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Abstract
Direction of arrival (DOA) estimation has been discussed extensively in the array signal
processing field. In this paper, the authors focus on the multi-source DOA information
which is defined as the mutual information between the DOA and the received signal
contaminated by complex additive white Gaussian noise. A theoretical expression of
DOA information with multiple sources is derived for the uniform linear array. At high
SNRs and under the sparse-source assumption obtained is the upper bound of DOA
information contained in K sparse sources which can be regarded as the sum of all
single-source information minus the uncertainty of sources’ order log K !. Moreover,
because of the uncertainty of multi-sources’ order, the posteriori probability
distribution of DOA no longer obeys single peak Gaussian distribution so that the mean
square error is unsuitable in evaluating the performance of multi-dimensional
parameter estimation. Consequently, entropy error (EE) is used as a new performance
evaluation metric, whose relationship with DOA information is given.

Keywords: DOA estimation, Information theory, Upper bound, Cramer-Rao bound,
Sensor arrays

1 Introduction
It has long been researched to use sensor arrays, e.g., radar, sonar, wireless communi-
cation, to locate the far-field sources and estimate the parameters in various fields [1].
The problem of DOA estimation of multiple sources has been an active research area for
decades [2–4]. Many high-resolution direction of arrival (DOA) estimation algorithms
e.g., multiple signal classification (MUSIC) [5, 6], maximum-likelihood (ML) [7], estimat-
ing signal parameter via rotational invariance techniques (ESPRIT) [8], are designed to
determine the DOA of multiple narrowband non-coherent signals. The question followed
is how to evaluate these algorithms.
Therefore, estimation performance and error analysis of DOA estimation algorithms

have also been studied widely [9–13]. Mean square error (MSE) is usually used to evaluate
system performance and the Cramer-Rao bound (CRB) provides a fundamental physical
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limit on estimation accuracy. Stoica and Nehorai [14] introduced stochastic and deter-
ministic signal models and derived the general expressions for the corresponding CRBs
in the multi-source case. The comparisons of multiple signal classification MUSIC, ML,
and CRB are presented [15, 16]. However, CRB is not a tight bound of MSE in the low
SNR region [17]. When the received signal is given, the probability distribution of DOA
no longer obeys Gaussian distribution in the low SNR region. Thus, usingMSE (a second-
order statistic) to evaluate the estimation results of the actual algorithm is insufficient
when SNR is low. In this paper, we use information theory to define a new performance
evaluation metric of multi-source DOA estimation algorithms.
The information theory [18] was proposed by Shannon in 1948 and plays a fundamental

role in the field of information transmission, channel coding, data compression, etc. Sim-
ilar to the communication system, the radar system and the sensor array system are both
information acquisition systems. Woodward and Davies [19, 20] utilized mutual infor-
mation to investigate the problem of measurement of the target’s range. Xu [21] had also
employed the thoughts and methodologies of Shannon’s information theory to system-
atically establish an information theory for a radar system in the presence of complex
Gaussian noise. However, existing investigations based on Shannon’s information theory
for DOA estimation mainly focus on the enumeration of source signals. Wax [22, 23]
introduced the information theory criterion into the problems of signal detection and
proposed the methods to estimate the number of sources. To the best of our knowledge,
only a few researchers employ the information theory to address the performance anal-
ysis of DOA estimation. Xu and Yan [24] studied the spatial status estimation process
with a sensor array from the perspective of information theory and provided the quantity
of information obtained from the sensor array. In their study, the upper bound of DOA
information in the single-source scenario is derived. Furthermore, the entropy error (EE)
is defined to measure estimation performance. The relationship between EE, MSE, and
CRB was presented. However, their research is not yet complete in the multi-source sce-
nario. In this paper, the research of DOA information in the multi-source scenario will be
further promoted.
The remaining of this paper is organized as follows. In Section 2, we review the DOA

