Chen et al.' EURASIP Journal on Advances in Signal Processing (2020) 2020:44 EURASIP JO urna | on Adva nces
https://doi.org/10.1186/s13634-020-00701-7 in Si | P .
INn >ignal Frocessing

Gridless DOA estimation with finite rate ®

Check for
. . . updates
of innovation reconstruction based on
sym metric Toepl Itz covariance matrix
Tao Chen, Lin Shiand Yongzhi Yu"
* d :
yiigrsggﬁi%ﬁrlzi.edu.cn Abstract
The College of Information and Due to the rapid development and wide application of compressed sensing and sparse
iom.mumc.a“on.Eng'”?e””_g' reconstruction theory, there exists a series of sparsity-based methods for the antenna
arbin Engineering University, . . . . . .
Harbin, 150001, China sensor array direction of arrival (DOA) estimation with excellent performance. However,

it is known that this kind of algorithms always suffers from the problem of grid
mismatch. To overcome this shortcoming, a gridless DOA estimation algorithm with
finite rate of innovation (FRI) based on a symmetric Toeplitz covariance matrix is
proposed for uniform linear array (ULA) in this paper. In particular, a multiple
measurement vector (MMV) FRI reconstruction model is built by exploiting the
covariance data denoised according to covariance fitting criteria rather than the direct
data or the original covariance data, which is commonly used in other representative
gridless DOA estimation methods. Next, DOA can be retrieved from the recovered
covariance matrix by utilizing an annihilating filter because each covariance data is a
linear combination of complex exponentials. It guarantees to produce an exact spatial
sparse estimate without discretization required by existing sparsity-based DOA
estimation methods. Finally, the effectiveness and superiority of the proposed
algorithm are demonstrated by numerical simulations.

Keywords: Gridless direction of arrival (DOA) estimation, Finite rate of innovation (FRI),
Covariance fitting criteria, Annihilating filter

1 Introduction

As a typical problem in array signal processing, direction of arrival (DOA) estimation
has found wide applications, such as radar, sonar, and wireless communications [1, 2].
DOA estimation is a process of retrieving the direction parameters of several sources
from observed snapshots of receiving antenna sensors. Compared with the traditional
subspace-based DOA estimation algorithms represented by MUSIC [3] and ESPRIT
[4], the sparsity-based DOA estimation algorithms have more remarkable results in
several demanding scenarios, including cases with low signal-to-noise ratio (SNR), lim-
ited number of snapshots (even a single snapshot), and highly or completely correlated
sources [5-7].
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Because of these attractive properties, sparsity-based DOA estimation algorithms have
received extensive attention and research in the past decade. According to the relationship
between real locations of sources and spatial discrete grids, the existing sparsity-based
DOA estimation algorithms can be classified into three categories: on-grid, off-grid, and
gridless.

By assuming that the real directions of incident sources coincide with the certain loca-
tions in presupposed discrete grids in space, on-grid sparsity-based DOA estimation
algorithms represented by £;-svd method [8] transform DOA estimation into a linear
sparse signal reconstruction problem. In particular, since the grid size is greatly larger
than the source number, spatial signals can be extended to a sparse vector, which is com-
posed of virtual numerical values from candidate directions on the grid. After that, DOAs
of sources, which represent the locations of non-zero elements in the reconstructed
signal, can be obtained by spectral peak searching.

However, these algorithms, which are supported by sparse signal reconstruction and
compressed sensing theory, rely heavily on an accurate spatial discrete grid. In case of
grid mismatch, the performance of these algorithms will be reduced. To address the issue
of grid mismatch, two classes of sparsity-based DOA estimation algorithms named off-
grid and gridless have recently been proposed. Off-grid methods interpolate the original
spatial discrete grid, thus improving the performance of on-grid sparsity-based DOA
estimation algorithms [9, 10]. Gridless algorithms estimate DOAs of sources directly in
continuous angle range, which completely avoids the problem of grid mismatch [11, 12].

