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Abstract
Independent component analysis (ICA) is a popular technique for demixing
multichannel data. The performance of a typical ICA algorithm strongly depends on
the presence of additive noise, the actual distribution of source signals, and the
estimated number of non-Gaussian components. Often, a linear mixing model is
assumed and source signals are extracted by data whitening followed by a sequence of
plane (Jacobi) rotations. In this article, we develop a novel algorithm, based on the
quaternionic factorization of rotation matrices and the Newton-Raphson iterative
scheme. Unlike conventional rotational techniques such as the JADE algorithm, our
method exploits 4 × 4 rotation matrices and uses approximate negentropy as a
contrast function. Consequently, the proposed method can be adjusted to a given data
distribution (e.g., super-Gaussians) by selecting a suitable non-linear function that
approximates the negentropy. Compared to the widely used, the symmetric FastICA
algorithm, the proposed method does not require an orthogonalization step and is
more accurate in the presence of multiple Gaussian sources.
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1 Introduction
Blind source separation (BSS) problems occur in various engineering applications,
including the multichannel speech enhancement, image restoration, analysis of elec-
troencephalographic (EEG) signals, and telecommunications [1]. The BBS consists of
recovering of unobservable source signals from their observed mixtures. Most often, the
following linear model [2] of the observation vector is assumed:

x = As, (1)

where A ∈ R
n×d is an unknown mixing matrix and s is a random vector of d unknown

source signals. Please note that there exist other models that can deal, for example,
with spherical noise [3], under-determination, and mixture synchronization issues. In the
under-determined case, the number of source signals is greater than the number of mix-
tures. Obviously, it makes the BSS problem ill-posed. In such cases, a concept of sparsity
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is often employed for a better representation of source signals [4, 5]. To tackle the syn-
chronization issues, a compressively sensed BSS (CS-BSS) model [6] was proposed which
combines a compressive sensing theory [7] with a linear mixing model.
In this work, we consider the conventional model (1) due to its simplicity, and unless

otherwise stated, assume that n = d. Thus, from a mathematical point of view, we are
looking for some matrixW ∈ R

n×n such that

y = Wx = �Ps, (2)

where � and P are scaling and permutation matrices, respectively. This means that
the BSS problem can be solved only up to sign, scale, and permutation of the output
signals [8].
Independent component analysis (ICA) is the most natural approach to solving the BBS

problem. Namely, the ICA aims at transforming multivariate data into components that
are as statistically independent from each other as possible. The ICA can be also viewed
as an optimization method that explicitly maximizes somemeasure of statistical indepen-
dence between the sources. Most frequently, it is based on the Central Limit Theorem and
attempts to find directions in which some measure of non-Gaussianity is maximized [9].
Theoretically, it is possible to extract all components as long as nomore than one source is
Gaussian and all of the non-Gaussian sources are mutually independent. In other words,
only non-Gaussian components can be separated.
In fact, many ICA algorithms are known. For general overviews, see for example

[1, 10–12]. The classical ICA methods include the InfoMax [13, 14], FastICA [9], and
JADE [15]. In this study, we are interested in the so-called orthogonal approaches. Since
independence implies uncorrelatedness, these methods directly constrain the unmixed
components to be uncorrelated, i.e., for zero-mean and unit-variance signals, it is assumed
that E{yyT } = I. This constraint is usually satisfied by whitening data before rotating
them [9, 16, 17]:

y = BC−1/2
xx x, (3)

where the matrix B is constrained to be orthogonal. The whitening transformation can be
computed as follows:

C−1/2
xx = U�−1/2UT , (4)

where U is the matrix of eigenvectors of Cxx = E{xxT }, and � is the diagonal matrix of
the corresponding eigenvalues.
Among the orthogonal approaches, the FastICA method [9] and their variants [18] are

probably the most popular techniques. They are based on maximizing some non-linear
contrast functions that approximate negentropy. It was shown in [8] that finding a demix-
ing matrixW that minimizes the mutual information [13] is roughly equivalent to finding
directions in which the negentropy is maximized. Therefore, such contrast functions can
also be viewed as the measures of non-Gaussianity. There are two basic variants of the
FastICA method: a deflation-based and symmetric algorithm. In the case of the defla-
tion approach, the independent components are estimated successively one by one and
after every iteration step, the Gram-Schmidt orthogonalization is performed. The major
drawback of this approach is that estimation errors of the first vectors are cumulated in
the subsequent ones by the orthogonalization [19]. The symmetric variant of the FastICA
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algorithm [20] estimates the components in parallel. This consists in computing the one-
unit updates for each component, followed by subsequent symmetric orthogonalization
of the estimated demixing matrix after each iteration step.
Symmetric orthogonalization in its classical form involves calculating the square root

of the inverse matrix in (4), which could be computationally expensive, for large n. Alter-
natively, simpler iterative methods can be used [9]. Nevertheless, the orthogonalization
presents some difficulties, especially when the FastICA is implemented in hardware
architectures [21]. Moreover, as we will show, the algorithms with symmetric orthogo-
nalization could be more vulnerable to performance degradation, when the assumption
regarding the maximum number of Gaussian sources is not met.
The ICA literature also contains examples of methods that do not require orthogonal-

ization, for instance, Jacobi algorithms [2, 16, 22]. In these approaches, the matrix B is
considered to be a product of orthogonal matrices, specifically the Jacobi rotations. The
ICA is carried out by optimizing a contrast function for each pair of components that
corresponds to a given rotation plane. Thus, by sweeping the local optimization over
all possible pairs, the global independent sources can be extracted. The most important
advantage of the Jacobi algorithms is that the local optimization can be solved ana-
lytically if the contrast function is given as a 4th-order polynomial (e.g., kurtosis). An
example is the JADE technique [15] which consists in jointly approximately diagonaliz-
ing a set of eigenmatrices. The eigenmatrices are estimated by 4th-order moments [23].
In fact, this is a variant of the Jacobi algorithm, because the diagonalization is performed
using the Jacobi rotations. Unfortunately, the use of the 4th-order moments as a contrast
function may be discouraged due to poor asymptotic efficiency for super-Gaussians and
lack of robustness to outliers [24]. Also, the computational complexity of the Jacobi-like
algorithms can be relatively high, since the number of required data rotations increases
quadratically with n. Theoretically, the number can be reduced by replacing the conven-
tional Jacobi rotations with higher-dimensional rotations. For instance, 4 × 4 orthogonal
matrices that represent rotations in R4 can be used. It has been shown in [25] that such a
matrix can be uniquely described by only two unit quaternions.
In our preliminary work [26], we proposed a novel four-channel ICA algorithm that

