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Abstract

Myoelectric signals are regarded as the control signal for prosthetic limbs. But, the main
research challenge is reliable and repeatable movement detection using
electromyography. In this study, the analysis of the muscle synergy pattern has been
considered as a key idea to cope with this main challenge. The main objective of this
research was to provide an analytical tool to recognize six wrist movements through
electromyography (EMG) based on analysis of the muscle synergy patterns. In order to
design such a system‚ the synergy patterns of the wrist muscles have been extracted and
utilized to identify wrist movements. Also, different decision fusion algorithms were used
to increase the reliability of the synergy pattern classification. The classification
performance was evaluated while no data subject was enrolled. In terms of the achieved
performance, using a multi-layer perceptron (MLP) neural network as the fusion algorithm
turned out to be the best combination. The classification average accuracy, obtained in an
offline manner, was about 99.78 ± 0.45%. While the classification average cross-validation
accuracy, obtained in an offline manner, using Bayesian fusion, and Bayesian fuzzy
clustering (BFC) fusion algorithm were 99.33 ± 0.80% and 96.43 ± 1.08%, respectively.
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1 Introduction
The electromyogram (EMG) signal represents the electrical potentials generated in the

muscles during muscle contraction, which shows the important neuromuscular informa-

tion [1]. The EMG signal recorded from each surface electrode is the total potential of the

motor units in the region where the electrode is positioned [2]. Due to the useful applica-

tion of EMG signal in clinical diagnoses, and biomedical applications as well as rehabilita-

tion, they are considered as one of the best resources of controlling (i.e., prostheses, robots,

and human-computer interfaces), recognition of intended limb movements [1, 3]. Extensive

research has been done in order to control various functions and increase the efficiency of

prostheses (i.e., several degrees-of-freedom (DoF). One class of the known control ap-

proaches are based on recognizing the pattern of EMG signals elicited from the residual

healthy muscles [3]. Many researchers are engaged in improving the performance of such

recognition algorithms in order to improve the efficiency of prostheses. Hence, the
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estimation algorithms, pattern recognition and regression methods [4, 5], and their combin-

ation [6, 7] are among the topics of interest to researchers.

Pattern recognition algorithms are applied to classify the EMG activity patterns in multiple

muscles. So, in these researches, the first step is windowing the EMG signal [8, 9] and extract-

ing a set of important features from time-windowed signal in the time domain (TD) [10, 11]

and in the frequency domain (FD) [10–13]. The computational cost of TD features is less than

the computational of FD features, yet yield comparable classification accuracy [10].. The classi-

fication accuracy in the classification model depends on the type of classification algorithm (i.e.,

supervised or unsupervised) and the features which are selected [12], [14, 15]. Also, it depends

on the type of subject (able-bodied or amputee) [3]. Sang et al. [10] recognized six predeter-

mined tasks of muscle activation patterns using TD features and linear discriminant analysis

classifiers in stroke subjects. Similarly, Francesco et al. [16] investigated the recognition of hand

and finger movements individually and reported the different accuracies for able-bodied sub-

jects and amputated ones. They used the feed-forward multi-layer perceptron (MLP) and four

TD features [16]. In the other study, Chu et al. [13], nine types of wrist movements were de-

tected based on packet wavelet analysis using MLP and self-organizing feature map (SOFM)

neural networks with an accuracy of 97%. The research results of the past decades have shown

that the pattern recognition-based methodology has promising results [12]. But some impedi-

ments such as number of the selected features, the computational cost of the required, and the

minimum number of the data required for training the classifier can limit their practical appli-

cations. The other challenge is detecting the movements with multi DoF [17, 18], and some re-

search works were focused on detecting the movement with only one DoF [3, 6, 8].

The authors believe that most of these challenges are raised because of specificity move-

ment detection approaches used in the aforementioned researches. In fact, according to a

specificity approach, activation dynamics of each involved muscle is analyzed distinctly. In

this manner, the muscle coactivation dynamics, characterizing the movement pattern, cannot

be revealed. While using the synergy-based analysis, the muscle interaction dynamics can be

studied. The synergy-based analysis is a type of movement analysis which addresses the

interactive behavior among the involved sub-systems (muscles, joint), instead analyzing the

behavior of each sub-system (muscles, joints) separately. Since the real movement emerged

from the interaction among the muscles, it is expected that the synergy-based analyses can

better reveal and discriminate the different motion dynamics in comparison with the non-

synergetic analyses. Therefore, the analyses approaches designed based on muscle synergy

patterns can be preferable to the analyses approaches based on the electromyography of the

individual muscle distinctly. But most of the related published works have been designed

based on electromyography of the individual muscle distinctly [13–17]. Hence, researchers

believe that controlling and detecting neural information based on synergistic patterns [3, 8,