The existing gridless algorithms can be divided into three main categories: based on the
atomic norm minimization (ANM) [13, 14], covariance fitting criterion [15, 16], and finite
rate of innovation (FRI) [17], respectively. The atomic norm, which was first proposed by
[18], is exploited to deal with the grid mismatch problem by generalizing the common
norms for finite dimension vectors, e.g., £; norm and nuclear norm, to infinite dimension.
However, most of these algorithms have been used in spectral estimation, which can be
regarded as DOA estimation in single measurement vector (SMV), and not suitable for
DOA estimation in multi-snapshot scenarios.

In the case of multiple snapshots, the sparse and parametric approach (SPA) [19]
(a.k.a. the gridless sparse iterative covariance-based estimation method, GLS for short)
has been proposed by utilizing the covariance fitting criterion. Firstly, SPA recovers the
matrix satisfying symmetric Toeplitz structure from the real covariance data by solving
a semidefinite programming (SDP) problem based on minimizing the objective function
of covariance fitting criterion. Then, DOAs of sources can be retrieved according to the
typical Vandermonde decomposition theory for symmetric positive semidefinite Toeplitz
matrices.

A recent proposed algorithm based on FRI signal reconstruction theory has shown
its potentials [20—22]. In this algorithm, a reconstruction model of spatial FRI signal is
first established taking advantage of the first Bessel functions to approximate the data
in the covariance matrix of array received signals. Afterwards, the DOAs of sources can
be estimated according to the properties of annihilating filter [17, 23] and optimization
theory [24]. As the most attractive part of this gridless algorithm, an overcomplete dictio-
nary with infinite dimensions has been established, which can be exploited to represent
the relationship between FRI signals in continuous domain and array received signals.
However, it does not consider the influence of noise on DOA estimation model.
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This paper aims at developing the performance of gridless DOA estimation algo-
rithms by combining the covariance fitting criteria and FRI signal reconstruction theory.
Through a series of reasonable assumptions for far-field, narrowband sources and noises,
which are usually appear in the literatures focusing on DOA estimation, the covari-
ance matrix of array received signals satisfying the symmetric Toeplitz structure can be
reformulated. After reconstructing the symmetric Toeplitz structure matrix, which can
effectively suppress the influence of noise on DOA estimation model, the FRI signal
reconstruction theory is used to recover the DOAs of sources directly.

The rest of this article is arranged as follows. Section 2 describes the data model for
DOA estimation. Then, a gridless DOA estimation algorithm based on the covariance
fitting criteria and FRI signal reconstruction theory is proposed in Section 3. Section 4
presents the results of numerical simulations, and this paper is concluded in Section 5.

The meanings of notations in this paper are explained as follows. Firstly, unbolded let-
ters (e.g., a and A), lower-case bold letters (e.g., a), and upper-case bold letters (e.g., A)
are used to represent scalars, vectors, and matrices, respectively. Moreover, OT, ()*, and
() are transpose, conjugate, and conjugate transpose of (-). E {-} is exploited to represent
the expectation of -. Z, R, C is the set of integer, real, and complex numbers, respectively.
tr {-} is traces of matrix {-}. A > O represents that A is a positive semidefinite matrix, that
is to say, its eigenvalues are non-negative. Finally, j = +/—1 denotes the imaginary unit.

2 The data model for DOA estimation
Considering the existence of K € Z far-field narrowband sources in space, they impinge
on an ULA with M € Z. identical antenna sensors from directions 8 = [61, 6, ...,0k],
respectively. In this paper, x(k = 1, ..., K) is defined as the angle between direction of
kth source and normal of array. Meanwhile, we only concern with the one-dimensional
angular space, implying that 6y € [—7/2,7/2].

When the array element spacing is A /2, where A is the wavelength of the incident source,
and the coordinate origin is set as the phase reference point, the received signal model of
the antenna array can be expressed as follows:

Y =A(0)S +E, 1)

where Y = [y(l), - y(L)] € CM*L and S € CX*L and E € CM*L are both similarly
defined, representing the matrix of sources and noise, respectively. L € Z is the number
of snapshots. In addition, the form of array manifold matrix is A (8) = [a(01),...,a(0k)] €
CMxK where a(8;) = [a1 k), ..., art(6x)]T € CM is the steering vector of the kth source.