information theory which includes the systemmodel and the definition of DOA informa-
tion. Then, a theoretical expression of DOA information in the multi-source scenario is
obtained. At high SNRs and under the sparse-source assumption obtained is the upper
bound of DOA information contained in K sparse sources can be regarded as the sum
of all single-source information minus the uncertainty of sources’ order logK !. Moreover,
the expression of EE and its low bound (EEB) in the multi-source scenario is obtained.We
give the simulation comparison and discuss the obtained results in Section 3: the upper
bound of DOA information is compared with the DOA information of single-source; the
comparison between EE, EEB, MSE, and CRB in the case of dual-source is presented.
Section 4 concludes the paper.
Notation:We use lower case letters to signify variable, upper case letters to denote ran-

dom variable, bold italic lower case letters to signify column vectors, and bold italic upper
case letters to denote random column vectors. Superscripts {·}T and {·}H denote the trans-
pose of a matrix and complex conjugate transpose, respectively. We use {·} to stand for
mean value operator, E {·} for the expectation operator. R {·} stands for the real part of a
complex number, I {·} stands for the imaginary part of a complex number. |a| denotes the
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modulus of a. And ∗ is Hadamard product. a ∝ b stands for the proportional relationship
and a � b denotes the approximate equation.

2 Methods
2.1 Systemmodel

Suppose that there are K narrowband far-field sources impinging on a uniform linear
antenna array with M elements, as shown in Fig. 1. The received signal at the mth array
element is given by is given by

xm (t) =
K∑

k=1
sk (t)ejω0τm(θk) + wm (t) (1)

where sk (t) = αkejϕk denotes the kth(k = 1, 2, · · · ,K) source signal. The source signal’s
amplitude αk is constant and its phase ϕ is random. w0 is the angular frequency of car-
rier signal. wm (t) stands for the complex additive white Gaussian noise (CAWGN) at the
mth array element. And the noise added to different arrays is independent of each other.
τm (θk) represents the time delay of the kth source signal with DOA θk to the mth array
element. Suppose the distance between any two adjacent elements in the uniform linear
array is d, then time delay τm (θk) can be expressed by τm (θk) = md sin θk/v, where v is
the propagation velocity of the signal.
Constructing a matrix equation based on (1), we have

X (t) = A (θ) S (t) + W (t) (2)

where

X (t) = [x1 (t) x2 (t) · · · xM (t)]T, (3)

S (t) = [s1 (t) s2 (t) · · · sK (t)]T, (4)

W (t) = [w1 (t)w2 (t) · · ·wM (t)]T, (5)

A (θ) = [a (θ1)a (θ2) · · ·a (θK )] , (6)

Fig. 1 System model
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in which

a (θk) =
[
ejω0τ1(θk)ejω0τ2(θk) · · · ejω0τM(θk)

]T
(7)

where a (θk) is a so-called transfer vector between the kth source and received signal.
Considering a single snapshot scenario, omitting time t, we can rewrite (2) as

X = A (θ) S + W (8)

Assuming that the source obeys uniform distribution within the observation interval
of angle Q = [−‖Θ‖/2, ‖Θ‖/2], where ‖Θ‖ is the observation interval, then the prior
probability density function (PDF) of the Θ is given by

p(θ) =
K∏

k=1
p(θk) =

(
1

‖Θ‖
)K

(9)

When the carrier frequency is very high, a small change in time delay will lead to a
large change in phase. Therefore, Φ is regarded as a random variable subject to uniform
distribution on the interval [0, 2π ], so the prior PDF of Φ is given by

p(ϕ) =
K∏

k=1
p(ϕk) = (1/2π)K (10)

Next, note that noise is CAWGN, and obeys

E
[
WWH] = N0I

E
[
WWT] = 0

(11)

where I is an identity matrix and E{·} denotes the expectation. N0 is the power spectral
density of noise, which represents the power of noise when the bandwidth is normalized.
Then, we define the signal to noise ratio as

ρk
2 = E

{
αk

2}/N0 (12)

where αk
2 is the power of the kth source.

We will derive the expression of DOA information in the following section.