uses quaternion-based factorizations of 4 × 4 orthogonal matrices and exploits a con-
trast function based on negentropy approximation. A solution based on the gradient
method with the L2-norm constraint was developed. In this article, we propose to use the
Newton-Raphson iterative scheme for solving the optimization task that results in a faster
convergence rate as compared to the previous solution. Moreover, we extended our algo-
rithm for the case of n ≥ 4 channels, where n is even, by breaking n-dimensional problem
up into a set of four-dimensional subproblems. For this purpose, a new sweep pattern for
data-driven Jacobi-like algorithms is developed. Also, a more detailed comparative evalu-
ation is performed that involves not only symmetric but also the deflation-based FastICA
method and the JADE algorithm.
This paper is organized as follows. Section 2 describes quaternionic factorizations of

4 × 4 orthogonal matrices. In Section 3, a novel ICA algorithm is presented, and the
solution based on the Newton-Raphson iterative scheme is derived. Also, a new sweep
pattern for data-driven algorithms is developed. Section 4 investigates the performance
of the proposed method via numerical simulations. Finally, the conclusions are given in
Section 5.
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2 Quaternions and rotations inR
4

Most frequently a quaternion Q ∈ H is represented in the rectangular form:

Q = q0 + iq1 + jq2 + kq3, q0, q1, q2, q3 ∈ R, (5)

where i, j, k denote imaginary units. The real part of Q is q0 and the pure quaternion part
is iq1 + jq2 + kq3. The multiplication of quaternions is determined by the following rules:

i2 = j2 = k2 = ijk = −1. (6)

It is associative and distributes over vector addition, but it is not commutative. Similarly
as for ordinary complex numbers, the conjugate ofQ is given by Q̄ = q0 − iq1 − jq2 −kq3,
and the norm (modulus), is defined as

|Q| =
√
q20 + q21 + q22 + q23. (7)

Since any quaternion Q can also be represented by the vector q =[ q0 q1 q2 q3]T , a set H
can be identified with the R4 vector space.
Let {P,Q} be a pair of unit quaternions, i.e., |P| = |Q| = 1, corresponding to the vectors

p,q ∈ R
4, andW be a quaternion corresponding to an arbitrary vector w ∈ R

4. Consider
a real linear transformation from H to H that maps W to PWQ̄. It can be shown that
this transformation can be uniquely represented by a product of the 4 × 4 orthogonal
matrices [25]:

M+(p) =

⎡
⎢⎢⎢⎣

p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

⎤
⎥⎥⎥⎦ , (8)

M−(q) =

⎡
⎢⎢⎢⎣

q0 q1 q2 q3
−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0

⎤
⎥⎥⎥⎦ . (9)

In particular

PWQ̄ ⇔ M+(p)M−(q)w. (10)

It means that for an arbitrary 4 × 4 orthogonal matrix R, there exist a unique pair of unit
quaternions P andQ such that R = M+(p)M−(q). The proof of this little known theorem
can be found in [27]. It should be noted that this product is commutative, and it is satisfied
by the negative quaternions −P,−Q as well. In fact, the pairs {P,Q}, and {−P,−Q} map
to same rotation of R4. The possibility of using two parameters to describe a rotation is a
special feature of the group of rotations in four dimensions.

3 Methods
In this section, we introduce a recently proposed four-channel ICA method [26] and
develop a new solution to an optimization problem based on the Newton-Raphson iter-
ative scheme. We also propose a new ICA algorithm for n ≥ 4 channels and give some
illustrative examples of possible applications of this approach.
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3.1 Jacobi-based ICA estimation framework

Our method strictly follows the Jacobi-based estimation framework. Namely, the inde-
pendent components are estimated by recursively applying the so-called sweep opera-
tions:

yk = Rkyk−1, k ≥ 1, (11)

y0 = C−1/2
xx x, (12)

where Rk is an orthogonal matrix and k is a sweep number. In the conventional Jacobi-
based approaches [2, 16, 22], the matrix Rk is the product of the rotation matrices:

Rk =
n(n−1)/2∏

i=1
G(pi, qi, θk,i), (13)

where

G(p, q, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ip−1 0 0 0 0
0 cos θ 0 sin θ 0
0 0 Iq−p−1 0 0
0 − sin θ 0 cos θ 0
0 0 0 0 In−q−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (14)

represents Jacobi rotation by the θ angle in the plane determined by the p and q axes.
Please note that the matrix (14) is also known as the Givens matrix and the corresponding
Givens rotations are no different from Jacobi rotations [28]. By using the factorization
(13), an n-dimensional ICA problem can be decomposed into sequence of n(n − 1)/2
one-dimensional subproblems. Each subproblem consists in searching for the angle that
maximizes some contrast function [16] in the corresponding rotation plane. The data are
rotated and the process is repeated cyclically, until all rotation angles converge to zeros.