The received signals at two different antenna sensors differ by a phase shift, which can
be expressed as the relative distance of the antennas and the locations of point sources in
the angular space. Hence, the specific form of a,,(6x) can be expressed as:

A (O) = e /7m=Dsin00 4y — 10 M, k=1,2,..,K. 2)

We assume that the noise e(¢)(t = 1,..., L) are complex Gaussian white noise and not
correlated with the sources. Meanwhile, the sources are assumed to be independent of
each other. Under the assumptions above, the covariance matrix of received signals is:
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R =E (YY"} = AE {SS"} A" + E [EE"}
= Adiag {p} A" + o1

K

=Y pra@a’ O + o1,
k=1

3)

where diag {p} is a diagonal matrix formed by vector p =[p1, ... px]’ € Rﬁ, which denote
the power parameters of sources. ¢ € Ry denotes the power parameter of noise, and I is
the M dimensional unit matrix.

Substituting formula (2) into formula (3), we can obtain the data of the Bth column in
ath row of the covariance matrix which is:

K
R(a, B) = Y prd™ P~ 65,50, = 1,., M, (4)
k=1

where 8,5 = 1 when o = B or §45 = 0 otherwise.
Obviously, the covariance matrix of received signals is a symmetric Toeplitz matrix
which is determined by M parameters and can be expressed as:

uy up e UM
u; ul .« e uM_l

R=Tw+ol=| ~ o + oI, (5)
u}"w ”7\/171 cee Up

where T(u) is a symmetric Toeplitz matrix with the first row u =[uy, ..., upm], u1 € Ry
and uy, ..., up; € C. The specific form of u,, can be written as:

K

- m—1
=3 o (F70) T =12, 00 ©)
k=1

It is worth noting that the covariance matrix of the array received signals satisfies the
above mathematical model only under the premise of ensuring the sources uncorrelated
and Gaussian white noise. In other words, the algorithm proposed in this paper is not
suitable for correlated sources or other types of noise.

Up to now, we have successfully transformed the DOA estimation problem into the
estimation of parameters py, 6k, and o. In this paper, because only the DOAs of sources
are concerned, the power parameters of sources px and noise o can be ignored. Next, the
method of estimating parameters i, by covariance fitting criterion and parameters 6y by
FRI signal reconstruction theory will be discussed, respectively.

3 Methods

Actually, due to the limitation of snapshot number, the covariance matrix of the received
signals can hardly satisfy the form shown in formula (5), even if the sources and noise sat-
isfy the assumed conditions. In practical applications, the covariance matrix is estimated
with L snapshots as follows:

L

N 1

R=E{\} =23 yoy'o. (7)
=1
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Therefore, our first task is to recover the matrix satisfying symmetric Toeplitz struc-
ture from the real covariance data R by solving a SDP problem based on minimizing the
objective function of covariance fitting criterion.

3.1 The symmetric Toeplitz structure covariance matrix reconstruction

When R and R are both invertible, the objective function of parameter estimation based
on covariance fitting criterion is [15, 16]:

Z,OGRK,er[—E,l],peR1<,oeR+. (8)
F 22

From the previous analysis, we can see that when the parameters 6, p, and o satisfy their

fO,p,0) = R (R—R) R~

respective constraints, R is a symmetric Toeplitz matrix composed of parameter u, and

R exists in the presence of noise. Then, R™! exists with probability one if M < L. When

L < M, which rarely happens, the covariance fitting criterion and the recovery process of

parameter u are basically similar, so this situation will be not discussed in this paper.
Formula (8) can be rewritten as:

f0,p,0) =tr {R*% (ﬁ _ R) a1 (ﬁ B R) R,%]
-r|(3- (-
= tr iR‘lf{} +r |f{—1R} — oM.

