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Abstract

This paper considers the problem of signal decomposition and filtering by extending
its scope to various signals that cannot be effectively dealt with existing methods. For
the core of our methodology, we introduce a new approach, termed “ensemble patch
transformation” that provides a framework for decomposition and filtering of signals;
thus, as a result, it enhances identification of local characteristics embedded in a signal
that is crucial for signal decomposition and designs flexible filters that allow various
data analyses. In literature, there are some data-adaptive decomposition methods such
as empirical mode decomposition (EMD) by Huang (Proc. R. Soc. London A
454:903–995, 1998). Along the same line of EMD, we propose a new decomposition
algorithm that extracts essential components from a signal. Some theoretical
properties of the proposed algorithm are investigated. To evaluate the proposed
method, we analyze several synthetic examples and real signals.

Keywords: Decomposition, Ensemble filter, Extraction, Iteration, Multiscale method

1 Introduction
In this paper, we propose a newmethod for decomposition and filtering of signals, termed
“ensemble patch transformation,” which adopts a multiscale concept of scale-space theory
in computer vision of [1]. The proposed ensemble patch transformation consists of two
key components. The first one is “patch process” that is defined as a data-dependent patch
of data at a particular time point t. The patch process is designed for identifying local
structures of data according to the sizes of patches. The second concept is “ensemble”
that is obtained by shifting the time point t of the patch, which is suitable for representing
the temporal variation of data efficiently by enhancement of the temporal resolution of
them. Moreover, various statistics obtained from the proposed ensemble patches might
be useful for data analysis.
Successful recognition of the local frequency patterns of a signal is crucial for signal

decomposition. Empirical mode decomposition (EMD) by [2] identifies such local pat-
terns through local extrema. In the case that the local extrema reflect the time-varying
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Fig. 1 A signal of two components, Xt = cos(100π t) + 4 cos(60π t)

amplitude and frequency, EMD decomposes a signal effectively according to its frequen-
cies. However, when the frequency ratio of the two components in a signal is small, EMD
fails to identify a superimposed component; thus, it produces artificial components dur-
ing the decomposition process. To clarify this problem of EMD and provide motivation
for the proposed method, we consider a synthetic signal that consists of two compo-
nents Xt = cos(100π t) + 4 cos(60π t), t ∈[ 0, 1]. Figure 1 shows signal Xt and its two
components.
The middle panel of Fig. 2 illustrates the decomposed results by EMD, where the dotted

lines represent the true components, and the solid lines are the extracted components.
As one can see, EMD fails to decompose the two components of the signal, where the
frequency ratio of the two components is relatively small. In other words, when the local
pattern of the high-frequency component is not distinct, EMD does not work correctly to
decompose such a signal; hence, it fails to extract the sinusoid components effectively.
We remark that Rilling and Flandrin [3] discussed the ranges of frequency and ampli-

tude ratios when EMD performs. On the other hand, the left panel of Fig. 2 presents the
decomposition results by the proposed method in Section 3, which identifies the true
components efficiently. The right panel shows the decomposition results by ensemble
EMD (EEMD) of [4], which cannot extract the true ones properly.

Fig. 2 Decompositions of signal Xt = cos(100π t) + 4 cos(60π t)
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The main contribution of our study is described as follows. The two procedures, patch
process and ensemble process, are capable of providing a framework that generates var-
ious filters for decomposition, including some existing filters. Through the filter design
reflecting the characteristics of data, the proposed method provides a flexible tool for
analyzing signals. Hence, it extends the scope of signal decomposition to a broad class
of signals that cannot be dealt with some conventional methods. Specifically, as dis-
cussed later in Section 4, the proposed method can identify special features embedded in
the signal, such as sudden changes, seasonalities, and amplitude modulation terms that
are not readily obtainable in conventional ways. The rest of the paper is organized as
follows. Section 2 introduces ensemble patch transformation and investigates its utility
for multiscale analysis. In addition, various statistical measures based on the ensemble
patch transformation are discussed for data analysis. In Section 3, a new method for
signal decomposition is proposed with a practical algorithm. Furthermore, some theoret-
ical properties of the proposed algorithm are investigated. Section 4 presents simulation
studies and real data examples to evaluate the empirical performance of the proposed
method. In Section 5, as a practical issue of the proposed method, the selection of the size
parameter is discussed. Lastly, conclusions are addressed in Section 6.
We remark that in literature, there are numerous studies for signal decomposition.

Dragomiretskiy and Zosso [5] developed variational mode decomposition (VMD) for
tone detection and separation of a signal. VMD first conducts discrete Fourier transform
for detecting frequency information of each mode and then identifies several meaningful
modes using the main detected frequencies. For this procedure, it is required to preset
the number of modes for the decomposition. However, it is difficult to know the number
of meaningful modes according to their frequency information in advance. As a data-
adaptive procedure, Huang et al. [2] proposed empirical mode decomposition (EMD).
Due to its robustness to the presence of nonlinearity and nonstationarity, EMD has been
applied to various fields. Since EMD is based on an empirical algorithm, it raises several
methodological issues such as identification of local frequency patterns and intermit-
tency. There have been many proposals to enhance the performance of the conventional
EMD. Wu and Huang [4] developed the ensemble EMD (EEMD), taking an average of
EMD decompositions of noisy copies of the signal, and several authors have proposed its
variants. These include the complementary ensemble EMD of [6], the complete ensemble
EMD with the adaptive noise (CEEMDAN) of [7], and the improved complete ensemble
EMD of [8]. Daubechies et al. [9] proposed an alternative method of EMD, termed, syn-
chrosqueezed wavelet transforms, which is based on reassignment methods of wavelet
coefficients. Thakur et al. [10] discussed a selection method of various parameters in the
discrete version, and Thakur andWu [11] andMeignen et al. [12] proposed somemethods
that are robust to non-uniform samples and noise via synchrosqueezing techniques.