18–21] is preferable than other methods [2, 4–6]. Recently, studies have been done on the

synergy pattern [3, 8, 18–21]. For example, Jiang et al. [3] extracted muscle synergy patterns

using non-negative matrix analysis in order to two DoF control of wrist. Similarly, Jiaxin

et al. [21] used muscle synergy matrixes to control wrist movements (open, close, pronate,

and supinate). The main goal of this paper is presenting a new muscle synergy-based wrist

movement recognition algorithm. In this study, the extracted muscle synergy patterns were

used as the input data for SOFM classifiers instead the TD or FD features. For improving

the movement recognition performance, six different classifiers were applied, and different

fusion algorithms were used to combine the classification results.
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It is worth noting that muscle activation onset can give rise to the presence of transient

dynamics which may degrade the performance of movement classifiers. Therefore, in this

study, a specific algorithm has been utilized for muscle activation onset detection.

2 Materials and methods
2.1 Experiments and data collection

In this study, eight able-bodied subjects (5 males, 3 females: 26–40 years; all right-handed)

without any history of a disease or other skeletal disorders participated in the experiment.

Everyone read and signed the consent form before any data was collected and the local eth-

ics committees approved this study. During the experiments, the subject seated comfortably

and held a hand horizontally forward and in pronation. For all individuals, six pairs of Ag–

AgCl surface bipolar electrodes were placed on the extensor digitorum, flexor pollicis

longus, extensor carpi ulnaris, abductor pollicis longus, pronator teres, and supinator fore-

arm muscles. The reference electrode is placed on the ulnar styloid bone. In these subjects,

surface EMG signals of wrist movements were recorded by a commercial bio-signal ampli-

fier (16 channels, ME6000, Canada) with a 1000 Hz sampling frequency. Wrist movements

included extension, flexion, abduction, adduction, pronation, and supination. Each move-

ment was repeated 10 times; the duration of each repetition and the rest time between the

repetitions were recorded 4–5 and 3 s, respectively. Sixty seconds of interruption was con-

sidered between movements individually to relieve muscle fatigue. The total duration of

each movement was 72 ± 5 s. The EMG data were filtered between 10 and 450 Hz using a

fourth-order Butterworth bandpass filter to reduce the effects of noises and movement arti-

facts. Maximum voluntary contractions were performed before the data were collected to

verify the validation of the electrodes and normalize the signal. All processing was done in

Python library and MATLAB 64 bit, running on a system with a 1.8 GHz processor and 6

GB of memory. Figure 1 illustrates the experimental setup.

The appropriate response time for hand myoelectric control has to be less than 300 ms

[22]. Because, in this manner, no delay will be perceived by user [22]. Therefore, the moving

window length was set to 256 ms (256 samples at 1000 Hz sampling) in conformity with

the previous researches [13, 22]. The more important parameter is window increment

length which data processing has to be carried out during this time band. In this study, ac-

cording to the calculated processing times, the incremental window was set to 10 ms and

increased gradually to 150 ms. Each incremental step was 10 ms. In this manner, the influ-

ence of the incremental window length on the proposed detection algorithm was evaluated.

2.2 The proposed movement detection algorithm

To address the wrist task discrimination problem, we have proposed a protocol that allows

us to use the EMG data for differentiating the tasks from one set. The input of this pro-

posed protocol is EMG data and its outputs are the detected tasks. At the first step, the hier-

archical alternating least squares (HALS) algorithm was used for extracting the muscle

synergies of the wrist movement from filtered EMG signals. Then, extracted muscle syner-

gies, as the extracted features, were regarded as the input data for classification. Two differ-

ent classification algorithms were applied and compared. In the first algorithm, a single

SOFM network was used as a single classifier. In the second algorithm, a fusion method

was utilized alongside six distinct SOFM networks, as six distinct classifiers, for detecting
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six different wrist movements. The applied SOFM networks were trained using the Koho-

nen algorithm as an unsupervised algorithm [23]. We evaluated four fusion methods includ-

ing SOFM, MLP fusion, Bayesian fusion, and Bayesian fuzzy clustering (BFC) fusion

algorithm, respectively. The schematic of the proposed scheme is shown in Fig. 2.

In order to assess the proposed algorithms performance, a K-fold cross-validation (K

= 10) method was adopted. For performing this approach, the samples of data recorded

during each wrist movement was labeled firstly to determine the type of wrist move-

ment elicited each recorded data. Then, the labeled data was partitioned into 10 sub-

sets. During each round of cross-validation, the training process performed on one

subset (called training set), and validating process performed on the other subsets

(called the testing set). Multiple rounds of cross-validation were performed using differ-

ent partitions, and the validation results were combined.