According to the description of R in formula (5), the minimization of f (8, p, o) is
equivalent to:

minf(0,p,0),s.t.p € RE, o >0
0,p,0

& min ¢ {R7R} + o [R7R} 5.6 R = T + 0L T(w = 0 (10)

u,0>0

& min tr {ﬁ%R—lfz%} Tt {ﬁ_lR} ,st.R=T() + oL T) = 0.

u,0>0

In formula (10), the equivalence between the first two optimization problems is
obtained according to the Vandermonde decomposition theorem of PSD Toeplitz matrix
[12], that is, any PSD Toeplitz matrix T (u) admits the Vandermonde decomposition:

T (w) = A (0) diag (p) A" (0), (11)

where py > 0and 0, k = 1, ..., K are distinct.
Suppose there is a matrix X € CM*M, which satisfies:

X — R2RIR? = 0, (12)
so that formula (10) can be further simplified to:

(10) < min tr(X) + tr {frlk} ,
X,u,0>0

st.R=Tm) +ol, Tw) =0 and X—RIRIR? =0
. n—1
& X,T,(lwrio tr(X) +tr {R R} s (13)

e

Rz
st.R=Tm) +oL | R? R
T(uw)

Page 5 of 16
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The simplified SDP formulation as shown in formula (13) can be addressed by any opti-
mization operator, e.g., SDPT or SeDuMi, which are included in CVX toolbox [25]. The
parameter u can be obtained by solving the SDP formulation. In other existing gridless
DOA estimation algorithms based on covariance fitting criteria, the DOAs of sources
will be retrieved after reconstructing T(u) exploiting subspace-based methods, such as
MUSIC and ESPRIT, or the classical Vandermonde decomposition theory for positive
semidefinite Toeplitz matrices, such as SPA. Because of the high complexity of sub-
space algorithms, which involve peak search or more than one eigenvalue decomposition
process, SPA is obviously more efficient and practical.

After the matrix T(u) satisfying the symmetric Toeplitz structure is obtained, a post-
processing process is introduced to ensure that the decomposition of T(u) is unique in
SPA. The specific method is as follows:

T(@) = T(W") — Amin {T(@)} L, (14)
6 = 0"+ Amin {T(W},

where (u*,0%*) is the solution of the SDP and (ﬁ,&) is the result of postprocessing.

Amin {T(u*)} denotes the minimum eigenvalue of T (u*).

The postprocessing of SPA essentially separates the signal parameters 6, p and the noise
parameters o in the estimated covariance matrix to ensure the accuracy of the estimation
results. However, in this paper, only the parameter  is concerned, rather than the esti-
mation accuracy of the parameters p and o. According to the characteristic description
of the covariance matrix optimized by the covariance fitting criterion, it is not difficult
to find that the off-diagonal elements of T (u) are all weighted sum of uniformly sampled
complex exponentials when 7sin(6) is considered as a new set of parameters. Such a set
of parameters can be uniquely reconstructed from the observation vector composed of
the off-diagonal elements of T (u) by using FRI signal reconstruction theory [23].

3.2 DOA estimation by FRI signal reconstruction theory
As one of the main differences with SPA, the algorithm proposed in this paper does not
need to deal with the results of SDP as shown in formula (13). That is to say, the parameter
u* is the same as . In order to express conveniently, the symbol u is used to replace the
two parameters mentioned above.

Since parameter u is completely determined by 2K parameters, i.e., Ox(k = 1,...,K) and
pr(k =1,..,K), so it is a FRI signal with the rate of innovation:

o0 =—. (15)

As the key of FRI signal reconstruction theory, the next task is to determine the coef-
ficients of annihilation filter equations satisfied by parameter u. We can find that the
parameters u,,(m = 2, .., M) are all a collection of sums of K complex exponential func-
tions. It is worth noting that the noise parameter o only affects the diagonal elements in
the covariance matrix, i.e., u, under the assumption of Gaussian white noise. Therefore,
in order to suppress the influence of Gaussian white noise, we only use the off-diagonal
elements in T(u) to construct the annihilation equation.
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Then, suppose there is filter as follows:

K

K
CoO=[]0-az") =) ez (16)
n=0

k=1

where C(z) has K zeros at g = 75" (k = 1,..,K), and c,, is the coefficients of filter
C(z). So that we can have:

K K K
Z Cnllpm—n = Z Cn Zpkg]:ninil
n=0

n=0 k=1
K K
=> p (Z cngk”> gt (17)
k=1 n=0
K
=Y p(Cl) g =o.
k=1

Thus, the parameters u,,, = Zle pkg]:” “Y(m = 2,..., M) are annihilated by the filter C(z),
which can be called as annihilated filter.
In matrix form, the system in formula (17) is equivalent to:

UK+2 UK+1 - U2 €0
UK+3 UK+2 - U3 c1

=0. (18)
up  uUM—1 ‘- UM-K CK

Owing to M — 1 values u,, are available and there are K 4 1 unknown filter coefficients,
we need at least K + 1 equations, and therefore, M must be greater or equal to 2K + 2,
i.e, M > 2K + 2. By solving the linear equations in the form of formula (18), we can get
the coefficients of annihilated filter ¢, (k = 0, 1, ..., K).

At last, once the filter coefficients cj are found, the values gx(k = 1, ..., K) are simply the
roots of the annihilating filter and the DOAs of sources 6, can be estimated by:

K
sin (9}() = —arg |:roots (Z c,,z_”>:| /7. (19)

n=0

where roots (+) is the operator of finding the zero points of polynomial (-) and arg (-)
denotes the phase corresponding to complex (-).

The process of proposed algorithm for DOA estimation is presented in Table 1. The
covariance matrix R s firstly restructured by solving an SDP formulation. Then, the result
of DOA estimation can be obtained by solving a linear equation and finding roots of
polynomial. Finally, we can see that the proposed algorithm only takes advantage of the
covariance data of received signals, which does not depend on the spatial discrete grid, so
the proposed algorithm is a gridless DOA estimation algorithm.

3.3 Some discussions

In this section, we will analyze the differences and connections between the proposed
algorithm and the existing advanced algorithm, so as to more clearly illustrate the
innovation of this paper.

Page 7 of 16
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Table 1 The process of proposed algorithm

Input The number of sources K, antenna sensors M and snapshots L, the received signal matrix Y

Output The DOA estimation results 8 (k = 1, ., K)

Step 1 Calculate the covariance matrix of received signals R by (7)

Step 2 Estimate the parameters uy, in the solution of the SDP as shown in (13)

Step 3 Acquire the coefficients of annihilated filter ¢, according to the linear equations in the form of
formula (18)

Step 4 Find the roots of polynomial gx with coefficients ck

Step 5 Determine the final DOA estimation results by solving (19)

Firstly, the algorithm proposed in this paper is closely related to SPA in reference [19].
Both algorithms adopt the same covariance fitting criteria to recover the covariance
matrix satisfying the symmetric Toeplitz structure, which not only reduces the influence
of limited snapshot number on the statistical data, but also suppresses the Gaussian white
noise. However, due to the difference of the later estimation methods of parameters 6,
the performance of the two algorithms is different.

3.3.1 Connection to SPA

There are two main differences between the proposed algorithm and SPA. One is that
SPA makes further processing on the optimization results of SDP, i.e., u* and ¢*, while
the proposed algorithm uses the above results directly.

SPA separates the estimation of signal parameters 8, p and noise parameter o through
postprocessing. However, the proposed algorithm does not care about the noise parame-
ter o, so it directly uses the off-diagonal elements in T(u) to recover the DOA parameter
0 of the incident sources. This can not only achieve the purpose of Gaussian white noise
suppression, but also reduce the complexity of the algorithm, which will be analyzed in
detail later.