2 Ensemble patch transform
2.1 Multiscale patch transform

In this section, we introduce a multiscale patch transform of a one-dimensional sequence
that is designed for data processing and signal decomposition.We first define a patch pro-
cess of a real-valued univariate process (Xt)t . A patch for observation (t,Xt) is a polygon
containing neighbors of (t,Xt). A patch is a tool capturing local characteristics of a signal.
The size of the patch controls the degree of localization, and various shapes of the patch
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can be employed according to the purpose of data analysis. The patch is formally defined
by its shape and size. Let T = {τi}i be a set of size parameters for a patch with a cer-
tain shape such as rectangle and oval. For τ ∈ T , let Pτ

t (Xt) denote the patch process for
observation (t,Xt) that is generated by a certain shape with size parameter τ . We further
define a multiscale patch transform MPT

t (Xt) for observation (t,Xt) as a sequence of all
patches according to different τi’s,

MPT
t (Xt) :=

{
Pτi
t (Xt)

}
i=1,...,|T | .

As one can see, the precise definition ofMPT
t (Xt) depends on the shape of the patch. As

for the typical case, rectangle and oval are considered. Of course, we can take other shapes
as well.
Rectangle patch: For a given point (t,Xt) and τ ∈ T , this patch is centered

at the point (t,Xt) and is a closed rectangle formed by the points
(
t + k, mink∈[−τ/2,τ/2]{

Xt+k
} − 0.5γ τ

)
and

(
t + k, maxk∈[−τ/2,τ/2]

{
Xt+k

} + 0.5γ τ
)
for k ∈[−τ/2, τ/2]. For the

rectangle patch, the width is τ and hight hτ
t is

hτ
t = max

k∈[−τ/2,τ/2]

{
Xt+k

} − min
k∈[−τ/2,τ/2]

{
Xt+k

} + γ τ ,

where γ is a scale factor.
Oval patch: For a given point (t,Xt) and τ ∈ T , this patch is centered at the point (t,Xt)

and is characterized by boundaries
(
t + k,Xt+k ± γ

√
τ 2/4 − k2

)
, k ∈[−τ/2, τ/2] where

γ is a scale factor. The width for the oval patch is τ as for the rectangle patch, and the
height is of decreasing pattern as moving away from a given point (t,Xt).
For an illustration of the patch process, we consider a deterministic signal Xt =

25 cos(0.1π t) cos(π t), 0 ≤ t ≤ 10. We then obtain a sequence
{
Xti

}100
i=1 with ti = iT

and sampling rate T = 1/10 from the continuous signal Xt . Figure 3 shows rectan-
gle patches Pτ

ti(Xt) of the sequence
{
Xti

}
that are respectively performed at certain time

points ti = 4, 5, 6 marked by red dots. We consider three different size parameters
τ = 4, 8, 12 for generating patches, and obtain a multiscale patchMPT

t (Xt) by combining
the three patches in Fig. 3a–c. Figure 4 shows patches in the entire time domain with the
parameters τ = 2 and 4, respectively.
From Figs. 3 and 4 and the definitions, the patch at a particular time point t is an object

that contains multiple observations around the time point t; thus, for further statistical
analysis, it is necessary to use some statistics that summarize informations of Pτ

t (Xt) and
MPT

t (Xt). For this purpose, we consider a measure K
(
Pτ
t (Xt)

)
that produces a single

statistic at time point t. Some possible measures K(·) are twofold: one is for central ten-
dency and the other is for dispersion. As measures for central tendency, in this study,
we present the following two measures. Suppose that we obtain the patch Pτ

t (Xt) for a
fixed τ .

• Aveτ
t (Xt) = average

({
Xti

})
, where

{
Xti

}
denote observations in the patch Pτ

t (Xt).
• Mτ

t (Xt) = 1
2 (L

τ
t (Xt) + Uτ

t (Xt)), where Lτ
t (Xt) and Uτ

t (Xt) denote lower and upper
envelopes of the patch Pτ

t (Xt), respectively.Mτ
t (Xt) is mean envelope. The lower

envelope Lτ
t (Xt) and upper envelope Uτ

t (Xt) of the rectangle patch are

Lτ
t (Xt) = min

k∈[−τ/2,τ/2]

{
Xt+k

} − 0.5γ τ ,

Uτ
t (Xt) = max

k∈[−τ/2,τ/2]

{
Xt+k

} + 0.5γ τ ,
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Fig. 3 Patches with rectangle shape Pτ
ti (Xt) of signal Xt = 25 cos(0.1π t) cos(π t) at center points of the

patches, ti = 4, 5, 6. a τ = 4, b τ = 8, and c τ = 12

respectively. Lτ
t (Xt) and Uτ

t (Xt) of the oval patch are

Lτ
t (Xt) = min

k∈[−τ/2,τ/2]

{
Xt+k − γ

√
τ 2/4 − k2

}
,

Uτ
t (Xt) = max

k∈[−τ/2,τ/2]

{
Xt+k + γ

√
τ 2/4 − k2

}
,

respectively.

For dispersion measure, we consider the followings

• sdτ (Xt) = √
Var({Xti}), where {Xti} denote observations in the patch Pτ

t (Xt).
• Rτ

t (Xt) = Uτ
t (Xt) − Lτ

t (Xt), which represents the envelope range.

Figure 5 shows Aveτ
t (Xt) and sdτ

t (Xt) with size parameters τ = 8, 32, 64 for a noisy
signal Xt = 25 cos(0.1π t) cos(π t) + σεt , where σ = 1.8 and εt denote i.i.d. standard
Gaussian random variables. As the value of size parameter τ increases, a central measure
Aveτ

t (Xt) is getting smoother with representing the global trend of the observations. On
the other hand, the values of sdτ

t (Xt) at both boundaries are large, and sdτ
t (Xt) becomes

larger as τ increases since a large patch contains more observations. Further, it seems
that sdτ

t (Xt) by τ = 64 is capable of identifying the temporal variability of the signal well.
The derivations of statistics are not limited in the above definitions, which can be further
defined by other measures such as trimmed mean and median absolute deviation of the
patch Pτ

t (Xt).