2.3 Identification of the synergy model

EMG signal analysis is a linear combination of time-varying muscle synergies, with each

synergy individually having an amplitude and a time shift. The weight coefficient and syn-

ergy of each muscle are different for each motion. Each synergy has a weight coefficient and

a range of amplitude as well as a time shift, by combining these synergies, the muscle activa-

tion pattern is generated [24]. The time-varying synergy model is defined as follows [24]:

Fig. 1 Experiment setup. a Surface electrode placement on forearm muscles. b Initial wrist position. c Wrist
movements. d The muscles activity of wrist extension consist of extensor digitorum (ED), flexor pollicis longus
(FPL), extensor carpi ulnaris (ECU), abductor pollicis longus (APL), pronator teres (PT), and supinator (Sup) for 10
times repetition. e Test paradigm which the recording protocols were carried out according to it
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M tð Þ ¼
XN

i¼1
ciwi t − tið Þ→M ¼ CW ð1Þ

W ¼ w1;w2;…;wk½ �∈R1�T
þ

C ¼ c1; c2;…; ck½ �∈R1�T
þ

Here, M is the time-varying muscle activity pattern; N denotes the number of time-

varying synergies, ci is a non-negative coefficient for synergy ith; and ti is the delay in

the start of synergy ith. w is a synergistic matrix and wi is the muscle activity for ith

synergy at time ti. Here, C and W are non-negative.

The synergy patterns of each movement are extracted by the HALS algorithm [25] from

the corresponding EMG signal. In this method, a gradient of a local cost function based on

the optimality conditions (KTT) [26] is used to update the stationary points (i.e., the matrix

of coefficients and the synergies). The cost function using the Frobenius norm is as follows:

Dk
F Mkkckwk
� � ¼ 1

2
Mk −

�� ckwkk2F ð2Þ

Where Mk is the time-varying muscle activity pattern, Ck and Wk are the matrix of

synergy matrixes and their corresponding coefficient matrixes, respectively; k denotes

the number of current iteration of the HALS algorithm.

Detailed description for the synergy is presented in Table 1.

2.4 Applied classification methods

In this study, two different classification methods have been used. Figure 2 shows the struc-

ture of the adopted methods. The first algorithm was designed based on using a single

SOFM without using the fusion algorithms. The second algorithm was designed based on

using multi SOFM alongside the fusion algorithms. The proposed methods are elaborated

in the following subsections.

2.4.1 Classification using single SOFM

In this study, we propose an unsupervised learning and SOFM as a competitive network.

During training, the SOFM network, the Euclidean distance between each input training

Fig. 2 Schematic of the proposed wrist movement detection strategies. In the first algorithm, no fusion
algorithms were used and a single SOFM classifier was used. In the second algorithm, the fusion algorithms
(MLP based, Bayesian based, BFC based) were used along with six SOFM classifiers
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samples vector and the weight vector of each neuron is taken. The Kohonen algorithm was

used for training the SOFM network. In performing the Kohonen algorithm, the weight vec-

tor of each neuron is updated gradually in a manner that the Euclidean distance between

the input training samples vectors and the weight vector of each neuron reduces. In this

manner, all the neurons are involved in a competition. At the end of the training process,

the neuron which its weight vector has the minimum Euclidean distance to the input train-

ing samples vectors is regarded as the winner neuron among all neurons [23]. This winner

neuron is called the best matching unit (BMU), and its weight vector is called voronoi vec-

tor. The position of the winner neuron within the SOFM network determines the label of

the class which the date belongs to it. The position of the winner neuron changes as the

class which the input training samples vectors belongs to it, changes. In this manner, the

SOFM network can be used for multiclass classification. Accordingly, in this study, the per-

formance of a single SOFM was firstly evaluated for classification of six wrist movements

(Fig. 2, the first algorithm). The range of changes is decreased based on the time and dis-

tance from the BMU. In this study, a 10 × 10 two-dimensional (2D) lattice SOFM with

neighborhood function h(t) with radius of σ(t), a learning-rate parameter η(t), and training

of 1000 epochs were used. The learning rate and neighborhood functions are applied as de-

creasing functions to the SOFM network [13] and defined in (3) and (5), respectively.

h tð Þ ¼ exp
− dist2

2σ2 tð Þ
� �

ð3Þ

Here, dist is the neuron distance from BMU in the two-dimensional SOFM network,

σ(t) is the width of neighborhood at the instant, and t is defined by an exponential

decay function in (4).