The other difference is the method of obtaining the parameter @. SPA performs the
Cholesky decomposition on the positive semidefinite matrix T(u) satisfying the symmet-
ric Toeplitz structure. Then, the result of decomposition is utilized to construct a pair of
matrix pencil. The final estimation result of the parameter 6 is included in the generalized
eigenvalues of the matrix pencil. As described above, the proposed algorithm is different
from SPA, which does not involve multiple complex matrix decomposition operations,
but only needs to find the solution of a system of linear equations with K 4 1 dimension.
This can obviously further improve the efficiency of the algorithm.

Of course, the cost of these improvements is the reduction of freedom. At the same
time, the proposed algorithm cannot guarantee the estimation accuracy of noise param-
eter 0. However, neither of them is the main content of this paper.

3.3.2 Connection to FRIDA

Next, as a successful application of FRI signal reconstruction theory in DOA estima-
tion, the FRI sampling-based algorithm for DOA finding (FRIDA) proposed in [21] has
received a lot of attention and research. Strictly speaking, the proposed algorithm in this
paper can be considered as a simplified version of FRIDA in special scenarios. Obviously,
this special scenario refers to ULA. It is a simplification of FRIDA that no linear map-

ping matrix between the unknown uniformly sampled sinusoidal signals and the known
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non-uniform measurements is needed. Therefore, there are two differences between the
proposed algorithm and FRIDA.

On the one hand, FRIDA uses the Bessel function of the first kind to establish a linear
mapping from the Fourier series coefficients of unknown sources, which can be regarded
as the uniformly sampled sinusoids, to the given array receiving signals. However, the
proposed algorithm does not include this process. Because of the particularity of ULA,
the covariance matrix of the received signals can be directly expressed in the form of
weighted sum of uniformly sampled complex exponentials, instead of constructing redun-
dant mapping matrix. In this way, the complexity of the algorithm is greatly reduced, but
the proposed algorithm is no longer suitable for other array geometry, such as SLA and
planar array.

On the other hand, FRIDA takes the raw data of the array received signals or the
off-diagonal elements in the covariance matrix calculated from the raw data as the
measurements. In contrast, the covariance data of array received signals optimized by
covariance fitting criterion is adopted to estimate the DOAs of sources in the proposed
algorithm. This method can not only eliminate the influence of the limited number of
snapshots on the statistical data, but also suppress the Gaussian white noise such that it
can improve the estimation accuracy.

3.3.3 Computational complexity
At last, in order to more clearly show the differences with other methods in the
computational complexity, specific analysis is given in this section.

In MUSIC algorithm [3], the parts that play a leading role in computing complex-
ity include the calculation of covariance matrix, its eigenvalue decomposition, and the
process of peak searching. Their corresponding computational complexity is as follows:
O(MZL), O(M3), and O(MZN), where N is the number of grid points. According
to the analysis of reference [8], the complexity of ¢;-svd algorithm is O (K 3Ng‘). The
OGSBL algorithm proposed in [9] mainly includes SVD decomposition with com-
plexity O (max(ML? M?L)) and iteration having a computational complexity of order
O (MN 2 T), where T is number of iterations.

It can be seen that the complexity of the above three algorithms is closely related
to the number of spatial discrete grid points N. Generally, because N > M, the
parameter N usually determines the computational complexity of the above three
algorithms.

Reference [19] gives the calculation method of the computational complexity of SPA.
The computation of R? takes O (MZL +M3) flops. The postprocessing takes O (M?’)
flops. Then, the computational complexity of SDP is O (M6'5). At last, the Vandermonde
decomposition of matrix takes O (MZ) flops.

In the proposed algorithm, the complexity of R? calculation and SDP process is the
same as SPA. In addition, the complexity of the proposed algorithm should also include a
process of solving K+1 dimensional linear equations, which takes O ((K + 1)3) flops. Due
to the condition M > 2K + 2, the complexity of the proposed algorithm is obviously less
than that of SPA. This conclusion will be further confirmed in the simulation experiment
of this paper.

The computational complexity of the five DOA estimation algorithms involved in this
paper is recorded in Table 2.
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Table 2 The computational complexity of the five DOA estimation algorithms

Algorithm Complexity

MUSIC O (MPL+ M + M*N)
£1-svd O (K*N%)

OGSBL O (max (ML?, M2L) + MN?T)
SPA (except SDP) O (ML + M?)