3.2 Four-channel algorithm using quaternionic factorization

The key idea of the proposed method is to replace the Jacobi rotations with their four-
dimensional quaternion-based counterparts. For simplicity, suppose that n = 4. Then,
six ordinary Jacobi rotations can be replaced with only two quaternion-based rotations as
follows:

Rk = M+(pk)M−(qk). (15)

Thus, in each sweep, two vectors pk , qk ∈ R
4 have to be estimated that, for example,

maximize some measure of non-Gaussianity of the rotated data. We propose to optimize
these parameters in two consecutive steps in a similar way as the optimal rotation angles
are determined for the Jacobi rotations. Firstly, we look for the vector qk and rotate the
data using the matrix M−(qk). Then, we look for pk and rotate the result of the first
step by using M+(pk). These steps have to be repeated until both rotation matrices are
approximately equal to the identity matrices.
It was shown in [29] that measures of non-Gaussianity based on some non-linear

functions are often considerably more robust than cumulant-based approximations.
Moreover, by properly choosing the non-linear function, we can adjust the ICA algorithm
to work for practically any distribution of source signals. One-unit contrast function
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for measuring non-Gaussianity of any random variable y in the negentropy-based ICA
framework is given by [9]:

Jg(y) =[E{g(y)} − E{g(v)}]2 , (16)

where v is a standardized Gaussian variable, and g is any non-linear function. Examples
of such functions can be found in [30]. The random variable y is assumed to be zero-
mean and unit-variance. Please note that the measure (16) is always non-negative, and it
equals to zero if y is Gaussian. As suggested in [9], a contrast function for several channels
(units) can be obtained by simply maximizing the sum of the one-unit functions. Thus, by
taking into account the unit-norm constraints (that enforces orthogonality), we defined
the following optimization problems:

qk = argmax
u

4∑
i=1

E{ḡ([M−(u)]i∗ y−
k )}2

s.t. ||u|| = 1

(17)

pk = argmax
u

4∑
i=1

E{ḡ([M+(u)]i∗ y+
k )}2

s.t. ||u|| = 1

(18)

where the operator [A]i∗ denotes ith row of an arbitrary matrix A, ḡ(y) = g(y) − E{g(v)}
is a centered version of the non-linear function g(y), and

y−
k = yk−1 = Rk−1Rk−2 · · ·R1C−1/2

xx x, (19)

y+
k = M−(qk)yk−1, (20)

yk = M+(pk)M−(qk)yk−1, (21)

are the rotated random vectors for k ≥ 1. We assume that the expectations in (17), (18)
exist and are finite. Therefore, they can be approximated by sums, and the vector x in (19)
can be replaced with an observationmatrixX of size 4×m consisting ofmmixture vectors
stacked in column-wise order. The vectors (19), (20) can be replaced with transformed
data matrices Y−

k ,Y
+
k ∈ R4×m as well. Thus, by using the matrix-vector notation, we can

redefine the contrast functions in (17) and (18) as follows:

J(u) = 1Tmḡ[M(u)Yk]T ḡ[M(u)Yk] 1m, (22)

where the terms {M, Yk} stand either for {M+, Y+
k } or {M−, Y−

k }. Please note that the
problems (17) and (18) are similar, and the solution depends only on the current sweep
data. Therefore, in the rest of the article, the subscripts +, −, and the swept number k are
dropped to simplify the notation.

3.3 Solution based on the Newton-Raphsonmethod

In accordance with the Kuhn-Tucker conditions, any stationary point of (22) must satisfy
the following equation:

∇uJ(u) + λu = 0, (23)
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where λ is the Lagrange multiplier, and

∇uJ(u) =
[

∂J(u)

∂u0
· · · ∂J(u)

∂u3

]T
, (24)

denotes the gradient of J(u). The partial derivatives can be computed as follows:

∂J(u)

∂ui
= 2a(u)Tbi(u), (25)

with

a(u) = ḡ(M(u)Y)1m, (26)

bi(u) =
[
ḡ′(M(u)Y) ◦ ∂M(u)

∂ui
Y
]
1m, i = 0, . . . , 3, (27)

where ◦ denotes the Hadamard product, ḡ′ is the first-order derivative of the non-linear
function ḡ, and ∂M(u)

∂ui is ith partial derivative of a given quaternionic matrix. These matri-
ces take the form of simple permutation matrices containing only zeros and ones (see the
Appendix for details), so that, in practice, the multiplication by Y can be avoided.
One can try to solve Eq. 23 numerically by using, for example, the quasi-Newton

method in a similar way as in the FastICA approach [9]. However, in this case, it could
be a more difficult task as it involves a derivation of the second-order derivative (Hes-
sian matrix) of the quadratic form (25) or finding its approximation. Even if an explicit
expression for this matrix will be obtained, its computation could be very expensive.
In our previous work [26], we proposed a much simpler solution based on a gradient

method with L2-norm constraint [31]. A geometric interpretation of this method is given
in Fig. 1. In a such approach, a pre-scaled gradient of J(u), say

h(u) = μ∇uJ(u), (28)

with μ > 0 being an empirically chosen scaling factor, is projected onto hyperplane
orthogonal to the unit vector u:

δ = h(u) − uuTh(u). (29)

The set of all such vectors at a given point u is known as the tangent space of the constraint
surface ‖u‖ = 1. In our case, the constraint surface is a unit four-dimensional hypersphere
(also known as 3-sphere). Then, the solution vector is updated by using the following rule:

u∗ ← u cos θ + δ

‖δ‖ sin θ , (30)

which is equivalent to the rotating u, the current solution vector, in the direction of δ by
some angle θ along the geodesic, i.e., curve on the constraint surface that connects two
arbitrary points by an arc of shortest length.
It is a well-known fact that the convergence rate of the gradient methods depends on

the value of the scaling factor μ. In particular, these methods do not necessarily converge
for large values of μ. On the other hand, for small values of μ, the algorithm may con-
verge very slowly. In the work [26], we assumed that θ = ‖δ‖, and the scaling factor μ

was empirically set to some positive value that depends on a given non-linear function
ḡ(y). Here, we propose a more sophisticated approach that follows the Newton-Raphson
iterative scheme and does not require the empirically determined parameters. Please note
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Fig. 1 Optimization using gradient method with L2-norm constraint.

that instead of searching for optimal μ, we can equivalently set μ = 1 and maximize the
following cost function with respect to rotation angle θ :