2.2 Ensemble patch transform

To improve the temporal resolution of the patch and its measures, we introduce an
ensemble patch process of a real-valued univariate process (Xt)t .
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Fig. 4 Patches with rectangle shape Pτ
ti (Xt) of signal Xt = 25 cos(0.1π t) cos(π t), 0 ≤ t ≤ 10. a τ = 2 and b

τ = 4

Definition 1 Let (Xt)t be a real-valued univariate process. Let T denote a set of size
parameters for the patch. For any τ ∈ T , the �th shifted patch at time point t is defined as
Pτ
t+�(Xt), � ∈[−τ/2, τ/2]. Then, a fixed τ ∈ T , a collection of all possible shifted patches

at time point t is defined as ensemble patch,

EPτ
t (Xt) :=

{
Pτ
t+�(Xt) : � ∈[−τ/2, τ/2]

}
.

Fig. 5 a Noisy sequence (open circles), true function (black line), Aveτ
t (Xt) by τ = 8 (red line), τ = 32 (green

line), τ = 64 (blue line), and b sdτ
t (Xt) by τ = 8 (red line), τ = 32 (green line), τ = 64 (blue line)
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Finally, as a dictionary, the multiscale ensemble patch process is defined the sequence of
all sets of EPτ

t (Xt) over various τ ’s as

MEPT
t (Xt) :=

{
EPτ

t (Xt) : τ ∈ T
}
.

For the sequence {Xti} in Fig. 3, we generate ensemble rectangle patches at the time
points ti = 4, 5, 6 according to size parameters τ = 4, 8, 12, which are displayed in Fig. 6.
A multiscale ensemble patch MEPT

t (Xt) is obtained by combining the three ensemble
patches in Fig. 6a–c.
Similarly, for further data analysis, we consider some statistics of ensemble patch

EPτ
t (Xt). We first consider a measure of each shifted patch K(Pτ

t+�(Xt)) and then obtain
an ensemble measure by averaging K(Pτ

t+�(Xt))’s over �’s in [−τ/2, τ/2]. More specif-
ically, we obtain the following ensemble measures for central tendency and dispersion:
for a fixed τ , suppose that we obtain the collection of all shifted patches at time point t,
EPτ

t (Xt) of the patch Pτ
t (Xt).

• EAveτ
t (Xt) = average

(
Aveτ

t+� (Xt)
)
over �’s, where Aveτ

t+�(Xt) denotes the simple
average of observations in the shifted patch Pτ

t+�(Xt).
• EMτ

t (Xt) = average
(
Mτ

t+� (Xt)
)
over �’s, whereMτ

t+�(Xt) denotes the average of
Lτ
t+�(Xt) and Uτ

t+�(Xt) that are lower and upper envelopes of the patch Pτ
t+�(Xt).

• Esdτ
t (Xt) = average

(
sdτ

t+� (Xt)
)
over �’s, where sdτ

t+�(Xt) denotes the standard
deviation of observations in the shifted patch Pτ

t+�(Xt).
• ERτ

t (Xt) = average
(
Rτ
t+� (Xt)

)
over �’s, where Rτ

t+�(Xt) = Uτ
t+�(Xt) − Lτ

t+�(Xt).

Fig. 6 Ensemble patches with rectangle shape EPτ
ti (Xt) of signal Xt = 25 cos(0.1π t) cos(π t) at center points,

ti = 4, 5, 6. a τ = 4, b τ = 8, and c τ = 12
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Fig. 7 a Noisy sequence (open circles), true function (black line), EAveτ
t (Xt) by τ = 8 (red line), τ = 32 (green

line), τ = 64 (blue line), and b Esdτ
t (Xt) by τ = 8 (red line), τ = 32 (green line), τ = 64 (blue line)

We obtain some measures based on ensemble patches of the noisy signal in Fig. 5,
EAveτ

t (Xt) and Esdτ
t (Xt) with size parameters τ = 8, 32, 64, which are shown in Fig. 7.

As the value of τ increases, the central measure EAveτ
t (Xt) is getting smoother, and the

dispersion measure Esdτ
t (Xt) becomes more significant with having relatively large val-

ues at both boundaries. Furthermore, by comparison of the ensemble results with the
single patch results in Fig. 5, we have some observations: (a) the central measure by
ensemble patches represents the temporal trend of the underlying function well, com-
pared to that by single patches. (b) The dispersion measure with large τ by ensemble
patches identifies a local variability of the underlying function efficiently. (c) The tempo-
ral resolution of both measures by ensemble patches is much more delicate than those of
single patches.
We remark that ensemble patches are able to obtain various statistics that are adapted

for data analysis. For example, as an alternative central measure, we can consider
the median for each patch Pτ

t+�(Xt), say Medτ
t+�(Xt) and the corresponding mean of

Medτ
t+�(Xt) over �, EMedτ

t (Xt). These measures are closely related to filters for decom-
position in Section 3. Moreover, the difference between rectangle and oval patches is
not significant. It is only noticeable when considering envelopes Lτ

t (Xt) and Uτ
t (Xt). The

mean envelope Mτ
t (Xt) obtained by the rectangle patch represents a stair-shaped curve

and is undesirable for smoothing. The oval patch, on the other hand, can be useful in cap-
turing the central tendency of the data because the resulting curve is smoother. However,
it is necessary to capture the sudden change in data as shown in Fig. 22 later. In this case,
the rectangle patch is more useful than the oval patch.
Finally, the thick-pen transformation by [13] is a special case of the above MEPT

t (Xt)

with Lτ
t+�(Xt) and Uτ

t+�(Xt) at the shifting index � = 0.
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Fig. 8 Ensemble mean envelope for a signal Xt