2.2 DOA information

In this section, we will provide the theoretical expression of the DOA information. The
DOA information is defined as themutual information betweenDOA and received source
signal, i.e., I (X;Θ). We suppose the actual value of DOA is θ0 = [θ10, θ20, · · · , θK0]T.
Considering CAWGN, the multi-dimensional PDF of X conditioned on Θ and Φ is given
by (see (13)).

p (x |θ ,ϕ ) =
(

1
πN0

)M
exp

[
− 1
N0

(x − A (θ) s)H (x − A (θ) s)
]

=
(

1
πN0

)M
exp

[
− 1
N0

(
xHx − 2R

(
sHAH (θ) x

)+ sHAH (θ)A (θ) s
)]

(13)

The joint probability density of X and Θ conditioned on Φ is given by

p (x, θ |ϕ ) = p (x |θ ,ϕ ) p(θ) (14)
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Then, the joint probability density of X and Θ can be derived as

p (x, θ) =
∮

p (x, θ |ϕ ) p (ϕ)dϕ (15)

Consequently, the probability density of Θ conditioned on X is given by

p(θ |x) =
∮
p (x |θ ,ϕ ) p(θ)p(ϕ)dϕ∫

Q
∮
p (x |θ ,ϕ ) p(θ)p(ϕ)dϕdθ

(16)

by omitting the terms independent of Θ , this expression can be simplified to

p(θ |x)=
∮
g (x, θ ,ϕ) dϕ∫

Q
∮
g (x, θ ,ϕ) dϕdθ

(17)

where g (x, θ ,ϕ) is given by

p (x |θ ,ϕ ) ∝ g (x, θ ,ϕ)

= exp
[
2
N0

R
(
sHAH (θ) x

)− 1
N0

sHAH (θ)A (θ) s
] (18)

Since the posteriori probability density of Θ is given, the quantity of DOA informa-
tion obtained from the multiple sources is the difference of the priori entropy and the
conditional entropy of Θ , i.e.,

I (X;Θ) = h (Θ) − h (Θ|X)

= K log ‖Θ‖ + E
[∫

Q p(θ |x) log p(θ |x)dθ] (19)

where h (Θ) denotes the prior information of Θ and h (Θ|X) denotes the condi-
tional entropy of Θ when X is obtained. Clearly, the DOA information is algorithm-
independent. It can provide a bound for the performance of any algorithms, which has
important theoretical guidance.

2.3 Upper bound of DOA information

The upper bound of DOA information in the single-source scenario is obtained in previ-
ous papers. In this section, we will use some reasonable assumptions and approximation
methods to derive the upper bound of DOA information in the multi-source scenario.

2.3.1 Posterior PDF of sparsemulti-source

Obviously, when the DOA of signal sources are close to each other, part of the DOA
information will be lost because of the interference between sources. Therefore, to obtain
the maximumDOA information, we suppose there are K(K << M) independent sources
with large spacing between any two sources to avoid this interference, i.e., sparse sources
assumption.
Similar to the single-source scenario, p(θ |x) presents Gaussian-like distribution cen-

tered on the actual location of the source θ0. Thus, we obtain p(θ |x) in the neighborhood
of θ0.
Clearly, in the case of multi-source, we have

AH (θ)A (θ) =

⎡

⎢⎢⎢⎢⎣

a1Ha1 a1Ha2 · · · a1HaK
a2Ha1 a2Ha2 · · · a2HaK

...
...

. . .
...

aKHa1 aKHa2 · · · aKHaK

⎤

⎥⎥⎥⎥⎦
(20)
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where

aiHaj = aH(θi)a
(
θj
)

= e−j
(M−1)(βi−βj)

2
sin
(
M(βi−βj)

2

)

sin
(

(βi−βj)
2

)
(21)

βi = 2πd sin θi/λ, βj = 2πd sin θj/λ and λ is the wavelength of the signal.
Notice that when i = j, aH(θi)a

(
θj
) = M. Furthermore, (21) has a distribution like the

sinc function, its side lobe is quite small compared to the main lobe. Base on the sparse
sources assumption, we have aH(θi)a

(
θj
)

<< M, (i �= j) when θ is in the neighborhood
of θ0, i.e., θk ∈ U (θ0, δ), k = 1, 2, · · · ,K .
Therefore, (20) can be approximated to

AH (θ)A (θ) � M · I (22)

it follows that

1
N0

sHAH (θ)A (θ) s � M
N0

K∑

k=1
α2
k (23)

Substituting (23) in (18) results in

g (x, θ ,ϕ) ∝ exp
(

2
N0

R
(
sHAH (θ) x

))
(24)

In addition, for the actual received signal, we have

x = A(θ0)s0 + w0 (25)

where θ0 is the actual value of DOA, and

s0 = [
α1ejϕ10 ,α2ejϕ20 , · · · ,αKejϕK0

]T

w0 =[w1,w2, · · · ,wm]T

Substituting the received signal x into sHAH (θ) x results in

sHAH (θ) x = sHAH (θ)A(θ0)s0 + sHAH (θ)w0 (26)

Same as (20),AH (θ)A(θ0) can be approximated when θ is in the neighborhood of θ0. At
this time, aH(θk)a (θk0) is the only element left in its kth row and the rest is approximated
to 0, i.e.

