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1 Introduction

Multiple-input multiple-output (MIMO) technique can provide high spatial freedom to
increase reliability and throughput. This technique has attracted a lot of attention [1]
and has been widely used in various wireless communication standards. One of the key
advantages of MIMO spatial multiplexing is the fact that it is able to provide additional
data capacity. MIMO spatial multiplexing achieves this by exploiting the multiple paths
and effectively using them as additional “channels” to carry data.

In wideband, due to the delay spread of the different multipath components, the
received signal can no longer be characterized by just an amplitude and phase ran-
dom processes [2]. The effect of multipath on wideband signals must therefore take into
account the multipath delay spread variations. The wireless channel between a single
transmit-receive pair is therefore finite impulse response (FIR) filter in nature. This is due
to the transmitted signal arriving at the receiver over multiple paths and with different
time delays [3]. This FIR filter will take the form of a polynomial in the indeterminate
variable z~1, which is used to represent a unit delay. In this case, for a wireless system con-
sisting of N; transmit antennas and N, receive antennas, the multipath channel transfer
function can be represented by a N, x N; polynomial matrix, denoted H(z). The received
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signal on each antenna is a superposition of signals from the different transmit antennas
called co-channel interference (CCI).

In order to recover the transmitted data sequence corrupted by channel interference, a
conventional method is the spatio-temporal vector coding (STVC) [4]. STVC structure
is suggested as a theoretical means for achieving capacity, and a reduced complexity dis-
crete matrix multitone (DMMT) technique is implemented by the authors to exploit the
frequency selective MIMO channel. It is based on discrete multitone which is a technique
that uses the discrete Fourier transform (DFT) to implement frequency-division multi-
plexing (FDM). DMMT is essentially analogous to OFDM [5] approach: the wideband
problem is reduced to a narrowband form by using a DFT or FFT to split the data into nar-
rower frequency bands and applying an SVD at each frequency to decorrelate the signals
[6]. This approach ignores correlations between frequency bands, and the SVD will order
the output channels according to power in each individual band leading to a lack of phase
coherence [7]. An alternative is to consider time-domain scheme for which the diagonal-
ization of the temporal MIMO channel can be performed once for the entire system [8].
This design, based on polynomial matrix decomposition, transforms the MIMO channel
into a number of independent single-input single-output (SISO) subchannels. This is one
of the most efficient techniques which is done by a factorization of the MIMO channel

polynomial matrix as:
H(z) = U(2)D(2)V (2), (1)

where U(z) and V(z) are square matrices of sizes N, and N, respectively. If the inverses
of V(z) and U(z), assuming they are stable and causal, are inserted into the transmis-
sion chain respectively as pre- and post-filters, then the original MIMO channel becomes
equivalent to D(z). Diagonalization of H(z), viz. the factorization in (1) with D(z) diag-
onal, therefore reduces the MIMO wideband channel to N = min(N¢, N;) independent
SISO subchannels, thereby canceling the CCI. Such decomposition is most commonly
achieved using the popular polynomial singular value decomposition (PSVD) method,
leading to paraunitary factors U(z) and V'(z). This paraunitaryness assures that the power
distributions of the signal and noise remain unaltered after post-filtering. However, given
a polynomial matrix, a PSVD factorization as described above does not exist in general
[9]. By contrast, the MIMO spatial multiplexing scheme presented in [10, 11] completely
eliminates the CCI. This beamforming method is inspired from a blind equalization
method exploiting the Bezout identity [12, 13]. It is based on a combination of the clas-
sical Smith canonical form and LU (Gauss elimination). The decomposition method in
[11], called LU-PMD (LU-polynomial matrix decomposition), is effective and does not
require any iteration: the algorithm ends up after a finite and prescribed number of steps,
with a matrix D(z) which is exactly diagonal. Moreover, it was shown in [11] that unless
for some improbable original MIMO channel, all but except the last resulting indepen-
dent SISO subchannels reduce to simple additive noise channels. Therefore, in addition to
completely canceling the CCI, this decomposition also inherently avoids the ISI problem.