Ĵ(θ) = 1Tmḡ[ M̂(θ)Y]T ḡ[ M̂(θ)Y] 1m, (31)

where

M̂(θ) = M
(
u cos θ + δ

‖δ‖ sin θ

)
, (32)

and u is any vector that satisfies ‖u‖ = 1. Thus, each constrained optimization task
(17), (18) can be simplified to one-dimensional angle search on the unit circle. Now, the
Newton-Raphson iterative procedure can be used for finding the optimal rotation angle:

θ∗ ← θ + ∂ Ĵ(θ)

∂θ

/∣∣∣∣∣
∂2 Ĵ(θ)

∂θ

∣∣∣∣∣ , (33)

where the first and second derivatives of (31) are given by

∂ Ĵ(θ)

∂θ
= 2â(θ)T b̂(θ), (34)

∂2 Ĵ(θ)

∂θ
= 2

[
â(θ)TC(θ)1m,+‖b̂(θ)‖2

]
(35)

respectively, and

â(θ) = ḡ(M̂(θ)Y)1m, (36)

b̂(θ) =
[
ḡ′(M̂(θ)Y) ◦ ∂M̂(θ)

∂θ
Y
]
1m, (37)

C(θ) = ḡ′(M̂(θ)Y) ◦
[

∂M̂(θ)

∂θ
Y
]◦2

− ḡ′′(M̂(θ)Y) ◦ M̂(θ)Y. (38)
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In the above expression, the operator ◦2 denotes element-wise (Hadamard) power, and
ḡ′′ is the second-order derivative of the non-linear function ḡ. Please note that we slightly
modified the Newton-Raphson iteration (33) by using plus sign and taking the absolute
value of the denominator. As suggested in [32], in this way, we can enforce the algorithm
to find local maxima only.
In the case of the Jacobi-based algorithms, the rotation hyperplanes could overlap each

other. As a result, local optimizations may not preserve (and often destruct) the global
optimality. Therefore, during the early sweeps, it may not be necessary to compute the
rotation angles with the highest accuracy [25]. Moreover, each rotation is performed in a
local coordinate system. For these reasons, in each sweep, we perform only one iteration
of the Newton-Raphson method per each optimization task (17), (18), assuming that

u ← u0 =[ 1 0 0 0]T , (39)

θ ← θ0 = 0. (40)

Please note that a similar simplification can also be found in [33]. It can be easily verified
that

∂M̂(θ)

∂θ
= M

(
δ

‖δ‖ cos θ − u sin θ

)
. (41)

Since M̂(0) = I, and ∂M̂(θ=0)
∂θ

= M
(

δ
‖δ‖

)
the expressions (36) - (38) can be simplified to:

â(0) = ḡ(Y)1m, (42)

b̂(0) =
[
ḡ′(Y) ◦ M

(
δ

‖δ‖
)
Y
]
1m, (43)

C(0) = ḡ′(Y)

[
M

(
δ

‖δ‖
)
Y
]◦2

− ḡ′′(Y) ◦ Y, (44)

and the optimal rotation angle can be estimated as follows:

θ∗ ← â(0)T b̂(0)
|â(0)TC(0)1m + ‖b̂(0)‖2| + ε

. (45)

where ε is some small positive constant introduced to prevent division by zero. Once
the rotation angle is computed, the current data matrix is transformed as Y → M̂(θ∗)Y.
Recalling the factorization (15), we see that in each sweep, up to two such transformations
are needed. This procedure is repeated cyclically until the convergence is achieved, i.e.,
for both transformations, we have |θ∗| < ζ , where ζ is sufficiently small positive constant.

3.4 Quaternionic ICA for n ≥ 4 channels

An implementation of the four-channel algorithm is rather straightforward as it com-
prises only two four-dimensional optimization subproblems per sweep. As shown in the
previous section, these subproblems can be solved numerically using a quasi-Newton
method. An algorithm for n ≥ 4 channels can be developed once we determine how
to design a sweep pattern consisting of a complete set of four-dimensional subprob-
lems. Intuitively, every component (row of the data matrix Y) should be part of any
four-dimensional subproblem at least once during the sweep, so no component of the
whole data set is exempt from direct participation in the local optimization preserving a
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drive towards the global optimum. This idea follows the conventional Jacobi-based ICA
estimation framework implemented as a sequence of plane rotations.
It turns out that the sweep patterns comprising four-dimensional subproblems are

not difficult to construct and have already been studied in the context of structured
eigenproblems [34, 35]. In these approaches, the location of the four-dimensional sub-
problem was controlled by the position of the element aij of arbitrary symmetric or
skew-symmetric matrix A ∈ R

2r×2r , chosen from the r × r upper diagonal block, where
r ≥ 2. This element uniquely determines 4 × 4 principal submatrix located in the rows
and columns i, j, r + i and r + j as shown below:

⎡
⎢⎢⎢⎣

ai,i ai,j ai,r+i ai,r+j
aj,i aj,j aj,r+i aj,r+j

ar+i,i ar+i,j ar+i,r+i ar+i,r+j
ar+j,i ar+j,j ar+j,r+i ar+j,r+j

⎤
⎥⎥⎥⎦ (46)

where 1 ≤ i < r and i < j ≤ r. Please note that such submatrices preserve the structure of
the parent matrix A, i.e., symmetry or skew-symmetry. Furthermore, a sweep comprised
entirely of four-dimensional subproblems can be generated by using any cyclic or quasi-
cyclic sweep of the upper-left block of the matrix A. As reported in [35], such a sweep
pattern is inherently parallelizable, is numerically stable, and shows asymptotic quadratic
convergence.
In this work, we propose to extend this idea to a data-driven ICA algorithm for even

n = 2r. Instead, to diagonalize the set of eigenmatrices as in the JADE algorithm, we
operate directly on the data by following the aforementioned sweep pattern. Namely, our
four-dimensional subproblems are constructed by cyclically selecting the components of
indexes i, j, r + i, and r + j. All steps of the proposed method are summarized as the
pseudocode in Algorithm 1. In order to generate the pairs {i, j}, a typical two-dimensional
row-cycling ordering was used, but similarly to conventional Jacobi-basedmethods, other
arrangements are also possible [36].
A rigorous theoretical proof of convergence of the algorithm seems to be a challenging

task and is out of the scope of this article. However, we observed empirically that the pro-
posed method is asymptotically quadratically convergent. Please note that our algorithm
requires only n(n − 2)/4 quaternion-based rotations per sweep in place of n(n − 1)/2
Jacobi rotations as in the JADE method. Obviously, it suggests a faster convergence of the
proposed method, especially for large n. However, the rotations performed in the JADE
method have the lower computational complexity as they are used to transform cumulant
matrices only and optimal rotation angles are computed analytically. These issues will be
examined in more detail in the experimental section.