Proposed (except SDP) O(ML+(K+1)7%)

4 Experiment

In this section, we illustrate the performance of the proposed method and compare it
with existing DOA estimation algorithms via numerical simulations. The algorithms that
we consider include MUSIC [3], £;-svd [8], OGSBL [9], and SPA [19] corresponding to
subspace-based, on-grid, off-grid, and gridless sparsity-based DOA estimation algorithm,
respectively. In addition to SPA and the proposed algorithm, all other algorithms need
spatial discrete grids with uniform spacing 1° in the following experiments, implying that
the number of discrete grid points is N = 180. The number of iterations in OGSBL algo-
rithm is 7' = 1000. The regularization parameter in £1-svd algorithm is 2. In the following,
we present four sets of experiments to verify the performance of proposed algorithm.

4.1 Spectra comparisons

Considering K = 4 incident sources with DOAs randomly selected from [—60°, 60°] and
adopting M = 10 uniform linear array with element spacing A /2, we compare the spectra
and DOA estimation results of aforementioned methods in this subsection. The number
of snapshots L is 200. SNR is 0 dB and 10 dB corresponding to Figs. 1 and 2, respectively.

Normalized spectra/(dB)

Fig. 1 Spectral of five algorithms in SNR =0 dB




Chen et al. EURASIP Journal on Advances in Signal Processing (2020) 2020:44 Page 11 of 16

Normalized spectra/(dB)

Fig. 2 Spectral of five algorithms in SNR = 10 dB

It is not difficult to see that the spectral peaks of all the algorithms are sharper and the
estimated results are closer to the true values with the increase of SNR. Meanwhile, the
random DOA s of the sources do not fall entirely on the presupposed spatial discrete grids.
In the case of low SNR or high SNR, the estimation results of the proposed algorithm are
always the closest to the true DOAs of the sources. Due to the limitation of search accu-
racy, the MUSIC algorithm always deviates from the true source location. The problem of
grid mismatch has the greatest impact on the £;-svd algorithm, sometimes even directly
leading to the algorithm failure. Compared with ¢;-svd algorithm, OGSBL algorithm has
been improved to a certain extent, but still cannot achieve the desired results. Only the
SPA and the algorithm proposed in this paper are less affected by the grid mismatch
problem.

4.2 Estimation accuracy comparisons

In this experiment, the impact of SNR and snapshots on the performance of the algorithm
mentioned earlier will be verified. In Fig. 3, the number of sources, antenna sensors, and
snapshots is K = 2, M = 6,and L = 100, respectively. SNR is uniformly transformed from
0 to 20 dB in step 2 dB. The true incident directions of the sources are randomly selected
in [—60°,60°], and the spacing is guaranteed to be greater than 5°. The experimental
conditions of Fig. 4 are basically the same as those of Fig. 3, except that SNR is fixed at
10 dB. At the same time, the number of snapshots uniformly changes from 50 to 500
with step 50. One hundred independent Monte Carlo simulations are carried out for both
Figs. 3 and 4. The performances of above algorithms are compared according to the values
of root mean square error (RMSE), which is defined as:
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3 T T T T T T T T T
—¥—MUSIC
Li-svd
—— OGSBL
25 —&— SPA .
—%— the proposed
2F 4

o 1 1 1 1 1 1 1 1 1
0 2 B 6 8 10 12 14 16 18 20
SNR/(dB)
Fig. 3 RMSEs of five algorithms versus SNR
1 Q K )
RMSE = — O,k — 6k)", 20
oK ;;( ok — 6k) (20)

where gq,k denotes the gth estimated value of source incidence angle 6, and Q is the
number of Monte Carlo experiments in this paper.

Figure 3 plots RMSEs of five algorithms under different SNRs. The RMSEs of five
algorithms improve constantly with the SNR. Under the same SNR, the proposed algo-
rithm obviously has better estimation performance. The same experimental conclusion
can be obtained through Fig. 4, which presents the experimental results under different
snapshots.