3 Methods
3.1 Ensemble patch filtering

When a signal consists of several components with their own frequencies, ensemble patch
transformation can be utilized as a low-pass or a high-pass filter. Figure 8 illustrates the
filtering process of the ensemble mean envelope. The top panel shows a sinusoidal signal
Xt = cos(50π t) + cos(10π t) + 2t (t ∈[ 0.35, 0.55] ) and depicts three shifted rectangle
patches covering a point Xt (open circle) at t = 0.45. Each �th shifted patch produces
upper and lower envelopes Uτ

t+�(Xt) and Lτ
t+�(Xt) at time point t. The black dots denote

the average values of data in Mτ
t+�(Xt) at time point t = 0.45 for the shifted patches a,

b, and c. Similarly, with shifting the patch over the entire time domain, we construct a
mean envelope from each shifted patch process. The bottom panel of Fig. 8 shows three
mean envelopes (dotted line), respectively. We note that, although we use only three
shifted mean envelops for illustration purposes, the possible number of shifted mean
envelopes for a given point is the same as the size parameter τ of the patch in general.
Furthermore, we take an ensemble average of those mean envelopes, which results in
the ensemble mean envelope marked by the solid line. It seems that the ensemble mean
envelope represents a lower frequency component of the signal.
For demonstrating the utility of this ensemble approach, we consider a synthetic

example. Figure 9 shows a signal Xt = cos(50π t) + cos(10π t) + 2t (t ∈[ 0, 1] ) in white
color and its ensemble patch transformation with size parameters τ = 20, 40, 80, 120,
200, and 240, respectively. The lower and upper envelopes ELτ

t (Xt), EUτ
t (Xt) and the

mean envelope EMτ
t (Xt) are obtained by the ensemble approach. The area covered by

two envelopes is colored in gray, and the mean envelope is denoted by the solid line. We
observe that with size parameter τ = 40, the ensemble mean envelope suppresses a high-
frequency component cos(50π t). When the size parameter τ is larger than 200, both the
oscillating patterns of components cos(50π t) and cos(10π t) are painted over by patch
transformation. As the value of τ increases, the ensemble mean envelope tends to sup-
press the oscillating local pattern and represents the lower-frequency pattern at the same
time. The ensemble mean envelope removes the frequency pattern whose period is less
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Fig. 9 EMτ
t (Xt)’s of signal Xt according to different τ s

than τ . By controlling the size parameter, the mean envelope EMτ
t (Xt) of the ensemble

patch transformation is used as a low-pass filter or high-pass filter.
We further perform the same experiment with measure EAveτ

t (Xt) that is average of
Aveτ

t+�(Xt) obtained from ensemble patches. The results EAveτ
t (Xt) (solid line) with dif-

ferent τ = 20, 40, 80, 120, 200, and 240 are displayed in Fig. 10. As one can see, the results
are almost identical to those of EMτ

t (Xt) in Fig. 9.

3.2 Decomposition by ensemble patch filtering

By using the above notion of filters, we would like to decompose a signal into a high-
frequency component and a low-frequency residue component. We consider a signal
Xt = cos(90π t) + cos(10π t), t ∈[ 0, 1] , shown in Fig. 11.

Fig. 10 EAveτ
t (Xt)’s of signal Xt according to different τ s
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Fig. 11 A signal Xt = cos(90π t) + cos(10π t) and its two components

A snapshot of the decomposition procedure by ensemble patch filtering is displayed
in Fig. 12. From top to down and left to right panels, the first panel illustrates a low-
frequency mode, say, LF1 that is an ensemble mean envelope of EPτ

t (Xt) for a given τ , and
the corresponding high-frequency modeHF1 = X−LF1 in the next panel. As one can see,
there still exists apparent low-frequencymode inHF1. The third panel shows an ensemble
mean envelope of HF1, say, LF2, which seemingly identifies the low-frequency mode of
HF1 in the second panel. A new high-frequency modeHF2 = HF1−LF2 = X−LF1−LF2
is now obtained. In the next iteration, a further ensemble mean envelope of HF2, say, LF3
is almost constant; hence, the corresponding high-frequency mode HF3 = HF2 − LF2 =
X − LF1 − LF2 − LF3 represents the true high-frequency component well. An iterative
procedure is required, which is along with the line of the sifting process of EMD.
From the above discussion, we propose a practical decomposition algorithm based on

ensemble patch filtering. Let Gτ
t (Xt) be a generic central measure of {Pτ

t+�(Xt)}�, where

Fig. 12 Iterative decomposition procedure
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Pτ
t+�(Xt) is the �th shifted patch at time t for a given τ . Suppose that a signal Xt consists

of a high-frequency component ht and a low-frequency component gt as Xt = ht + gt .

1. Obtain an initial component ĥ(0)
t = Xt − Gτ

t (Xt).
2. Iterate, until convergence, the following step for k = 0, 1, . . . ,

ĥ(k+1)
t = ĥ(k)

t − Gτ
t

(
ĥ(k)
t

)
.

3. Take the converged estimate as the extracted component for ht .

We have some remarks regarding the aforementioned algorithm. (a) Choice of Gτ
t : it

is feasible to use various choices of Gτ
t , including some central measures introduced in

Section 2.2, which is the main benefit of utilizing ensemble patch transformation. (b)
Choice of τ : the size parameter τ corresponds to a period in the time domain. Thus, the
parameter τ plays a crucial role in the quality of the extracted low-frequency component.
A selection method of τ will be discussed later.
We now discuss a convergence property of the above algorithm under some conditions.

Theorem 1 Suppose that we observe a real-valued sequence (Xt)t from a model
Xt = ht + gt, where {ht}, t ∈ R is a periodic sequence with ht = ht+τ0

and
∫ τ0
0 ht = 0, and gt is a signal such that |G(ω)| = 0, ω ∈ 	τ0 :={

ω : ω = 2πk
τ0

+ 2nπ , for allk = 1, . . . , τ0 − 1 andn ∈ Z

}
and G(ω) denotes Fourier trans-

form of gt. Then, for a given τ0, we obtain that ĥ(k)
t → ht ask → ∞, where ĥ(k+1)

t =
ĥ(k)
t − EAveτ0

t

(
ĥ(k)
t

)
and ĥ(0)

t = Xt − EAveτ0
t (Xt).

Proof EAveτ0
t (Xt) can be expressed as EAveτ0

t (Xt) = φ
τ0
t ∗ φ

τ0
t ∗ Xt , where φ

τ0
t is a

rectangular (boxcar) function defined as

φ
τ0
t =

{
1
τ0
, |t| < τ0

2
0, otherwise.