σ tð Þ ¼ σ0e
− t

τð Þ ð4Þ

Here, σ0 is the radius of neighborhood at the instant t0is 20 [13].

η tð Þ ¼ η0e
− t

τð Þ ð5Þ

Where η0 is the value η(t) at the instant t0 is 0.9 [13]. The learning-rate parameter de-

crease gradually with increasing time t. Constant value τ is 2000 and t is the number of

iterations. The t and τ are unit-less constants. The network input is the synergy pattern

extracted using HALS algorithm.

Table 1 Mathematical description of the HALS algorithm

Definition Description References

Mk ¼ M −
X
p≠k

CpW
T
p ¼ M − CWT þ CkW

T
k

Time-varying
synergy model

[25]

∂Dk
F ðMkkckwkÞ

∂ck
¼ ckwT

k ck −Mkwk

∂Dk
F ðMkkckwkÞ
∂wk

¼ cTk ckwk −Mkck

Computing the
local gradient of
the cost function

[25, 26]

wk← 1
cTk ck

½MT
k ak �þ ¼ 1

cTk ck
maxfε;Mkwkgck← 1

wkwT
k
½MT

k ak �þ ¼ 1
wT

k wk
maxfε;Mkckg The updating

rules [ξ]+ = max {ε,
ξ} is a positive
small integer
(usually10−10).

[25, 26]
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In the end, voronoi vectors are applied to the fusion block. Detailed description

for the task discrimination with this approach is presented in Algorithm-I

2.4.2 Classification using multi SOFM

In this approach, each SOFM network was used as a two-class classifier to recognize a

single movement. Since six different movements must be differentiated, six SOFM net-

works were applied (Fig. 2, the second algorithm). Then, for improving the perform-

ance, different fusion algorithms were used to combine the classification results (Fig. 2,

the second algorithm). The applied fusion algorithms are elaborated in the following

sub-sections.

2.4.2.1 MLP-based fusion In this study, the MLP network has been used to

process output data of the SOFM network. The extracted muscle synergy matrixes

were regarded as the input data of the MLP network. The MLP network has two

hidden layers. Each hidden layer had 10 neurons with the rectified linear activation

function (Eq. 6). The number of neurons in the output layer was six, and the soft-

max was regarded as the activation function of the output neurons (Eq. 7).

F xð Þ ¼ xþ ¼ max 0; xð Þ ð6Þ
Where x is the input to a neuron in hidden layer ith.

Ok ¼ exp zkð ÞP
j exp z j

� � ð7Þ

zk ¼ w0k þ
Xj

j¼1

hj xð Þwkj

In the formula, k represents the index of the output node, and j represents the

indexes of all nodes in the group or layer. The Levenberg-Marquardt used as

the learning algorithm. The network structure was used as determined by trial

and error based on K-fold cross-validation results. Two hidden layers were envi-

sioned which each layer had 10 neurons. Figure 3 shows the structure of the

used MLP.

Algorithm-I: Task discrimination (SOFM algorithm)

Step 1: Randomly determine the initial values (t=0) of the network’s weights (from the input i to the output
neuron j) (0≤ i ≤ n − 1)wij(t)
Step 2: Enter the inputs to the network
Xt = [x0(t), x1(t), x2(t),…, xn − 1(t)]
Step 3: Calculate distances between input vector Xt and each output node j weight vector wij(t) using the
Euclidean criterion.
d j ¼

Pn − 1
i¼0 ðxiðtÞ −wijðtÞÞ2

Step 4: Select the winner j* neuron with the least distance
min(d1, d2, …, dn − 1)=dj

*

Step 5: update wij(t),σ(t), η(t)
The new weight coefficients are calculated using the given equation.
wij(t + 1) =wij(t) + η(t)h(t)(x(t)- wij(t))
Step 6: t+1=t, if the network training is not completed, the process is repeated from the step 2.
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2.4.2.2 Bayesian model-based fusion The Bayesian classifier is a straight forward based

on probabilities inference. There is a probability model for each quantity that can be

adopted optimal decisions by assumption about the probability distribution of new data. For

estimating the parameters Bayesian model, the maximum likelihood estimation approach is

applied. Given the proposed probability model, Bayesian classifier is trained by supervised

learning. Let us suppose the X is input data which contains n synergy vectors {xi : i = 1, 2, …,

n}, and Cj shows the jth class which X can belong to it {Cj : j = 1, 2, …, c}. Then, the

conditional probability of class Cj to input X is can be calculated as follows [27]:

P XjC j
� � ¼ P C jjX

� �
:P Xð Þ

P C j
� � ð8Þ

Fig. 3 Structure of the used MLP artificial neural network with two hidden layers. Where x and y are the
input and the output. hi is ith hidden layer and bi is a bias term. Wi are the parameters of the ith layer

Fig. 4 R2 index variation vs. synergy vectors number plotted for each wrist muscle
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The conditional probability of class Cj to input X is calculated using minimum error

Bayesian classification [27]. The input belongs to a class which has the highest

posterior probability.

arg max
c

P C jjX
� � ¼ arg max

c

P XjC j
� �

:P C j
� �

P Xð Þ ð9Þ

Where

P(Cj): The probability of belonging the input data to the jth class (Cj)

P(Cj| X): The probability of belonging the input data to the jth class (Cj) given that

the input data is X

P(X|Cj): The conditional probability of class Cj to input X.