However, the corresponding factors U(z) and V(z) are unimodular and not paraunitary
as in the QR-based methods. The loss of the latter property induces a serious limitation
consisting in an output noise enhancement. The role of the post-filter in this performance
degradation was clarified: the degradation becomes severe as the norm and the condition
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number of the post-filter matrix-valued transfer function increase. Improving the post-
filter matrix conditioning by a simple row balancing was proposed in [14]. Significant
improvement of the performance, in terms of bit error rate, has been observed.

In this paper, we revisit the LU-based factorization in [11], in combination with the
row balancing trick in [14]. We show that the resulting transformations solve the ill-
conditioning problem and lead to a MIMO spatial multiplexing scheme that is robust to
noise and channel estimation errors (see also [15] for a combination of spatial beamform-
ing and channel estimation). In the latter context, the proposed LU-based beamforming
compares favorably to the QR-based counterpart in terms of both complexity and bit error
rate.

The structure of this paper is as follows. Section 2 is devoted to the LU-based decompo-
sition method for MIMO spatial multiplexing scheme. The noise enhancement problem is
also explained. Two solutions, and a combination of both, are presented in Section 3. Sim-
ulation results showing that the proposed LU-based decomposition significantly reduces
the noise enhancement are given in Section 3.2 with comparison with the QR-based
scheme. The robustness of the proposed scheme to channel estimation errors is discussed
in Section 4 with comparison with the QR-based scheme. Finally, concluding remarks are
given in Section 5.

2 Methods

2.1 MIMO spatial multiplexing scheme

Let us consider a MIMO communication system which has N; transmitting antennas and
N, receiving antennas through a channel represented by its transfer matrix-valued func-
tion H(z) € CN-*Nt Let {xi k}xen denote the equivalent discrete-time causal signal on the

transmit antenna i € {1, - - , N;} and define by:
xi(2) =Y xyuz ~ (2)
k=0

its associated Z-transform. We use the boldface notation x(z) for the column vector of
size N; given by x(z) =[x1(2) - - %, (2)]T, where the superscript ” stands for the trans-
pose operator. Likewise, we denote by y(z) the vector collecting the z-transforms of the
discrete-time signals recorded on the N, receiving antennas. Then, the MIMO channel
input-output relation reads in the z-transform domain as:

¥(2) = H(2)x(2) + n(2), (3)

where n(z) stands for the z-transform of a sample realization of the noise corruption
n € CN>1 Assume that the channel’s transfer matrix admits a factorization H(z) =
U(z)D(2)V(2) as in (1). Then, using the inverse of U (z) and V (z), noted:

Up(D2UE@) ™ and  Vp(92V(2)™!

respectively, as post- and pre-filters, allow one to reduce the original MIMO channel into
the simpler form D(z). Indeed, if the original signal is pre-filtered before transmission
as in x(z) = Vyr(2)x(z) = [351 (2) -+ %N, (z)]T, then the corresponding channel’s output
becomes ¥(z) = H(z)x(z) + n(z). Thus, the post-filtering step ¥(z) = U,o(2)¥(z) yields
the final equivalent system:

¥(z) = D(2)x(z) + #(2), (4)
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where we have set ﬁ(z)éljpo (z)n(z) for the noise after post-filtering.

The decomposition in Eq. (1) is mostly performed by polynomial matrix SVD decom-
position. The corresponding factors V(z) and U(z) are then expected to be paraunitary,
which means that they satisfy:

U()*U(z) =T1andV(2)V(z)* =1, forallz e C,

where the notation * stands for the para-Hermitian conjugation, that is, [F(z)]* éW/E)T,
and / is the identity matrix of appropriate size. Thereby, the pre- and post-filters V), (z) =
V(2)* and Uyo(z) = U(z)* are also paraunitary, and setting E(-) for the mathematical
expectation, we have:

~ SUBSUY
|In(z)||§§/ E [71(2)*7i(2) i :/
|z1=1 z

d
L 1@ U@ Upo(@m(2)] ;Z

d.
- / E[n(2)*n(2)] Z21n@)3-
lz1=1 z

Likewise, we obtain ||32(z)||% = ||x(z)||% showing that, in this case, the pre- and post-
filtering do not modify the mean power of the original signal and noise stochastic
processes. Unfortunately, polynomial matrix SVD does not exist in general. Of course,
an SVD decomposition is clearly feasible if one relaxes the constrain of the factors being
polynomial. But then, the presence of poles can lead to instability. Instead, a common
solution is to consider a Laurent polynomial matrix decomposition. Several iterative algo-
rithms have been proposed to obtain approximate Laurent polynomial matrix SVD [16—
19]. These methods can only generate approximately diagonal matrices D(z), leading to
inevitable residual CCI. The residual CCI may be drastically reduced by increasing the
number of iterations in the algorithms but at the expense of large order of the polynomial
D(z), which translates into increased complexity and more intersymbol interference (ISI)
on each resulting SISO channel. Polynomial order truncation is introduced to limit the
degrees of the polynomials. But, this can affect the paraunitary property of the pre- and
post-filters (see also [20, 21] where the order growth problem is mitigated). In this regard,
a MIMO beamforming scheme based on a combination of the classical Smith canonical
form and LU (Gauss elimination) was presented in [11] as an alternative solution.

2.2 LU-based polynomial matrix decomposition (LU-PMD)

The decomposition algorithm is recalled in Section 3.1.1, with a reformulation in two
nested recursions. Let us give an overview, meanwhile. Basically, the approach follows the
same steps as the classical LU factorization. However, in each step, a preprocessing by the
first step of the decomposition in Smith canonical form is considered. This preprocessing
solves a Bezout equation in order to reduce the pivot element to a constant. We first
obtain:

H(z) = U(2)R(2) (5)

where U(z) and R(z) are respectively N, x N,-unimodular and N, x N¢-upper triangular
polynomial matrices. Next, the same decomposition is applied to R(z) to obtain:

R@T = V() D(), (6)
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where V(z) is Ny x N¢-unimodular like U(z) in (5). Then, for N, > N, a common setting
in MIMO systems, the factorization (1) follows with:

D(z)=|: D@ } @)

ON,—N,,N;

where b(z) is an N; x N;-diagonal matrix and O;; is the zero matrix of size i x j.

2.3 Noise amplification problem
First, observe as in [14] that if the channel’s output noise # is spatially and temporally
white, i.e., with power spectral density matrix E [n(z)n(2)*] = oI, N,, then the post-filtered

noise power reads as:
17213 = 02| Upo(2) > (8)

The noise component in the equivalent reduced system (i.e., after pre- and post-filtering)
is thus amplified with respect to the original system whenever the norm of the post-filter
is high. This is illustrated in Fig. 1.

In this experiment, a complete OFDM communication system is simulated with a
4-QAM modulation. The sequence {x;x}t>0 in (2) then represents the ith OFDM sig-
nal, including a cyclic prefix. The performance of the LU-based spatial multiplexing is
measured by the corresponding bit error rate vs the SNR. Four different 3 x 3 MIMO
channels, each corrupted by a unit-variance spatial-temporal white noise, are considered.
The performance significantly degrades as the norm of the post-filter increases.

Clearly, this performance loss cannot be explained only by the noise power enhance-
ment since the output signal ¥ also undergoes the same post-filtering. Therefore, an
analysis based on signal-to-noise ratios is more relevant.