4.3 Angle resolution comparisons

Next, the influence of angle interval between two sources, i.e., K = 2, on the performance
of algorithm is discussed. A uniform linear array with M = 6 is used to estimate DOA
information of two independent sources in space. The angle of one source 6, is randomly
selected between [—60°,60°], and the other one is 1 + §°, where § is changed from 2° to
5° with uniform step 0.5°. One hundred Monte Carlo simulations are carried out for each
8. The number of snapshots L is 200 and SNR = 20 dB. Figure 5 shows the RMSEs of five
different algorithms at different angle intervals.

From the simulation results shown in Fig. 5, it is not difficult to see that among the
five algorithms mentioned above, £1-svd algorithm is most affected by the angle interval
of the source, and MUSIC and OGSBL are slightly better. Since SPA and the proposed
algorithm in this paper do not depend on spatial discrete grids or spatial spectral peak
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search, outstanding estimation performance can be obtained when the source location is

very close, which just proves the superiority of gridless DOA estimation algorithm.

4.4 Run time comparisons

At last, we compare the run time of five algorithms. From the analysis of the computa-
tional complexity in Section 3.3.3, we can find that the running time of MUSIC, ¢;-svd,
and OGSBL algorithm is closely related to the number of spatial discrete grid points N.
However, the parameters that play a decisive role in the running time of SPA and the pro-
posed algorithm only include the number of elements M and snapshots L. At the same
time, it is not difficult to see that M has a far greater impact on the complexity than L.
Therefore, in the following experiment, we will compare the run time of the above five
algorithms under different M.

The number of sources is K = 2, and the method of selecting DOA parameters 6y is
the same as that in the experiment corresponding to Fig. 3. The number of snapshots is
L = 200. In order to compare the running time of the algorithm under different values
of N, the number of spatial discrete grid points is 180 and 360, respectively, i.e., N = 180
and N = 360. Figure 6 shows the running time curves of the above five algorithms under
different M.

From the simulation results shown in Fig. 6, it can be seen that the running time of
the five algorithms increases with the number of elements M. MUSIC algorithm needs
the shortest running time because it does not involve the iterative optimization process.
When the number of grid points is N = 180, the running time of £;-svd and OGSBL algo-
rithm is less than that of gridless DOA estimation algorithms. However, when N becomes
larger, the running time of these algorithms increases greatly, and when N = 360, it has
gone beyond the gridless algorithms. In addition, it is worth mentioning that the running
time of the proposed algorithm is always less than that of SPA when M is the same, which
just verifies the conclusion of Section 3.3.1.

5 Results and discussion
In this paper, inspired by the SPA and FRI signal reconstruction theory, a modified

algorithm is proposed to improve the accuracy of DOA estimation by overcoming the

7 ; ‘

% - MUSIG(N=180)
—— MUSIC(N=360)
6r L1-svd(N=180)
L1-svd(N=360)

OGSBL(N=180) N
51 OGSBL(N=360) s
—A—SPA %
—¥—the proposed

2%

Run Time/(s)
S

w
N

X >3 23
0 I | I 1 I I I
6 6.5 7 7.5 8 8.5 9 9.5 10
M

Fig. 6 Run time of five algorithms versus M
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problem of grid mismatch, which constantly arises in sparsity-based DOA estimation
algorithms. The proposed algorithm takes advantage of the covariance fitting criterion
to reduce the impact of Gaussian white noise limited number of snapshots, rather than
directly using the received signals or covariance matrix of antenna sensor array. Then,
the annihilation filter equation is constructed by taking advantage of the off-diagonal
elements in the optimized covariance matrix. Finally, the DOAs of the sources can be
retrieved from the zeros of annihilation equation. The proposed algorithm not only
does not depend on spatial discrete grids, but also considers the influence of Gaussian
white noise on the reconstruction model and makes full use of the observed data of
multi-snapshots.
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