AH (θ)A(θ0) � AH (θ)A(θ0) ∗ I (27)

where ∗ is Hadamard product.Moreover, suppose that the signal amplitude of each source
is equal, i.e., αk = α. It follows that (see (28)).
∮
exp

(
2
N0

R
(
sHAH (θ) x

))
dϕ

� ∮
exp

(
2
N0

R
(
sH
(
AH (θ)A(θ0) ∗ I

)
s0 + sHAH (θ)w0

))
dϕ

� ∫ 2π
0 · · · ∫ 2π

0 exp
(

2
N0

R
(

K∑
k=1

αe−jϕk
M−1∑
m=0

(
e−jω0τm(θk)

(
αejϕk0ejω0τm(θk0) + wm

))
))

dϕ1 · · ·dϕK

�
K∏

k=1

∫ 2π
0 exp

(
2α2

N0
R
(
e−jϕ′

k
M−1∑
m=0

(
e−jω0τm(θk)

(
ejω0τm(θk0) + 1

α
w′
m
))))

dϕ′
k

(28)
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where w′
m = wme−jϕk0 , ϕ′

k = ϕk − ϕk0. We further have

∮
exp

(
2
N0

R
(
sHAH (θ) x

))
dϕ =

K∏
k=1

2π I0
(
2α2

N0

∣∣G (θk) + 1
α
ξ(θk ,w)

∣∣
)

(29)

where I0{·} is the first kind of zero-order Bessel function [25], and

G (θk) =
M−1∑

m=0
e−jω0(τm(θk)−τm(θk0))

= e−j
(M−1)(βk−βk0)

2
sin
(
M(βk−βk0)

2

)

sin
(

(βk−βk0)
2

)

(30)

where βk = 2πd sin θk/λ, βk0 = 2πd sin θk0/λ. And G (θk) can be regarded as the
influence of the signal to the posteriori probability density of Θ . And

ξ(θk ,w) =
M−1∑

m=0
w′
me

−jω0τm(θk) (31)

can be regarded as the influence of the noise to the posteriori probability density of Θ .
Therefore, under the sparse sources condition, Eq. (17) can be rewritten as

p(θ |x) �

K∏
k=1

2π I0
(
2α2

N0

∣∣G (θk) + 1
α
ξ(θk ,w)

∣∣
)

∫
Q

K∏
k=1

2π I0
(
2α2
N0

∣∣G (θk) + 1
α
ξ(θk ,w)

∣∣
)
dθ

(32)

We have known that in the single-source scenario, DOA information will approach an
upper bound with the increasing of SNR. The closed expression of the upper bound was
derived under the condition of high SNR. Therefore, we follow this condition to derive
the upper bound of multi-source DOA information. Considering the posterior PDF is
composed of signal and noise components, in the case of high SNR, we can neglect the
noise components to approximate p(θ |x) when θ is in the neighborhood of θ0. Moreover,
p(θ |x) tends to 0 out of the neighborhood. Thus, we have

p(θ |x) �
{
p′(θ |x) θ ∈ U(θ0, δ);
0 else.