P(X): The probability that the input data is X. P(X) is constant for all classes, only

the P(X|Cj)P(Cj) need to be maximized.

2.4.2.3 Bayesian fuzzy clustering-based fusion Fuzzy clustering is an unsupervised

algorithm which every data point from a data set simultaneously belongs to all

clusters with a varying degree of membership [28]. Each data point, Xn for n = 1,

2, …N has a non-negative membership function unc in each fuzzy set c = 1.2. ….

C. The membership function sum of each data point in all sets is equal to 1, i.e.,PC
c¼1

unc ¼ 1. In the BFC algorithm, first, the clusters center, yc, is selected as a ran-

dom variable; then the membership function (unc) is defined using (10) [28].

unc ¼ 1=d Xn − ynð Þ2PC
k¼11=d Xn − ynð Þ2 ð10Þ

Where, d(Xn − yc)=‖Xn − yc‖ is Euclidean distance.

The prior distribution for clusters membership functions is defined as follows

[28]:

~p U Yjð Þ ¼
YC

c¼1
u

− mD
2

nc

� �
Dirichlet un αjð Þ ð11Þ

Where D is the data dimensions. The negative power in
QC
c¼1

u
− mD
2

nc produce

some values of m and D out of the interval [0, 1]. Therefore, inverse-gamma

distributions are used. α ¼ mD
2 − 1 have a small value. Dirichlet is defined as fol-

lows [28]:

Dirichlet x αjð Þ ¼
Γ

PK
k¼1ak

� �
QK

k¼1Γ akð Þ
YK

k¼1
χ
ak − 1

k ð12Þ

Here, xk is for all k = 1. …. K xk ≥ 0 and
PK
k¼1

xk ¼ 1. If α > 1, membership values

converge to values (0 or 1) else fuzzy membership values are selected. α = 1C is a

column vector of all ones that clustering output has not been affected. To simplify,

conditional distribution of the memberships, p(U|X,Y) is obtained from an uniform

symmetric Dirichlet distribution [28].
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uþn � Dirichlet α ¼ 1Cð Þ ð13Þ

To substitute un with the new membership sample uþn , first the values un and uþn
must be obtained by (14), then uþn replaces un with the condition (15) [28].

~p xn:unð j Y Þ ¼ p xnjun:Yð Þ~p unð j Y Þ∝
YC
c¼1

exp
− 1
2

umnc Xn − yck2
��	 


uαc − 1
nc ð14Þ

au ¼ min 1:
~p xn:uþn
� �� Y Þ
~p xn:unð j Y Þ

	 

ð15Þ

Gaussian prior distribution on the clusters center using average and covariance of the

clusters center is as follows [28]:

p Yð Þ ¼
YC
c¼1

N ycjμy:Σy

� �
ð16Þ

μy ¼
1
N

XN
n¼1

xn ð17Þ

Σy ¼ γ
N

XN
n¼1

xn − μnð Þ xn − μnð ÞT ð18Þ

Here, the control parameter γ is Gaussian prior variance on the clusters center, in

which γ < 1 tends toward average data. For simplicity, the new values of the clusters

center are considered as follows [28]:

yþn � N ðyc: 1δ ΣyÞ (19)
Here, δ is the sample acceptance rate.

In order to create a new cluster in the samples space first, the cluster values yþn and

yn should be calculated in (20), then the new cluster is replaced by yn with considering

condition (21) [28]:

p X:unjUð Þ ¼ p XjU:ycð Þp ycð Þ∝ exp
− 1
2

XN
n¼1

umnc Xn − yck2
��( )

� exp
− 1
2

yc − μy
� �T

Σ − 1
y yc − μy

� �	 

ð20Þ

ay ¼ min 1:
~p xn:yþc
� �� UÞ
~p xn:ycð j UÞ

	 

ð21Þ

Detailed description for the task discrimination with this approach is presented in

Algorithm-II.