Let ξ
τ0
t = φ

τ0
t ∗ φ

τ0
t . Then ĥ(k)

t can be written as ĥ(k)
t = (δt − ξ

τ0
t )∗k ∗ Xt , where δt denotes

Kronecker delta function and u∗k = u ∗ u ∗ · · · ∗ u︸ ︷︷ ︸
k

denotes convolution power. In addi-

tion, 
τ0(ω) = F{ξτ0
t } = (sinc(τ0ω/2))2. Thus, it follows that 0 < 1 − 
τ0(ω) < 1 for

ω /∈ 	τ0 . Furthermore, from the assumption of |G(ω)| = 0 for ω ∈ 	τ0 , we conclude that∣∣∣(1 − 
τ0(ω))k G(ω)

∣∣∣ → 0 as k → ∞.

We now extend the above result with a general filter beyond the double average filter
EAveτ

t (Xt).

Definition 2 Let Xt be a continuous-time signal. For any t, an iterative representation of
Xt with filterM is defined as IRt(Xt ,M) := limk→∞ IR(k)

t (Xt ,M), where IR(k)
t (Xt ,M) =

IR(k−1)
t (Xt ,M) + M(Xt − IR(k−1)

t (Xt ,M)) and IR(1)
t (Xt ,M) = MXt. Furthermore, Xt is

said to be (iteratively) representable with filterM if IRt(Xt ,M) = Xt for all t.

We note that if Xt = MXt for all t, then Xt is (iteratively) representable with filterM.
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Definition 3 Let Xt denotes a continuous-time signal. Suppose that Xt consists of two
components as Xt = ht + gt for all t. The component ht is said to be cancelable from Xt
with filterM ifMXt = Mgt for all t.

Theorem 2 Let Xt denotes a continuous-time signal. Suppose that Xt consists of two
components as Xt = ht + gt for all t. Assume that (a) gt is (iteratively) representable
with filter M, and (b) ht is cancelable from Xt with filter M. Then, it follows that
Xt − IRt(Xt ,M) = ht for all t.

A proof is directly obtained by the above definitions.

Lemma 1 Let Xt denotes a continuous-time signal. Suppose that |G(ω)| = 0 for ω ∈ 	τ0 ,
where G(ω) is the Fourier transform of Xt. Define the filter M as MXt = EAveτ0

t (Xt).
Then, Xt is (iteratively) representable with filterM.

A proof of Lemma 1 is easily obtained from proof of Theorem 1; hence, we omit it.
Suppose that Xt consists of two components as Xt = ht + gt . IfM is a linear filter such

thatMht = 0, then ht is cancelable from Xt with filterM. Thus, we obtain the following
result that extends the convergence property of Lemma 1 with MXt = EAveτ0

t (Xt) to a
general linear filterM under some conditions.

Corollary 1 Let Xt be a continuous-time signal. Suppose that Xt consists of two com-
ponents as Xt = ht + gt for all t. Define the filter M as MXt = EAveτ0

t (Xt). Assume
that

(a) |G(ω)| = 0 for ω ∈ 	τ0 , where G(ω) is the Fourier transform of gt .
(b) ht satisfies ht = ht+τ0 and

∫ τ0
t=0 htdt = 0.

Then, it follows that Xt − IRt(Xt ,M) = ht for all t.

As for a final remark, we consider a simple example related to designing an ideal filter
that provides the strength of our method. To simplify our discussion, suppose that we
observed a discrete signal such that Xi = ∑

i∈Z Xtδ(t − i). Suppose that Xi consists two
component hi and gi, i.e., Xi = hi + gi, where component hi satisfies hi = hi+3 and
∑3

i=1 hi = 0, and gi is a component whose value suddenly changes from −1 to 1 at i = 0
as in Table 1.
We define the filterM asMXi = EAveτ0

i (Xi), τ0 = 3. Note that component hi is cance-
lable from Xi with filter M, but component gi cannot be (iteratively) representable with
filterM since |G(ω)| > 0 for someω ∈

{
ω : ω = 2πk

3 ± 2nπ , for all k = 1, 2 andn ∈ N

}
,

where G(ω) is the Fourier transform of gi. Thus, it is not able to obtain hi from the iter-
ative procedure Xi − IRi(Xi,M), because the filters of the moving average class are not
suitable for expressing data with a sharp mean change such as gi. It is generally known
that data with such a sharp mean change can be easily represented by a median filter

Table 1 Component {gi} of a signal Xi = hi + gi , with hi = hi+3 and
∑3

i=1 hi = 0

i . . . − 3 − 2 − 1 0 1 2 3 . . .

gi . . . − 1 − 1 − 1 1 1 1 1 . . .
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[14]. In particular, the component gi used in the example is a root signal since it does
not change even if it passes through the median filter repeatedly. Hence, the convergence
property is ensured. In summary, the average filter of Aveτ

t (Xt) is advantageous to can-
cel hi, but it cannot represent gi properly. On the other hand, median filter of Medτ

t (Xt)

is not capable of canceling hi, but is useful for expressing gi. However, a combination
of both filters might lead to desired decomposition results, which is feasible under the
ensemble patch transform framework, not just patch transform one. It is a benefit of the
proposed transformation combining the patch process and the ensemble process. We
now consider a composite filter M∗ constructed by an average filter of patch process
and a median filter of ensemble process, that is, M∗Xi = median

(
Aveτ0

i+�(Xi)
)
, τ0 = 3.

Due to the property of the linear filter and the condition
∑3

i=1 hi = 0, it follows that
Aveτ0

i+�(Xi) = Aveτ0
i+�(hi) + Aveτ0

i+�(gi) = Aveτ0
i+�(gi). So, this filter separates two com-

ponents hi and gi, and cancels hi. In the example, the value of Aveτ0
i+�(gi) for each � is

listed in Table 2. Then, by passing the median filter as the second filter, we obtain a signal
{

. . . ,−1,− 1
3 ,− 1

3 , 1, . . .
}
, which completely represents component gi except i ∈ {−1, 0}.

An iterative calculation of IR(k)
i (Xi,M∗) (k ≥ 1) provides the result in Table 2. In the

example, note the difference of convergence by the filter M and M∗. As the iteration
progresses with k → ∞, the iterative procedure Xi − IR(k)

i (Xi,M) does not converge to
component {hi} at all, while Xi − IR(k)

i (Xi,M∗) converges to component hi on Z \ {−1, 0}.