(33)

in which

p′(θ |x) � κ

K∏

k=1
2π I0

(
2α2

N0
|G (θk)|

)
(34)

where κ is a normalizing constant.
In order to obtain the approximation of DOA information, we approximate |G (θk)|

using the first-order Taylor series expansion at θk = θk0, it follows that

|G (θk)| � M − 1
2
ML2cos2θk0(θk − θk0)

2 (35)

where L2 = π2L2/3 is root mean square aperture width, L = Md/λ denotes the
normalized aperture width, and cosθk0 is direction cosine of sensor arrays.
Substituting (35) in (34) and using the expansion of the Bessel function

I0 (x) � ex√
2πx

{
1 + 1

8x
+ o

(
1
x2

)}
(36)
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It follows that the approximation of (34) is given by

p′(θ |x) �
K∏

k=1

1
√
2πσk2

exp
(

− (θk − θk0)
2

2σk2

)

= 1
√

(2π)K |Cθ |
exp

(
−1
2
(θ − θ0)

HC−1
θ (θ − θ0)

) (37)

where σk
2 = (

2Mρ2L2cos2θk0
)−1, ρ2 = α2/N0, and

Cθ =

⎡

⎢⎢⎣

σ12

. . .
σK 2

⎤

⎥⎥⎦

is covariance matrix of K-dimensional Gaussian distribution.
Using the expression of p(θ |x), we can observe the posterior PDF through numeral cal-

culation.We take the dual-source scenario as an example, the actual value of DOA is set as
θ0 = [θ10, θ20]T. As shown in Fig. 2, the posterior PDF presents a two-dimensional proba-
bility distribution with two peaks, which are located at θ = [θ10, θ20]T and θ = [θ20, θ10]T,
respectively.
Since the order of sources is not determined and the K elements of θ0 =

[θ10, θ20, · · · , θK0]T have K ! different permutations, the posterior probability distribu-
tion presents a K-dimensional probability distribution with K ! peaks when there are K
sources.
To facilitate further derivation, we introduce the concept of permutation matrix. Set πl

represents one of the permutations of [1, · · · ,K ], where l = 1, 2, · · · ,K !. The permutation
matrix of πl is written as Pπl . Then, the permutation of θ0 can be represented as Pπlθ0.
According to the numeral calculation results, we find that the distribution of the

posterior probability is mainly located in the neighborhood of Pπlθ0. At this time,
a(θk)

Ha
(
θπl(k)0

)
is the only element left in its kth row and the rest is approximated to

zero. Now, (27) can be rewritten as

Fig. 2 The posterior PDF of DOA
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AH (θ)A(θ0) � AH (θ)A(Pπlθ0) ∗ I (38)

The subsequent derivation is the same as (28)–(37). Therefore, the correction expres-
sion of posterior PDF in the neighborhood of Pπlθ0 is given by

pπl (θ |x) � κ ′pπl (39)

where κ ′ ≈ 1/K ! because p(θ |x) presents a K-dimensional probability distribution with
K ! same peaks when αk = α. And

pπl = 1√
(2π)K |Cθ | exp

(
− 1

2
(
θ − Pπlθ0

)HC−1
θ l

(
θ − Pπlθ0

))
(40)

is the PDF of K-dimensional Gaussian distribution. In which,

Cθ l =

⎡

⎢⎢⎣

σπl(1)
2

. . .
σπl(K)

2

⎤

⎥⎥⎦

is the covariance matrix.

2.3.2 Upper bound of DOA information

Then, we divide the domain of integration into K ! domains centered on each peak. The
PDF in the neighborhood of each peak is given by (39). Next, we can extend the integral
domain to the whole domain when calculating the integral of each domain for con-
venience. The error caused by such approximation is acceptable because the value of
the Gaussian distribution outside the neighborhood of each peak is close to zero. The
calculation process is given by

h (Θ|X) =
K !∑

l=1

(
−
∫

U(Pπl θ0,δ)

1
K !

pπl log
1
K !

pπldθ
)

� K !
(

− 1
K !

∫

Q
pπ l log

1
K !

dθ − 1
K !

∫

Q
pπl log pπldθ

)

� logK !−
∫

Q
pπl log pπldθ

(41)

where
∫

Q
pπl log pπldθ

= −
(
K
2
log (2πe) + 1

2
log

∣∣Cθ l

∣∣
)

= −1
2
log

( K∏

k=1

πe
Mρ2L2cos2θk0

)
(42)

By substituting (41) in (19), we obtain an approximation of the upper bound of DOA
information

I (X;Θ) = h (Θ) − h (Θ|X)

= K log ‖Θ‖ − logK !− 1
2 log

(
K∏

k=1

πe
Mρ2L2cos2θk0

)

=
K∑

k=1
log ‖Θ‖√MρL cos θk0√

πe − logK !