Algorithm-II: Task discrimination (Bayesian Fuzzy Clustering)

Step 1: Determine the initial values of the clusters (yc) randomly from the samples and calculate the initial
membership functions from (10)
Step 2: Calculate the mean value and covariance of clusters centers from (17) and (18)
Step 3: Create membership functions and new cluster centers for all samples from (13) and (19)
Step 4: Calculate the new and initial membership functions using (14)
Step 5: If ~pðxn:uþn j YÞ > ~pðxn:unj YÞ then un← uþn
Step 6: Calculate the new and initial cluster centers using (20)
Step 7: If ~pðxn:yþc j UÞ > ~pðxn:ycj UÞ then yc← yþc
Step 8: Step 3 to 7, they are repeated in Niter

Masoumdoost et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:43 Page 10 of 19



3 Results
3.1 Wrist muscle synergies

At the first step, the number of the synergy vectors required to discriminate different

tasks was determined. R2 criterion was used to determine the number of synergies in

(22) [19]. Here, SSE is the sum of the remaining squares, SST is the sum of the

remaining squares of the mean activation vector (m). Figure 4 shows the number of

muscle synergies is used in the HALS algorithm to reach the best reconstruction

accuracy. The R2 criterion for all individuals and tasks with muscles synergy number

was evaluated (1–8) using (22).

R2 ¼ 1 −
SSE
SST

¼ 1 −

X
s

Xks
k¼1

ms tkÞ −
X

i
csiwiðtk − tsi

� ���� ���2
X
s

Xks
k¼1

ms tkÞ −mð Þk k2
ð22Þ

The R2 value obtained as the number of synergies were larger than 5 and was nearly

stable (R2 ≥ 0.96). Figures 4 and 5 show the value of the computed R2 changes with

respect to the number of the regarded synergy matrixes. As it can be seen, the

reconstruction accuracy has significantly increased as the number of synergy matrixes

hit 5 and more (p < 0.05). But, no significant improvement was observed when the

number of synergy matrixes increased more the 5 (p > 0.05). As shown in Fig. 6a,

reconstruction accuracy has been significantly improved due to increasing the number

of synergy patterns from one to five (p < 0.05). According to the carried out analyses,

the achieved results were repeatable. For example, as shown in Fig. 6b, the same result

has been achieved using the data recorded during different recording trials. It can be

seen again in Fig. 6 that reconstruction accuracy has been significantly improved due to

increasing the number of synergy patterns from one to five.

3.2 Quantitative comparison of the proposed methods

3.2.1 Evaluation without applying the moving window

At first, the performance of the proposed detection algorithm implemented using

different fusion strategies was evaluated while only 70% of the data recorded during

performing movement used for processing and detection. In other words, the early and

final parts of the data samples, related to muscle activation onset and offset, were

removed. In this manner, the data were related to the transient times coincide with the

muscle activation onset and offset were removed. As a preliminary evaluation, it can be

an acceptable compromise between off-line accuracy and real-time performance [8].

In order to assess algorithms performance, a K-fold cross-validation (K = 10)

method was adopted. Then, the quantitative measures computed to compare the

efficacy of the applied classification methods using ANOVA test. The statistical

analysis showed that there is no significant difference (p > 0.05) among the overall

accuracies and sensitivities of the classification methods designed utilizing the

MLP, Bayesian, and BFC fusion algorithms along with the classifiers. Overall speci-

ficity of BFC-based classifiers significantly differs from two other classifiers de-

signed based on MLP and Bayesian fusion algorithms (p < 0.05). In addition, there
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is a significant difference (p < 0.05) between the performance of the SOFM-based

classification method and used fusion-based classification methods.

Figure 7 shows the overall results and comparison of the proposed algorithms

using the data recorded from different subjects. As Fig. 7 shows, using a single

SOFM entailed the accuracy value, sensitivity value, and specificity value equal to

87.88 ± 1.54%, 83.38 ± 1.93%, and 74.51 ± 3.03%, respectively. Also, the accuracy

values for MLP, Bayesian, and Bayesian fuzzy clustering (BFC) fusion algorithms

were 99.78 ± 0.45%, 99.33 ± 0.80%, and 96.43 ± 1.08%, respectively. Also,

sensitivity value for MLP, Bayesian, and Bayesian fuzzy clustering (BFC) fusion

algorithms were 99.78 ± 0.45%, 99.31 ± 0.79%, and 95.93 ± 1.74%, respectively. In

addition, the specificity values for MLP, Bayesian, and Bayesian fuzzy clustering

(BFC) fusion algorithms were 98.96 ± 1.06%, 98.56 ± 1.08%, and 90.63 ± 1.56%,

respectively. Overall, the average accuracy, average specificity, and average

sensitivity achieved through utilizing the fusion algorithms were 97%, 95%, and

96%, respectively. While the average accuracy, average specificity, and average

sensitivity achieved through utilizing a single SOFM classifier were less than 88%,

less than 75%, and less than 85%, respectively.