4 Results and discussion
In this section, we conduct a numerical study with various examples to assess the
practical performance of the proposed method, which is implemented by the algo-
rithm in Section 3.2. In this numerical study, we compare the proposed decomposition
method with EMD, EEMD, and CEEMDAN and various types of filters are designed
for the analysis reflecting the characteristics of a given signal. The R statistical package,
EPT, used to implement the methods and to carry out some experiments are avail-
able at https://CRAN.R-project.org/package=EPT in order that one can reproduce the
same results.

Table 2 An iterative calculation of IR(k)
i (Xi ,M∗) for a signal Xi of Table 1

i . . . − 3 − 2 − 1 0 1 2 3 . . .

Aveτ0
i+�(Xi)

� = −1 . . . − 1 − 1 − 1 − 1
3

1
3 1 1 . . .

� = 0 . . . − 1 − 1 − 1
3

1
3 1 1 1 . . .

� = 1 . . . − 1 − 1
3

1
3 1 1 1 1 . . .

IR(1)
i (Xi ,M∗) = median

(
Aveτ0

i+�(Xi)
)

. . . − 1 − 1 − 1
3

1
3 1 1 1 . . .

Xi − IR(1)
i (Xi ,M∗) . . . h−3 h−2 h−1 − 2

3 h0 + 2
3 h1 h2 h3 . . .

Aveτ0
i+�(Xi − IR(1)

i (Xi ,M∗)
� = −1 . . . 0 0 − 2

9 0 0 2
9 0 . . .

� = 0 . . . 0 − 2
9 0 0 2

9 0 0 . . .

� = 1 . . . − 2
9 0 0 2

9 0 0 0 . . .

M∗(Xi − IR(1)
i (Xi ,M∗) . . . 0 0 0 0 0 0 0 . . .

IR(2)
i (Xi ,M∗) . . . − 1 − 1 − 1

3
1
3 1 1 1 . . .

IR(3)
i (Xi ,M∗) . . . − 1 − 1 − 1

3
1
3 1 1 1 . . .

...

IRi(Xi ,M∗) . . . − 1 − 1 − 1
3

1
3 1 1 1 . . .

https://CRAN.R-project.org/package=EPT
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Fig. 13 Test signal Xt = cos(90π t)I(t ≤ 0.5) + cos(10π t)I(t > 0.5) and its two piecewise components

4.1 Decomposition of non-stationary piecewise signal

We consider a non-stationary piecewise signal that consists of a low-frequency com-
ponent and a high-frequency component piecewisely defined as Xt = cos(90π t)I(t ≤
0.5)+ cos(10π t)I(t > 0.5), t ∈[0, 1]. Figure 13 shows 1000 equally spaced signal on [0, 1].
Huang et al. [2, 15] pointed out that EMD fails to decompose a signal with mode mix-
ing, which means that different modes of oscillations coexist in a single intrinsic mode
function (IMF).
On the other hand, the proposed method is capable of locally suppressing the high-

frequency mode whose period is less than some size parameter. The dotted line and solid
line in Fig. 14 represent the true components and extracted components by each method,
respectively. From the results, we observe that the proposed method outperforms EMD,
EEMD, and CEEMDAN. Here, we use the median(Aveτ

t+�(Xt)) as a central measure and
the size parameter τ = 21 for our method.

4.2 Decomposition of noisy signal

We evaluate the robustness of the proposed decomposition to noise signals. We generate
a noisy signal Xt = cos(90π t) + cos(10π t) + εt , where εt denote Gaussian errors with
signal-to-noise ratio 7. The decomposition results by the proposedmethod, EMD, EEMD,
and CEEMDAN are shown in Fig. 15. As one can see, EMD is sensitive to noises. The
effect of non-informative fluctuation distorts the subsequent decomposition results of

Fig. 14 Decompositions of test signal Xt = cos(90π t)I(t ≤ 0.5) + cos(10π t)I(t > 0.5) by the proposed
method, EMD, EEMD, and CEEMDAN
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Fig. 15 Decompositions of noisy signal Xt + εt , Xt = cos(90π t) + cos(10π t) by the proposed method, EMD,
EEMD, and CEEMDAN

EMD, which is due to the interpolation process in the construction of envelopes based on
local extrema.
On the other hand, the proposed method is robust to the noises since the decomposi-

tion is processed without the identification of fluctuations. The decomposition results in
Fig. 15 support this fact. If we regard noise as fluctuation with the highest frequency, the
proposed method with relatively small τ might separate a noise term from a signal. By
taking the size parameter τ = 10, a noisy signal is decomposed as the highest component
of noise and the low-frequency residue component, which corresponds to a signal Xt .
The low-frequency residue component is repeatedly decomposed with the size parameter
τ = 21. For central measure, the ensemble average EAveτ

t is used for the noisy signal. We
notice that EEMD and CEEMDAN work well for the decomposition of the noisy signal.

4.3 Analysis of beat signal

Suppose that we have a signal Xt = ht + gt := cos(62π t) + cos(58π t), where the
frequencies of ht and gt are very close. A signal composed of two components with sim-
ilar frequencies generates a beat signal, as shown Fig. 16a. It turns out that ht and gt
can be separated by Xt − IR(k)

t (Xt ,M) and IR(k)
t (Xt ,M), where MXt = EAveτ0

i (Xt)

and τ0 = 29 is the period of the component gt . Clearly, IR(k)
t (Xt ,M) → gt and thus,

Xt − IR(k)
t (Xt ,M) → ht as k → ∞ by Theorem 1. Figure 16b–d show Xt − IR(k)

t (Xt ,M)

for k = 10, 200, 500 and e represents IR(k)
t (Xt ,M) with k = 500. We observe that the two

components are separated with a sufficiently large k.
The decomposition results may be meaningful, but they are not practical because it

requires too many iterations to extract the desired signal.
For a different look of the beat signal, we consider a signal, as shown in Fig. 17a, which

can be interpreted as multiplying the signal cos(60π t) by the amplitude modulating term
2 cos(2π t), i.e.,Xt = cos(62π t)+cos(58π t) = 2 cos(2π t) cos(60π t). Figure 17b and c dis-
play the frequency component and amplitude modulation of Xt , respectively. Figure 17d
shows the upper and lower envelopes of the ensemble patch transform and indicates that
the ensemble envelope range ERτ

t with size parameter τ = 30 holds information of the
amplitude modulation. The absolute value of amplitude modulation 2 cos(2π t) marked
by the solid line of Fig. 17e is well approximated by ERτ

t /2 marked by the dashed line
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Fig. 16 Decomposition results of beat signal with an additive model

of Fig. 17e. Note that when the amplitude modulation 2 cos(2π t) is close to zero, the
approximation is not appropriate. If signal Xt is filtered by the approximated absolute
amplitude modulation as Xt