(43)
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where the first term of (43) is the sum of DOA information of every single source and the
second term is the loss of information due to the uncertainty of sources’ order. This is our
main result.
Moreover, the upper bound of DOA information of the source signal with random

amplitudes can be obtained simply by taking the SNR in (43) as a random SNR and taking
the expectation of (43). For example, the upper bound of DOA information of the source
signal with Rayleigh distribution amplitudes is given by

I ′ (X;Θ) = E {I (X;Θ)}
=

K∑
k=1

log ‖Θ‖√MρL cos θk0√
πe − Kγ

2 ln 2 − logK !
(44)

where γ is Euler-Mascheroni constant.

2.4 Entropy error and MSE

We know that the conditional entropy h (Θ|X) represents the uncertainty of Θ when
the received signal is given. As the SNR increases, the conditional entropy continues
to shrink, indicating that the estimation is more accurate. In other words, the condi-
tional entropy or DOA information (when the prior entropy of Θ is determined) can be
considered as a performance metric of DOA estimation.
In the case of the single source [24], EE is defined as the entropy power of the posterior

probability distribution to measure the theoretical performance of DOA estimation. In
this section, we will discuss the relationship between EE and MSE in the multi-source
case.
Firstly, EE is defined as the entropy power of p (θ |x ), which is given by

σ 2
EE = 22h(Θ|X )

(2πe)K
= 1

(2πe)K
‖Θ‖2K
22I(X;Θ)

(45)

in the K-source case.
We can learn from (45) that once the sensor arrays obtain 1 bit of DOA information,

the entropy deviation σEE is reduced by half.
In the previous section, we have derived the conditional entropy of DOA. Since (41)

is the approximation of the conditional entropy in high SNR region, we can obtain an
approximation of EE by substituting (41) into (45); it follows that EE’s low bound (EEB) is
given by

EEB = 22
[
logK !+ K

2 log(2πe)+ 1
2 log|Cθ |

]

(2πe)K

= |Cθ | (K ! )2
(46)

where K ! reflects the uncertainty of sources’ order.
As we mentioned in the introduction, MSE is usually used to evaluate the performance

of DOA estimation algorithms. Xu and Yan [24] had pointed out the limitation of MSE at
medium and low SNRs. Here, we discuss the limitations of MSE in the multi-source case.
The MSE of N times DOA estimation for K sources is given by

σ 2
MSE = 1

KN

N∑

n=1

K∑

k=1

(
θ̂kn − θk0

)2
(47)
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which is calculated under the condition of the determined sources’ order. It only applies
to a one-dimensional matching multi-source DOA estimation.
Whenwe usemulti-dimensional matching estimation to improve the angular resolution

[26], the estimate of DOA θ̂ will present a K-dimensional probability distribution with K !
peaks when there are K sources similar to Fig. 2 due to the uncertainty of sources’ order.
Consequently, MSE is no longer applicable to evaluate the estimation performance.
CRB provides the best accuracy achievable by any unbiased estimator of the signal

parameters and provides a fundamental physical limit on estimation accuracy. And the
expression of CRB in the multi-source scenario is given by [15], which is shown by

CRB (θ) = N0
2

{
R
[
diag(S)HDH

(
I − A

(
AHA

)−1AH
)
Ddiag(S)

]}−1
(48)

where

S = [s1 · · · sK ]T
A = A (θ)

D = [d (θ1) · · ·d (θK )]

recall that d (θ) = ∂a (θ) /∂θ .
Similarly, as the theoretical lower bound of MSE, CRB can only be used as the

lower bound of multi-source DOA estimation accuracy in one-dimensional matching
estimation. Moreover, the relationship between EEB and CRB is given by

EEB � |CRB (θ)| (K ! )2 (49)

which is shown in Fig. 5.