The presence of learning interference due to using a single SOFM classifier might

cause such relatively low efficient classification. In fact, it can be clearly seen that

adopting the fusion algorithms has improved the movements separation.

3.3 Evaluation with applying the moving window

After preliminary evaluations, the detection algorithms were evaluated again while a 256

ms moving window was applied. In fact, a sliding window (256 ms) was moved over the

data recorded during a movement. The time window was moved by the moving step

called window increment length. In this context, an online mechanism for muscle

activation onset detection (integrated profile method) has to be used [29]. According to

the adopted mechanism, the continuous integration of rectified SEMG was conducted.

Fig. 5 The value of the computed R2, as a quantitative measure showing the reconstruction accuracy, with
respect to the number of the regarded synergy patterns
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Then, the difference between the conducted integration and a reference line was

computed over the time. The time instance at which the computed difference value was

equal to the maximum value and was regarded as the onset time [29]. Table 2 describes

the applied detection strategy, briefly.

As emphasized previously, the window increment length which data processing has

to be carried out during this time band is so important. In fact, the processing time

Fig. 6 The sample reconstructed muscle activation patterns, extracted as the number of the assigned
muscle synergy patterns has been increased, using the collected data during two different trials

Masoumdoost et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:43 Page 13 of 19



must be less than or at least equal to the envisioned window increment length.

Therefore, the processing time needed for performing the proposed algorithm as

implemented using different incorporated fusion algorithms. Since the classification

performance using a single SOFM was not acceptable, the single SOFM classifier was

excluded. Table 3 shows the calculated processing time related to the proposed

detection method as implemented using different fusion algorithm.

As Table 3 shows, the needed processing times are less than 10 ms. Accordingly, the

increment window length must be set to at least 10 ms. In order to determine the optimal

increment window length, incremental window length increased gradually from 10 ms to

150 ms. Each incremental step was 10 ms. The statistical analyses (AVOVA) proved that

increasing the increment window length did not have a significant influence on the overall

performance of the proposed classification methods designed using incorporating the

different fusion algorithms (p > 0.05). Therefore, the increment window length was set to

the least possible size equals 10 ms. Then, the assessment procedures repeated again using

K-fold cross-validation method (K = 10). As Fig. 8 shows, using a single SOFM entailed the

Fig. 7 The computed accuracy (a), specificity (b), and sensitivity (c) of each implemented classification
method using the recorded data related to 8 subjects without applying the moving window
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accuracy value, sensitivity value, and specificity value equal to 86.54 ± 2.12%, 80.73 ± 1.63%,

and 72.98 ± 2.13%, respectively. Also, the accuracy values for MLP, Bayesian, and Bayesian

fuzzy clustering (BFC) fusion algorithms were 99.78 ± 0.45%, 99.33 ± 0.80%, and 96.43 ±

1.08%, respectively. Also, sensitivity value for MLP, Bayesian, and Bayesian fuzzy clustering

(BFC) fusion algorithms were 98.51 ± 0.83%, 97.52 ± 0.95%, and 95.80 ± 1.51%, respectively.

In addition, the specificity values for MLP, Bayesian, and Bayesian fuzzy clustering (BFC) fu-

sion algorithms were 97.77 ± 0.50%, 97.15 ± 0.11%, and 88.24 ± 2.11, respectively. Overall,

using the fusion algorithms yielded the average accuracy more than 96%, the average specifi-

city more than 93, and the average sensitivity more than 94%. According to the statistical

analysis, it was showed again that there is no significant difference (p > 0.05) among the

overall accuracies and sensitivities of three utilized fusion-based classification methods.

While overall specificity of BFC-based classifiers significantly differs from two other classi-

fiers designed based on MLP and Bayesian fusion algorithms (p < 0.05).

4 Discussion
In this paper, the separation of different wrist movements based on muscle synergy

patterns was performed using SOFM and based on fusion (i.e., MLP, Bayesian, and BFC)

algorithms. The idea of this approach is to use synergy patterns to cover the coordination

between the muscles. Furthermore, the fusion mechanism was used to enhance the

separation of movements due to the different synergy patterns. The obtained results can

be analyzed from different aspects. We will discuss these aspects as follows.