ERτ
t /2

, as shown in Fig. 17f, additional information for amplitude
modulation can be obtained.
Figure 18a shows the upper and lower envelopes of the ensemble patch transform for

the filtered signal. By multiplying the ensemble envelope range (Fig. 18b) for the filtered
signal with the ensemble envelope range (Fig. 18c) at the first stage, the approximation
can be improved. See the dashed line of Fig. 18d. The approximation is significantly
improved, where the amplitude modulation 2 cos(2π t) is close to zero. Therefore, the
ensemble patch transform can be applied to deduce the information about the ampli-
tude modulation, where the amplitude information is mixed with frequency information.
There is some restriction such that the amplitude modulating component should be pos-
itive. However, despite this constraint, the above filtering method is practically applicable
since the amplitude-modulated component of a real-world signal can be positive. See the
analysis of the solar radiation below.
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Fig. 17 Extraction of amplitude modulation

4.4 Analysis of solar radiation data

In this example, we analyze the solar radiation data that were hourly observed at three
cities in South Korea, Seoul, Daegu, and Busan during September 2003, which are
shown in Fig. 19. The data are available from the Korea Meteorological Administration
(https://data.kma.go.kr). Daegu and Busan, located in the southeast part of the Korean
Peninsula, are close to each other geographically, whereas Seoul is located in the middle
of the Peninsula. Besides, Daegu and Busan were severely damaged by a typhoon named
“MAEMI" in September 2003, while Seoul was hardly affected by the typhoon.
Table 3(a) lists the results of correlations among solar radiation observed at Seoul,

Daegu, and Busan. However, contrary to the usual expectation, the results are very similar
since the daily effect dominates the time series of solar radiation. The solar radiation data
can be interpreted as a multiplication form of the periodic component and the amplitude-
modulating component. It is required to separate the periodic pattern and the amplitude
modulation for a better understanding of the climatic similarity among the three cities.
To reveal the effects of interest, we eliminate the daily effect by using the upper enve-

lope EUτ
t (·) with τ = 24. The dashed lines of Fig. 19 represent the upper envelopes of

https://data.kma.go.kr
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Fig. 18 Iterative extraction of amplitude modulation

solar radiation data extracted by the proposed method. It seems that the dominant daily
effects are successfully removed. For further evaluation, we compute correlations among
the upper envelopes of solar radiation data listed in Table 3(b). As one can see, the corre-
lations of Seoul–Daegu and Seoul–Busan have been decreased dramatically compared to
the correlations before the transform. Thus, Daegu and Busan have similar climatic char-
acteristics, and Seoul seems to be different from the other two cities, which is consistent
with our intuition.
We remark that the data in this example can be considered as a typical multiplicative

model. However, the log transformation that is the most popular technique for dealing
with the multiplicative model is not suitable for this example. The main reason is that
about half of the data has zero value, as shown in Fig. 19, since there is no solar radiation
during the night. On the other hand, the proposed Uτ

t (·) filter does not suffer from this
problem. Of course, it is feasible to use a log transform by adding a small value ε like
10−10 to the data; however, it makes the daily effect stronger. The log transformation
is a technique that suppresses the amplitude modulating effects rather than extracting
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Fig. 19 Solar radiation data in Seoul, Daegu, and Busan in September 2003

them; hence, it is not appropriate when one is interested in amplitude-modulation signals
themselves.

4.5 Analysis of electricity data

We analyze the US electricity production data recorded monthly from January 1973 to
December 2005, which can be obtained from R package TSA. The electricity data seem to
have a global trend and a seasonal component. A typical approach to analyzing such data
consists of two-step: stabilize the variance of the time series through a transform such as a
log transform and extract seasonality. We now interpret the electricity signal as a product
of the periodic component and the amplitude-modulated component and decompose the
data in the following order: stabilizing the volatility of data by inferring the amplitude-
modulated component and then removing the seasonal component by using the double
average filterMXt = EAveτ

i (Xt).

Table 3 Correlation of solar radiations between Seoul, Daegu, and Busan

Seoul Daegu Busan

(a) Correlation before transform

Seoul 1 0.7997 0.7638

Daegu 0.7997 1 0.8843

Busan 0.7638 0.8843 1

(b) Correlation after transform

Seoul 1 0.3595 0.3374

Daegu 0.3595 1 0.6511

Busan 0.3374 0.6511 1
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Fig. 20 Decomposition of electricity data by EPT

Figure 20a shows the upper envelope EUτ
t (Xt) and the lower envelope ELτ

t (Xt), and
Fig. 20b shows X̃t := Xt

ERτ
t (Xt)

, which seemingly stabilizes the volatility of Xt , where
ERτ

t (Xt) = EUτ
t (Xt)−ELτ

t (Xt). We now decompose the trend and the seasonality of Xt by
taking a double average filterMX̃t = EAveτ

i (X̃t) with τ = 12. The trend and the season-
ality are effectively separated, as displayed in Fig. 20c and d. For comparison, two IMFs
decomposed by EMD are illustrated in Fig. 21, and the cyclic pattern of seasonality is not
clear.
We remark that the above signal Xt can be considered as a multiplicative model rather

than an additive model [16]. From the above result, our proposed method is not limited
to an additive model. In other words, the proposed EPT method can be applicable to the
decomposition method for both additive and multiplicative models.