3.5 Illustrative examples

Figure 2 demonstrates an example of the source recovery using the proposed method.
As input data, a linear mixture of the eight basic signals has been used. The original and
randomly mixed waveforms are depicted in Fig. 2a and b, respectively. Figure 2c presents
the source signals recovered by using the proposed approach. In order to illustrate the
convergence characteristics, in Fig. 2d, we also show the negentropy approximation com-
puted after each sweep for all channels as well as for local four-dimensional subproblems.
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Algorithm 1: Pseudocode of the proposed method
Data: X - data matrix of size n × m containing n observed signals (stacked in rows)

each of sizem samples, kmax - maximum number of sweeps, ζ - minimum
rotation angle

Result: Ŷ - matrix of size n × m containing estimated sources (stacked in rows)
1 Cxx ← 1

mXXT

2 Ŷ =[ ŷ1, ŷ2, ..., ŷn]T ← C−1/2
xx X

3 u0 ←[ 1, 0, 0, 0]T

4 for k ← 1, 2, ..., kmax do
5 isRotation ← false
6 for i ← 1, 2, ..., n/2 − 1 do
7 for j ← i + 1, i + 2, ..., n/2 do
8 Y ←[ ŷi, ŷj, ŷn/2+i, ŷn/2+j]T

9 compute δ using (29) withM(u)
def= M−(u0),μ = 1

10 compute θ angle using (45)
11 if |θ | > ζ then
12 Y ← M̂(θ)Y
13 isRotation ← true
14 end

15 compute δ using (29) withM(u)
def= M+(u0),μ = 1

16 compute θ angle using (45)
17 if |θ | > ζ then
18 Y ← M̂(θ)Y
19 isRotation ← true
20 end
21 [ ŷi, ŷj, ŷn/2+i, ŷn/2+j]T ← Y
22 end
23 end
24 if isRotation == false then
25 break
26 end
27 end

It can be seen that the method converges in less than six sweeps, and the source signals
have been successfully recovered (up to permutation and sign).
We also considered a linear mixture of five images of natural scenes and Gaussian

noise. The test images were selected from the BSDS300 database [37]. They were of size
481 × 321 pixels with an 8-bit grayscale. The original images and mixtures are presented
in Fig. 3a and b. Figure 3c and d present recovered images after k = 2 and k = 10
sweeps, respectively. These experiments show that the proposed algorithm may have
good convergence properties in general settings, i.e., for n > 4.
In the next example (see Fig. 4), we show that the proposed method can also be useful

if the number of sources is smaller than four. Suppose that we have only three indepen-
dent sources: two speech signals and some noise. The sources were mixed using a random
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Fig. 2 Demonstration of source extraction using the proposedmethod. a Source signals. bObservedmixtures
of the source signals. c Estimates of the source signals. d Contrast function values versus the sweep number

matrix of size 4 × 3 so that there is a linear dependence between the rows of the matrix.
In the case of conventional ICA approaches, the input signals are usually whitened using
principal component analysis (PCA), and the dimensionality of the data is decreased at
the same time. Only components that correspond to sufficiently large eigenvalues are
taken into account. However, in the case of our method, we cannot reduce the dimension-

Fig. 3 Separation of images using the proposed method. a Original images of natural scenes and Gaussian
noise. b Linearly mixed images. c Separated images after 2 sweeps. d Separated images after 10 sweeps
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Fig. 4 Extraction of speech signals. a Original speech signals. bMixtures of two speech signals and one noise
source projected onto four-dimensional space. c Source signals estimated using the proposed method

ality of data as easily as it is closely related to the size of the rotation matrices. Therefore,
for n < 4, the whitening matrix (4) must be properly regularized:

C−1/2
xx ≈ U

[
�

−1/2
s 0
0 0

]
UT = Us�s

−1/2UT
s , (47)

where �s is a diagonal matrix of strictly positive eigenvalues of Cxx and Us is a (possibly
rectangular) matrix of corresponding eigenvectors. In other words, the whitening stage is
performed in the signal-subspace only, while the minor-components are replaced by zero
vectors. Although such solution is suboptimal from the computational point of view, it
makes the implementationmuch easier. As can be seen in Fig. 4c, the original sources have
been properly extracted, and the 4th component has been estimated as the zero vector.
These results suggest that for n < 4 the minor-components that correspond to nullspace
can be treated as non-Gaussian components. Indeed, the cost function (16) takes positive
values for y being a zero signal. Therefore, by maximizing this function, we can recover
the zero vectors as well as the original sources.
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4 Results and discussion
4.1 Experimental setup

The proposed algorithm has been implemented in the MATLAB environment. For the
purpose of empirical evaluation, we denote our method as the QICA (Quaternionic
ICA). It has been compared to the symmetric FastICA, deflation-based FastICA [9],
and JADE algorithm [15]. For FastICA implementations, we used freely available MAT-
LAB packages from [38]. The implementation of the JADE algorithm is a part of the
EEGLAB open-source package [39]. The recent implementation of the JADE algorithm in
R language as well as some joint diagonalization functions is also described in [40].
In the case of the QICA and FastICAmethods, the experiments were conducted for the

three non-linear functions that are frequently considered in the publications [9, 30]:

POW3: ḡ(y) = y4 − 3,

TANH: ḡ(y) = log(cosh(y)) − 0.3746,

GAUS: ḡ(y) = −exp(−y2/2) + 0.7071.