4.1 Number of the synergy patterns

In this study, the effect of the number of extracted synergy vectors on reconstruction

error of the wrist muscle activation pattern was analyzed. The results show that

increasing the number of synergy vectors more than 5 did not improve the reconstruction

performance. In addition, the performance of the movement detection for all subjects are

close to each other using five identified synergy patterns. As a result, it can be considered

that muscle activity pattern of each movement is extractable with a limited number of

synergy vectors. Such results are in conformity with assumptions related to the muscle

synergy theory [18], [30, 31].

Table 2 The integrated profile method utilized for muscle activation onset detection [29]

Steps Description

1 − IPðtÞ ¼ Pt
i¼1 j xðiÞ j Obtaining the integrated profile (x is the EMG signal)

2 − LðtÞ ¼ IPðMÞ t
N Defining a reference line L(t) represents the integral of a signal

3 − D(t) = ∣ IP(t) − L(t)| Computing the absolute value of the difference between L(t) and IP(t). (the time point
at which D(t) reaches its maximum value, is defined as muscle activation onset time)

Table 3 The calculated processing time related to the proposed detection method as
implemented using different fusion algorithm

Incorporated fusion algorithm Calculated processing time (ms)

MLP 10

BFC 5

Bayesian 3
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4.2 The role of the fusion algorithms

The preliminary results that showed the performance of a single SOFM, as a classifier,

were not acceptable. It was attributed to the learning interference could arise from

possible mutual dependence among the different EMG signals recorded from different

participants. Therefore, adopting the fusion approaches seemed necessary to prevent

learning interference [32]. Before applying the fusion algorithm, some pre-processing is

recommended to enhance the separability of the input data [32, 33]. In this study, three

fusion algorithms with non-linear, probabilistic nature, and fuzzy characteristics have

been utilized. The obtained results showed that when a fusion method is used, the re-

sults of various movements separation in all participants increased significantly (p <

0.05) compared to a classification using a single SOFM. In fact, instead of using a clas-

sification block SOFM for all different movements, a classification block SOFM is con-

sidered for each separate movement. Then, the final output of the classification blocks

is applied to a fusion block. The statistical analysis showed that there is no significant

Fig. 8 The computed accuracy (a), specificity (b), and sensitivity (c) of each implemented classification
method using the recorded data related to 8 subjects with applying the moving window (moving window
length 256 ms, increment window length 10 ms)
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difference (p > 0.05) among the overall accuracies and sensitivities of three utilized

fusion-based classification methods. But, it is worth noting that the average specificity

of BFC-based classification method is significantly less than the average specificity of

the classification methods designed based on two other fusion algorithms. The BFC fu-

sion algorithm works based on creating the membership functions for each clusters

and determining the center of cluster using a probabilistic approach [28]. Therefore,

the performance of this fusion algorithm is fully dependent on the clustering accuracy.

In other words, mis-clustering can give rise to increase the number of members nega-

tively clustered in the clusters except the desired cluster (false positive (FP)). Thus, such

relatively lower specificity can be attributed to relatively high value of FP arises from

likely mis-clustering.

4.3 Comparing with the previous works

Movement discrimination based on synergy muscle can potentially be more appropriate

than other methods since it contains vital information in relation to the muscle activity

pattern generated by neural processes [8]; because synergy vectors represent contractions

of low-dimensions muscle activities [34]. Hence, the analysis of synergy vectors with dif-

ferent techniques could be a good strategy to improve the approach of the upper limb

prostheses. In the last decade, studies have been conducted for movement separation, es-

pecially for controlling prostheses based on muscle synergy analyses [3, 8]. The reported

separation accuracies are about 95% [3, 8]. While, in this study, the separation average ac-

curacy was obtained more than 97%. This relatively increased accuracy can be attributed

to effect of incorporating the fusion algorithms and using six distinct SOFM neural net-

works as classifiers. This elucidates again the degrading role of learning interference on

the performance of the single SOFM-based classifier.

5 Conclusion
In this study, the separation of different wrist movements based on muscle synergy

analysis was investigated. In fact, instead of considering each muscle activity patterns and

features of each muscle individually, the synergy pattern of movement was extracted.

Since the separation of the activity of each muscle and the elimination of the interactions

of other muscles is difficult, the authors believe that synergy vectors can be used directly

for controlling the rehabilitation and dependent devices in further innovation. The

promising achieved classification accuracy can confirm such believe. Nevertheless, more

experimental data has to be recorded and has to be analyzed to prove decisively that the

achieved results are generalizable. In addition, though the EMG is a good tool to analyze

the muscle electrical activity, but the EMG devices are relatively expensive devices and

the EMG preprocessing is time consuming. Thus, using the cheap and reliable muscle

sensors is preferable for practical implementation of electromyography-based motion de-

tection system. It is recommended to perform initial evaluations on patients in order to

implement it practically on basic microcontroller systems.
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