3 Results and discussion
In this section, we provide the numerical results to illustrate the theoretical result in the
multi-source scenario with CAWGN. Taking the dual-source scenario for example, we
consider the reflection coefficient α1 = α2 = 1 and the phase follows a uniform distribu-
tion in the interval [0,2π ]. Considering that there are only two sources, the sparse-source
assumption is still valid when the observation interval is small. In order to reduce the cal-
culation time, the observation interval of the DOA is set as [−20◦, 20◦]. Moreover, θ10 and
θ20 are located at −5◦ and 5◦, respectively. And the number of array elementsM is set as
32 in general.
Besides, we consider the reflection coefficient follows a Rayleigh distribution in the ran-

dom source signal amplitudes scenario. The other conditions are the same as the constant
source signal amplitudes scenario.

3.1 Upper bound of DOA information

In this subsection, we have presented the simulation results of DOA information and
its upper bound in both constant amplitudes scenario and random amplitudes scenario,
which are shown in Figs. 3 and 4, respectively.
It can be seen from the two figures that the theoretical value of DOA information cor-

responds to the upper bound of DOA information obtained by us in the high SNR region,
which proves the correctness of the derivation. Numerically, the sum of DOA informa-
tion of two single sources is 1 bit more than the joint DOA information obtained by the
two-dimensional search. As we mentioned in the explanation of (43), the 1 bit loss of
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Fig. 3 DOA information in constant amplitudes scenario

information is caused by the uncertainty of sources’ order. It can be concluded from the
simulation results that the calculation of DOA information containing multiple indepen-
dent sources can be converted into the sum of all single source’s information minus the
uncertainty of sources’ order logK !.

3.2 Comparison of EE, EEB, MSE, and CRB

Next, we compare EE, EEB, MSE, and CRB for various SNRs through simulation to
show their relationship in the dual-source scenario. The EE is calculated by substituting

Fig. 4 DOA information in random amplitudes scenario
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the conditional entropy obtained by simulation into (45). EEB is obtained by (46). For
comparison, we do the simulation of the ML algorithm. MSE is calculated by

σ 2
MSE = 1

N

N∑

n=1

K∏

k=1

(
θ̂kn − θk0

)2
(50)

under the condition of the determined sources’ order. The empirical EE of the ML algo-
rithm is obtained based on the probability distribution of the estimate of DOA θ̂ . For the
convenience of comparison, CRB will be further calculated by |CRB (θ)|.
According to the result of the simulation shown in Fig. 5, we findMSE decreases mono-

tonically with increasing SNR and tends to CRB in the high SNR region. Similarly, EE
decreases monotonically with increasing SNR and tends to EEB. However, unlike the
single-source scenario, EEB does not coincide with CRB in themulti-source scenario. The
difference is caused by the uncertainty of sources’ order. The empirical EE of theML algo-
rithm is bigger than and close to the theoretical EE. Moreover, when the sources’ order
cannot be determined, CRB is unreachable, and EEB is a more reasonable theoretical
bound.
So far, we have pointed out two limitations of MSE:
1) The posterior probability distribution of Θ no longer obeys Gaussian distribution in

the case of medium and low SNR. MSE is invalid as a second-order statistic when SNR is
low [24]. It is still valid in the multi-source scenario.
2) MSE cannot reflect the uncertainty of sources’ order in multi-dimensional matching

multi-source DOA estimation.
EE avoids both of these limitations; it is more suitable to be used as an evaluationmetric

in medium and low SNRs and the multi-source case.

Fig. 5 Comparison of EE, EEB, MSE, and CRB
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4 Conclusions
One of the significant findings to emerge from this study is that the upper bound of
DOA information contained in K sparse sources can be regarded as the sum of all single-
source information minus the uncertainty of sources’ order logK !. The second major
finding was that MSE is no longer applicable to evaluate the estimation performance
in multi-dimensional matching multi-source DOA estimation. Specifically, considering
the uncertainty of sources’ order, the estimate of DOA θ̂ will present a K-dimensional
probability distribution with K ! peaks when there are K sources. Consequently, entropy
error(EE) is defined as a new performance evaluation metric, and its low bound is given.
In addition, EEB can be regarded as the generalized CRB considering the sources’ order
in the multi-source scenario.
The main conclusions of this paper are given under the condition of high SNRs and

sparse-source. However, the findings of this paper provide guidance for further study of
multi-source DOA information and estimation performance evaluation in the general
scenarios. Further investigations will be undertaken in future works in order to complete
the research of DOA information theory in other scenarios.
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