We use these names in order to match the literature, even though one can consider them
to be misleading. Namely, these names are related to the first-order derivatives, not to the
functions themselves.
Theoretical stability analysis of the proposed method is out of the scope of this article.

Therefore, the effectiveness of the QICA method was evaluated numerically. In partic-
ular, their convergence characteristics, source separation quality, and computation time
were measured for several conditions involving synthetic and real data. Please note that it
makes little sense to measure convergence speed in terms of iteration number or average
computation time taken by an algorithm to converge as the reference methods (except the
JADE) use different stop criteria. Therefore, in order to make the comparisonmeaningful,
we decided to disable stop conditions in all methods and perform simulation for a fixed
number of iterations measuring the separation quality in each iteration step. In this way,
we were also able to measure the convergence characteristics of the evaluated algorithms.
Synthetic sources were generated for the following distributions: uniform, BPSK, Lapla-

cian, and generalized Gaussians (GG(α) with parameter α = 3, and 0.5) [30]. The
length of each source signal was m = 1000 samples. In our experiments, we also con-
sidered “speech” distribution that was represented by data frames randomly selected
from real speech recordings. These recordings were sourced from the publicly available
database that was used to develop ITU-T Recommendation [41]. The database consists
of short few-seconds sentences spoken by female and male speakers in various languages.
Depending on the scenario, we have selected from 4 up to 12 sentences from the Ameri-
can English set. Original samples were available in the WAV 32-bit floating-point format
with sampling frequency 16 kHz, but for our purposes, they were downsampled to 8 kHz.
Both synthetic and real sources were normalized to have zero-mean and unit variance.
In a basic scenario, we linearly mixed n = 4 sources of the same non-Gaussian distri-

bution. In order to evaluate the robustness of the compared algorithms to the Gaussian
sources, we also considered the scenarios in which one or two sources were Gaussian and
the others were non-Gaussian but of the same distribution. Additionally, the experiments
with n = 8 and n = 12 non-Gaussian sources have been conducted to examine a global
convergence of the QICA algorithm.
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In all scenarios, the coefficients of the mixing matrix were generated from the uniform
distribution. Ill-conditioned matrices (with a condition number greater than 1000) were
excluded from evaluation. The performance indexes were averaged over 1000 random
realizations of the sources and the mixing matrices.

4.2 Separation quality

The separation quality was estimated using signal to interference ratios (SIRs) [30, 42]
and averaged over all non-Gaussian components. In particular, for the kth source signal,
the SIR index is given by:

SIRk = [G]2kk∑n
l=1[G]2kl

, (48)

where G = ŴAD1/2 is the gain matrix with Ŵ being the estimated demixing matrix of
the corresponding algorithm, andD = diag{σ 2

1 , σ
2
2 , ..., σ 2

n } being the diagonal matrix con-
taining the variances of the original signals. Since the BSS problem can be solved only up
to permutation, the rows of the matrix Ŵmust be appropriately reordered which involves
a pairing process [43]. For this purpose, we followed [44] and used a greedy algorithm.
In practice, for some distributions, the off-diagonal elements of the gain matrix can be
close to zeros. Therefore, it is often necessary to add some small positive constant to the
denominator of (48) in order to prevent dividing by zero. In our experiments, the constant
of value 10−9 was used.
The results presented in Tables 1, 2, and 3 refer to the scenarios with n = 4 compo-

nents containing from 0 up to 2 Gaussian sources. The maximum number of iterations
was set to k = 40 for all methods. In the case of the deflation-based FastICA, the compo-
nents were estimated, one by one, enforcing 40 iterations per component. The best results
obtained for each distribution were denoted using bold fonts. It can be observed that the
performance strongly depends on the distribution of source signals and the number of
Gaussian sources.
In the first scenario (Table 1—no Gaussians), we see that the QICA and symmetric Fas-

tICA with the POW3 function gives similar results as the JADE algorithm. It is rather not
surprising since the cost function of the JADE algorithm is based on 4th-order cumulants
and the POW3 function is closely related to the kurtosis.
In opposition to the JADE algorithm, the performance of the QICA and FastICA meth-

ods can be improved for some distributions by selecting appropriate non-linear functions.
It can be observed that if the TANH or GAUSS function is selected, we get higher SIR
indexes for mixtures with the Laplacian and GG (0.5) distributions.

Table 1 Average SIR (dB) for 4 components with the same distribution, after k = 40 iterations

QICA Symm. FastICA Deflat. FastICA JADE

PDF POW3 TANH GAUSS POW3 TANH GAUSS POW3 TANH GAUSS

Uniform 31.49 30.44 30.36 31.50 30.45 30.37 29.36 27.90 27.80 31.51

BPSK 34.24 34.24 34.24 34.25 34.23 34.24 76.80 80.88 80.33 34.24

GG(3.0) 21.48 21.72 21.62 21.31 21.59 21.46 18.28 18.29 18.18 21.37

Laplacian 23.10 27.32 27.57 23.48 27.40 27.57 20.70 24.17 24.44 23.09

GG(0.5 ) 27.33 31.91 31.45 27.64 31.86 32.37 26.18 30.03 30.61 27.46

Speech 20.64 24.79 25.58 19.65 22.82 22.98 19.13 22.06 22.67 21.68

Numbers in boldface show the best results
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Table 2 Average SIR (dB) for 3 components with the same distribution excluding 1 Gaussian source,
after k = 40 iterations

