of DT-CWT and
a complex spline [32] is also able to detect the directions 0°, 90°, — 45°, and + 45°. DT-
CWT is famous for its good directional selectivity. Using that transform, a decomposed
“Octagon” image also provides clearly separated 0° and 90° directional components with
slightly visible traces of the — 45° and + 45° directional features [33]. Thus, the “SSA-
iSBD 6-channel filter banks” presented in this paper shares this property of providing
good directional selectivity.

As in the previous examples, all window lengths are L = 30. N input pixels are trans-
formed to a total of 6N pixels. For the inverse transform to get a reconstruction, all six

sub-images have to be added.

(a) Sub-image 1: Approximation (b) Sub-image 2: Vertical (c) Sub-image 3: Horizontal

/ AN

7 I

(d) Sub-image 4: Diagonal (e) Sub-image 5: Antidiagonal (f) Sub-image 6: Remains

Fig. 11 The sub-images 1-6 of the “Octagon” image produced by the “SSA-iSBD é-channel filter bank”
according to the filter bank structure shown in Fig. 10
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(a) Sub-image 1: Approximation (b) Sub-image 2: Vertical (c) Sub-image 3: Horizontal (d) Sub-image 4: Remains

Fig. 12 Sub-images 1-4 of the “Cameraman” image processed with the “SSA-iSBD 4-channel filter bank," type
"vertical/horizontal,” with L = 4

4.3 Demonstration of “SSA-iSBD multi-channel filter banks” using a natural image

So far, all provided examples involved the synthetic “Octagon” test image. In this section,
the performance of the “SSA-iSBD multi-channel filter bank” is rated using the natural
“Cameraman” image (see Fig. 1b).

At first, Fig. 12 presents the results of processing the “Cameraman” image with the
“SSA-iSBD 4-channel filter bank; type “vertical/horizontal” (see Fig. 7).

Figure 13 presents the results of processing the “Cameraman” image with the “SSA-
iSBD 4-channel filter bank] type “diagonal/antidiagonal’

In the next experiment, the “Cameraman” image was decomposed with the “SSA-iSBD
6-channel filter bank” Figure 14 presents the calculated sub-images 1-6 according to the
filter bank structure shown on Fig. 10 with a window length L = 12.

As mentioned before, the window length L has to be determined empirically depending
on the application. Here, the larger window length of L = 12 was selected to demonstrate
its influence on the extraction of directional features.

A side-by-side comparison of Figs. 12a—c and 14a—c shows the influence of the chosen
window size L on the cutoff frequency. The larger the value of L is, the smaller becomes
the part of the spectrum contained in the low-frequency approximation.

All sub-images of Figs. 12, 13, and 14 have been contrast-stretched. The value of each
pixel fits into the range from 0 to 255, calculated in the same way as used for the
publication of MR-SVD [6].

To increase visibility, the same output sub-images 1-6 of the “SSA-iSBD 6-channel filter
bank” are presented again on Fig. 15 in its normalized form. To achieve that, the value of
each pixel was rescaled as min,’ﬂ,’,j — 0 and max; ,jji,j — 1. They are printed using the
standard grayscale colormap. Such presentation is commonly used in related work [40,
44).

-
% T,

(a) Sub-image 1: Approximation (b) Sub-image 2: Diagonal (c) Sub-image 3: Antidiagonal (d) Sub-image 4: Remains

Fig. 13 Sub-images 1-4 of the “Cameraman” image processed with the “SSA-iSBD 4-channel filter bank,” type
"diagonal/antidiagonal,” with L = 4
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(a) Sub-image 1: Approximation (b) Sub-image 2: Vertical (c) Sub-image 3: Horizontal

(d) Sub-image 4: Diagonal (e) Sub-image 5: Antidiagonal (f) Sub-image 6: Remains

Fig. 14 The sub-images 1-6 of the “Cameraman” image produced by the “SSA-iSBD 6-channel filter bank" with
L=12

A comparable decomposition of the “Cameraman” image was achieved with the first
level of DT-CWT decomposition [44]. In that publication, Fig. 5 contains sub-band
images that contain separated directional features for + 15°, + 45°, and £ 75° using the
same normalization scheme as used here for the images on Fig. 15. The quality of the per-
formance of both filter banks is visually similar: the + 45° and — 45° directional features
were extracted successfully by both. DT-CW T divides an input image into its low and high
frequency components, with a cutoff frequency depending on the chosen mother wavelet
(type and order). Regarding the “SSA-iSBD filter banks,” the window length L provides the
means for such adjustments.

(a) Sub-image 1: Approximation (b) Sub-image 2: Vertical (c) Sub-image 3: Horizontal

(d) Sub-image 4: Diagonal (e) Sub-image 5: Antidiagonal (f) Sub-image 6: Remains

Fig. 15 Rescaled sub-images 1-6 of the “Cameraman” image produced by the “SSA-iSBD 6-channel filter bank”
with L =12
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5 Conclusions

The “singular spectrum analysis-based image sub-band decomposition filter banks” (“SSA-
iSBD filter banks”) are introduced. Four types of “SSA-iSBD 2-channel filter banks” based
on Basic SSA serve as building blocks for “SSA-iSBD multi-channel filter banks”

Due to the sub-band separation based on SVD, the proposed filter banks are not
affected negatively by shift variance. To remind, shift variance is typical for wavelet-based
image sub-band decomposition schemes.

Good directional selectivity is provided by the “SSA-iSBD 6-channel filter bank” that
represents an input image as a sum of an approximation containing the low-frequency
components and, separated from each other, the high-frequency components. These
high-frequency components refer to distinct horizontal (0°), vertical (90°), diagonal
(4 45°), and antidiagonal (— 45°) directional features, and the remains. This transform is
invertible: a simple addition of all components is sufficient to reproduce the input image.
The presented novel filter banks introduce the window length as a parameter that has to
be determined empirically depending on the application.

This new method of image sub-band decomposition is presented for the attention of
the scientific community. Mathematicians may be interested in proving or explaining
this heuristically developed method while engineers may incorporate this algorithm to
improve their specific features extraction, edge detection, or face and gesture recognition
tasks.
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