4.6 Analysis of Airmile data

Here, we analyze monthly airline passenger-mile data in the USA from January 1996 to
May 2005 of [17] in Fig. 22a. The data show a strong seasonality with holiday effects, and
these are increasing linearly overall with an intervention in September 2001 and several
months thereafter due to the terrorist acts on September 11, 2001.
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Fig. 21 Decomposition of electricity data by EMD

For extracting the periodic components in the data, we design a new filter LXt :=
max

(
Lτ
t+�(Xt)

)
over �s in [−τ/2, τ/2] that can be considered as another lower envelope of

Xt . We note that the signal part expressed by the sum of the increasing trend and several
abrupt changes with positive jump sizes can be representable with filter L. The dashed
line in Fig. 22a represents the realization of filter L with τ = 12. Figure 22b shows the
extracted signal X̃t = Xt − LXt , which removes the trend and several abrupt changes
successfully; however, the amplitudes of the extracted periodic signal are slightly differ-
ent over pulses. To further remove the amplitude modulated component, the only thing
to do is getting the upper envelope of X̃, i.e., EUt(X̃t) and then dividing X̃ by it because
EUt(X̃t) = ERt(X̃t) due to ELt(X̃t) = 0 in this case. The upper envelope of X̃t is repre-
sented by the dashed line in Fig. 22b. Finally, we obtain the stabilized periodic signal, i.e.,

X̃t
EUt(X̃t)

in Fig. 22c, and, by further decomposition of the signal, the seasonal and annual
components in Fig. 22d and e, respectively. Figure 23 shows the two IMFs by EMD for Air-
mile data. Since the abrupt changes are scattered across IMFs, the decomposition results
are distorted, and the periodic patterns are not separated effectively.

5 Selection of size parameter
Here, we discuss the selection method of size parameter τ for ensemble patch transfor-
mation. First of all, in some cases, we can choose the appropriate τ based on known facts
about data and analysis purposes. For example, the choice of τ = 24 in Section 4.4 to
observe solar radiation data per hour and check the daily effect is simple and natural.
Sections 4.5 and 4.6 analyze the seasonal effects of monthly data, so τ = 12 can be a
reasonable choice.
For estimation of the size parameter τ from observations, we propose two selection

methods. One is performed in a priori way, and the other is based on a posterior infor-
mation of the decomposition. The size parameter τ corresponds to a period in the time
domain. When a priori information of the periodic pattern of a signal is available, a selec-
tion of the size parameter can be conducted based on the distribution of periodic patterns.
Such information can be obtained through the empirical periods of distances between
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Fig. 22 Decomposition of Airmile data by EPT

local maxima (or local minima). Note that the empirical period is expressed by the num-
ber of observations between local maxima, not by the distance of the real-time. To sum
up, the proposed priori method can be described as follows.

(i) Find local maxima (or local minima) of the signal.
(ii) Obtain empirical periods of distances between local maxima.
(iii) Estimate the distribution of empirical periods.
(iv) Select τ as the dominated period of the estimated distribution.

Figure 24 shows the distribution of empirical periods for a signal Xt = cos(90π t) +
cos(10π t) and its high-frequency component cos(90π t), where the high frequency pat-
tern is apparent in signal Xt . It seems that the dominated period is 21, which is set to
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Fig. 23 Decomposition of Airmile data by EMD

be our estimated parameter, τ̂ = 21. The decomposition results of Figs. 14 and 15 in
Section 4 are based on this selection method.
In the case that the frequency ratio of components composing a signal falls below a

certain range, the local pattern of the high-frequency component may not be distinct;
thus, the above selection method based on empirical periods is not appropriate. From the
results in Fig. 2, we observe that the proposed method might separate two components
according to the frequencies. Nevertheless, the components should be weakly correlated
to each other unless they are orthogonal. Hence, for the posterior method, we use correla-
tion information between two components extracted by ensemble patch transformation.
That is, through the grid search in a certain range of the size parameter, the size parame-
ter τ is selected, having the minimum correlation between the decomposed components.
Figure 25 shows the sample correlations between the extracted components for the sig-
nal Xt = cos(100π t) + 4 cos(60π t) in Fig. 2 over a range of τ , which produces τ̂ = 19.
The decomposition result of Fig. 2 is obtained through the ensemble average for the oval
patch with size parameter 19.
We remark that through extensive experiments, we observe that our method is some-

what robust to the selection of size parameters. Suppose that we decompose the signal

Fig. 24 The distribution of the empirical period for a signal Xt = cos(90π t) + cos(10π t) and its component
cos(90π t)
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Fig. 25 Correlation between decomposed components of test signal Xt = cos(100π t) + 4 cos(60π t) over a
range of τ

Xt = cos(90π t) + cos(10π t) into two components by the proposed method with a range
of τ = 18 to 23. Figure 26 shows the differences between the extracted high-frequency
component and the true component cos(90π t) over the range of τ . As one can see, the
results are robust to the choice of the size parameter τ value.
Finally, the proposed selection methods of the parameter τ lack theoretical justifica-

tion. An objective way with theoretical backup might improve the performance and the
practicality of the proposed method. This topic is left for future study.

6 Conclusion
In this paper, we have introduced a new transformation technique, termed “ensemble
patch transformation” for signal decomposition and data analysis. We have presented a
practical algorithm for the implementation of the proposed method with some theoret-
ical properties. The empirical performance of the proposed method has been evaluated
throughout several numerical experiments and real-world signal analysis. Results from

Fig. 26 Differences of true component cos(90π t) and decomposed high-frequency component of test
signal Xt = cos(90π t) + cos(10π t) according to size parameter τ
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these experiments illustrate that the proposed method possesses promising empirical
properties.
We remark that the purpose of signal decomposition is to construct the target signal Xt

as a combination of components that can be interpreted or understood. However, even
when a component of a given signal can be perceived, its separation from the signal is
not trivial, which is the motivation for developing the ensemble patch transform. The
tools provided by the ensemble patch transform requires the filter design, as shown for
analyzing signals in Sections 4.3–4.6. Once a proper filter is designed, this “discomfort”
guarantees extreme degrees of freedom for analyzing a signal.
Finally, the proposed transformation holds inherently multiscale features due to the size

parameter of τ , which serves to control the size of patches. That is, the size parameter
of the patch acts as the scale parameter of multiscale features. The scale-space concept
might provide a view-point on visualization of data, which considers a family of represen-
tations of data indexed by the scale parameter instead of the conventional dot-connected
plot. This topic are reserved for future research.
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