QICA Symm. FastICA Deflat. FastICA JADE

PDF POW3 TANH GAUSS POW3 TANH GAUSS POW3 TANH GAUSS

Uniform 29.46 28.65 28.58 26.99 27.22 27.35 28.02 26.90 26.81 29.38

BPSK 31.82 31.86 31.86 30.25 31.54 31.60 34.18 34.12 34.12 31.83

GG(3.0) 19.73 20.01 19.89 17.80 18.64 18.79 17.59 17.47 17.46 19.52

Laplacian 21.90 25.63 25.98 21.92 25.05 25.30 20.26 23.62 23.98 21.89

GG(0.5 ) 25.21 29.61 30.00 25.46 29.30 29.69 24.67 28.24 28.84 25.34

Speech 15.96 21.87 22.85 15.31 19.71 20.41 16.10 19.98 20.76 18.24

Numbers in boldface show the best results

By analyzing Tables 1, 2, and 3, it is also clear that the performance of all meth-
ods degrades with increasing the number of the Gaussian sources. However, the QICA
method appeared to be more robust in the presence of Gaussian sources. In the scenario
where one Gaussian source was used (Table 2), our algorithm provides substantially bet-
ter separation quality in almost all cases. This observation is even more evident in the last
scenario (Table 3), where two Gaussians were used. A similar examination can be made
for the JADE method, but the proposed method outperforms the JADE algorithm for the
Laplacian and GG(0.5) distributions.
Please note, that if there are no Gaussian sources, then each local minimum or max-

imum of the one-unit contrast function corresponds to one independent component.
Since the contrast function (16) is blind to Gaussian sources, in the presence of one or
more Gaussians, the number of local optima is usually lower than n, so that symmetric
orthogonalization, as in FastICA approach, may pose some stability issues. Most fre-
quently, this problem is mitigated by reducing the dimensionality of the observed data,
which in fact, involves the identification of non-Gaussian subspace. The simplest methods
for dimensionality reduction assume that information contained in the high-dimensional
data is essentially non-Gaussian, and it is located on a lower-dimensional manifold. Fur-
thermore, the Gaussian components are assumed to be one order of magnitude smaller
than the non-Gaussian components. In such a case, the dimensionality of the observed
data can be reduced by using, for example, the PCA technique. However, this is often a
too strict assumption on the data, and in general, the identification of the non-Gaussian
subspace is not a trivial task [45, 46].
Unlike the FastICA method, the QICA as well as the JADE approaches are inherently

orthogonal and thus more robust to signal model mismatch, i.e., situation where there is

Table 3 Average SIR (dB) for 2 components with the same distribution excluding 2 Gaussian sources,
after k = 40 iterations

QICA Symm. FastICA Deflat. FastICA JADE

PDF POW3 TANH GAUSS POW3 TANH GAUSS POW3 TANH GAUSS

Uniform 26.89 26.34 26.23 21.74 23.84 23.93 26.50 25.58 25.44 26.97

BPSK 29.47 29.53 29.54 26.10 28.53 28.62 29.53 29.49 29.47 29.34

GG(3.0) 17.54 18.23 18.13 14.80 16.06 16.07 16.39 16.62 16.32 17.40

Laplacian 20.43 23.93 24.16 20.03 22.91 22.75 19.40 22.62 22.85 20.41

GG(0.5 ) 23.55 27.62 28.03 23.72 27.06 27.21 23.28 26.87 27.31 23.69

Speech 8.85 15.75 16.82 7.93 13.28 13.67 8.92 14.22 15.60 9.97

Numbers in boldface show the best results
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more than one Gaussian source. It can be verified empirically that the data rotations are
performed in the non-Gaussian subspace only. Thus, these methods are able to success-
fully recover non-Gaussian components even if the observationmixtures containmultiple
Gaussians.

4.3 Convergence rate

Figure 5 presents average SIR indexes versus iteration number obtained for various data
distributions and the number of components ranging from 4 to 12. In this experiment, no
Gaussian sources were used. In the case of the QICA and symmetric FastICA algorithm,
the GAUSS non-linear function was selected. The deflation-based FastICA is not consid-
ered here, as it works differently by recovering the components one by one. We observed
empirically that, for the first component, the accuracy of this method is similar to that of
the other approaches. However, for the remaining components, we noticed a substantial
performance drop due to deflationary orthogonalization. Thus, on average, this method
performs rather poorly as compared to other algorithms (see Table 1).
In the case of n = 4 channels, we do not observe any significant difference in the

convergence rate of the QICA and symmetric FastICA algorithms for most distribu-
tions. However, the proposed method evidently wins with the FastICA, for n > 4. The

Fig. 5 Average SIR index as a function of sweep/iteration number, obtained using QICA (circles), symmetric
FastICA (squares), and JADE algorithm (triangles) for various data distributions. a Uniform distribution. b BPSK
signals. c Sub-Gaussian distribution. d Laplacian distribution. e Super-Gaussian distribution. f Speech
distribution represented by randomly selected frames of the real speech recordings
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only exception is the BPSK distribution, where the QICA algorithm converges slowly as
compared to the reference methods. Although the SIR decreases with the increase in
the number of components, this degradation is similar for all approaches and can be
compensated by increasing the number of samples [30].
It can be observed that the JADE algorithm needs the smallest number of sweeps to

converge, but its accuracy is considerably lower than that of the QICA or symmetric Fas-
tICA for most distributions. This is because the JADE algorithm is based on 4th-order
cumulants which are known to be less sensitive for some mixtures, e.g., Laplacians and
super-Gaussians.
Since there is a difference in the number of rotations per sweep between the QICA and

JADE algorithms, and both methods can be configured to use the same stop criteria, it
may be interesting to measure the total number of rotations that are needed to achieve
convergence. Hence, in the next experiment, the maximum number of sweeps was set to
kmax = 100 and the minimum rotation angle was ζ = 0.01 for both methods. Figure 6
presents the total number of rotations and corresponding SIR index measured for Lapla-
cian distribution versus the number of components. As indicated in Section 3.4, theQICA
method requires approximately 2 times fewer rotations per sweep than the JADE algo-
rithm, but it also needs more sweeps to converge. Therefore, the total number of rotations
is similar for both methods.

4.4 Computational complexity

Convergence rate measured by the number of iterations or data rotations is not the only
factor that determines the speed of the algorithms. In fact, the computational cost of the
single iteration, as well as the total execution time, is different for each method. Figure 7
presents the average execution times measured for various data sizes and algorithms. Due
to significant differences in the implementation of the compared algorithms, we analyze
both the execution time of an initialization stage and the time of a single iteration.
It can be seen in Fig. 7a that the initialization stage of the QICA algorithm is identical to

that of the FastICA approach. Since it only consists in whitening the input data, it is much
simpler and less memory demanding than the initialization stage of the JADE method. In

Fig. 6 Comparison of the QICA and JADE algorithms for Laplacian distribution and various numbers of
components. a The number of rotations needed to achieve convergence. b SIR index measured after
reaching the convergence
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Fig. 7 Execution times obtained for QICA, symmetric FastICA, and JADE algorithms for various numbers of
samples with fixed n = 4 (top) and various numbers of components with fixedm = 1000 (bottom). a
Initialization time. b Average time of single iteration/sweep

the case of the JADE method, apart from whitening the input data, it is also necessary to
estimate n(n + 1)/2 cumulant matrices each of size n × n. Obviously, these operations
involve the processing of the whole data set of size n×m samples, but they are performed
only once. Thus, the memory requirement for the JADE method is of order O(nm + n4)
as opposed to O(nm) for the QICA method.
It can be verified in Fig. 7b that the execution time of a single sweep of theQICAmethod

increases quadratically with the number of components and linearly with the number
of samples. So our method is characterized by the computational complexity of order
O(n2m). The computation time of a single iteration of the JADE algorithm also increases
quadratically with the number of components, but it is constant with respect to the num-
ber of samples. This is because it consists in updating the cumulant matrices only, which
does not involve any explicit transformation of the input signals. Thus, its complexity is
of order O(n2).
Although the QICA method requires fewer rotations per single sweep than the JADE

algorithm (or the same number in total), these rotations are more complex, and similarly
to the FastICA method, in every sweep all data samples must be transformed. As we see
in Fig. 7b, for a relatively small number of samples and a large number of components, the
average execution time of the single iteration of the proposed method is similar or even
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smaller than that of the JADE method. On the other hand, we also see that even for such
a small number components as n = 4 the single iteration time of the QICA method is
about six times longer than that of the symmetric FastICA approach.
Although the contrasts for the QICA and FastICA are slightly different, both methods

maximize the negentropy measure which involves the evaluation of the same non-linear
functions. Regardless of the implementation, both methods must, at some point, com-
pute these functions and/or their derivatives. In the case of the QICA approach, for
each rotation, three functions: ḡ, ḡ′, and ḡ′′ have to be evaluated twice per every four-
dimensional subproblem. Thus, at each sweep, we have 3nm(n − 2) function evaluations
in total. Please note that these operations can be redundant when the rotation angles
are approximately close to zero. The FastICA approach requires evaluating the functions
g′ and g′′ only once per component [9], so each iteration is related to 2nm evaluations
in total.
The computational complexity of the proposed method can be reduced by taking into

account the specific structure of the matricesM±(u). In this case, the matrix-vector mul-
tiplication can be implemented using only 8 real multiplications [47]. On the other hand,
multiplication of the 4×4 matrices can be implemented more efficiently on specific hard-
ware architectures. Our method consists in decomposing high-dimensional BSS problem
into four-dimensional subproblems. So it well suits modern GPUs and CPUs which sup-
port processing four-element vectors. In particular, typical GPUs are able to read 128
bits in one cycle and one instruction. Hence, accessing four-element vector-data can be
faster than accessing four scalar elements (i.e., 32-bit single-precision floating-point num-
bers). Moreover, for some architectures (AMD GPUs), it is essential to organize data
into four-element vectors to maximize efficiency [48]. Please note that in the case of the
CPU-based implementation it is also possible to use 128-bit SSE/AVX instructions. Other
ICA algorithms can be expressed in terms of operations on four-element vectors, but
this is unnatural, is difficult, and results in suboptimal implementations compared to our
approach.

5 Conclusion
We have shown that the quaternionic factorizations of 4 × 4 orthogonal matrices can
be successfully used in the Jacobi ICA estimation framework for even n ≥ 4. Namely, a
novel ICA method has been developed, which, on the one hand, follows the Jacobi-based
framework and, on the other hand, utilizes the contrast function based on negentropy
approximation. We have shown that the optimization task can be reduced to the prob-
lem of a one-dimensional search on a unit circle and solved using the Newton-Raphson
method.
The proposed algorithm outperforms the FastICA approach in terms of separation

quality if the observation mixtures contain one or more Gaussian sources. It also shows
a faster convergence rate than FastICA approach for most PDFs. Unlike the JADE algo-
rithm, the proposed method can be adjusted to match a given distribution by selecting
an appropriate non-linear function that approximates the negentropy. The developed
method tends to be more computationally demanding than the state of art approaches,
i.e., symmetric FastICA and JADE algorithm. However, we believe that the method can
be optimized by taking into account specific structure of the quaternion-based rotation
matrices.
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Future works include rigorous stability analysis of the designed algorithm, further opti-
mizations, and developing a GPU-optimized implementation, where the utilization of the
four-dimensional rotations seems to be especially promising.

Appendix
The derivatives of the quaternionic rotation matrices with respect to the components of
the quaternion are given by:

∂M−(u)

∂u0
=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

∂M−(u)

∂u1
=

⎡
⎢⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎥⎦ ,

∂M−(u)

∂u2
=

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎦ ,

∂M−(u)

∂u3
=

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎥⎦ ,

∂M+(u)

∂u0
=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

∂M+(u)

∂u1
=

⎡
⎢⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎥⎦ ,

∂M+(u)

∂u2
=

⎡
⎢⎢⎢⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎦ ,

∂M+(u)

∂u3
=

⎡
⎢⎢⎢⎣

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦ .
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