To proceed, note that the post-filtering operation amounts to the resolution of the linear
perturbed system U (2)y(z) = H(2)%(z) + n(z), with the error term 7(z). Let us denote by
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Fig. 1 Effect of the post-filter norm on the system'’s performance: BER vs SNR
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k(U )é |1U(2)|l || Uz)~! || the condition number of the matrix U (z) with respect to the L
matrix norm:

1 [ T d
1G22 — / Tr [L[(e“”) L[(e"")] do = f Tr[U@) u@] =

27 Jo lz]=1 z
where Tr(-) is the trace operator. Now, compare the communication systems in (3) and
(4) in the light of classical perturbation analysis [22]. The corresponding noise-to-signal
ratios are then related by (see [14]):

[7(2)[l2 < () n(2)112

————— =~ o )
1D(2)%(2)I2 1H (2)%(2)l2

When the post-filter U(z) is ill-conditioned, i.e., k (1) > 1, the noise-to-signal ratio can
be significantly higher for the reduced system than for the original one. This explains the
performance drop observed in the experiment reported in Fig. 2.

In this experiment, we have considered again the previous setting, with 3 x 3 ran-
domly selected MIMO channels with Rayleigh distribution. The system’s performance is
measured by the corresponding bit error rate vs the SNR. The same experiment is then
repeated with 4 x 4 and 5 x 5 MIMO channels in Figs. 3 and 4, respectively. All these
experiments confirm a drop in performance as the condition number of the post-filter
increases.

A row balancing of the post-filter was proposed in [14] as a solution to keep both the
norm and the condition number of the post-filter low (see [23]). This method consists in
replacing the preceding post-filter U, (z) by S(2) of the form:

S(z) = Wlpo(2), (10)
10° g
1071 S R EEIEE SRR ERIEE  EERIERRREERIERHEREREE "W g
) - o
- B ]
o] L i
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= B
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| —— Cond=323734 : : ]
|| —+— Cond=4599535 : : b
1074 ‘ ‘ *
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Fig. 2 Effect of the postcoder's condition number on the BER vs SNR—3 x 3 MIMO channel
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where W is a diagonal constant matrix selected such that each row of S(z) has unit norm.
The diagonal elements W;; of W then read as:

1

Wii=0—37
|[tpo@]i],

i=11"';Nr (11)

where [ A]; denotes the ith row of matrix A. Accordingly, the channel’s output signal after

this modified post-filtering would read as:
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Fig. 4 Effect of the postcoder's condition number on the BER vs SNR—5 x 5 MIMO channel
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¥(2) = Wy(z) = WD(2)x(z) + S(2)n(z). (12)

Good performance in terms of bit error rate was observed.

Despite this improvement, the LU-based polynomial matrix decomposition for MIMO
beamforming remains less competitive than the state-of-the-art methods because of the
post-filter noise amplification.

3 Results

3.1 Arobust decomposition

3.1.1 Source of ill-conditioning

To identify where the abovementioned ill-conditioning stems from, let us recall one iter-
ation of the LU-based factorization (see [11]). Indeed, the decomposition of H(z) in (5)
can be rephrased by a recursion of the form:

Hi(2) = ®4-1(2)Hp—1(2) = Pp-1(2) Pp—2(2) - -+ Py (2) Hi— 1 (2) (13)
= o* D (2)Hy(2) (14)
initialized to Hy(z) = H(z) and ending at Hn(z) = R(z), with N = min(N, — 1, N;). The

form of the polynomial transition matrix will be given later. Given the (k — 1)th iterate
with:

[ di(z) WP 15(2) - WP 1) hP () AIAC
0 @ : :
T 0 k1 (@)
Ha@ =10 d1@  hOpj @ - h @) [ 1)
0 0 hPx(2) hPn, @)
| 0 0 WO k@) - hPON N, (D) ]

we describe how to get to the next step. First, the kth diagonal entry 2%} ; (2) is reduced
to the greatest common divisor (gcd) of the polynomials 7%, (2),£ = 0,...,N, — k,
through the recursion:

dio(z) = KOk (2)
die(2) = ged(die—1(2), P04 (2))
which runs until £ = £ such that either 1 < £ < N, —kanddyy, (z) = 1 or £ = N, — k.

Each iteration ¢ of this recursion is implemented in matrix form by a left multiplication
by:

0=1,...,4 (16)

ka 1
Hi (@) Hsea @
A =| . I , (17)
—die-1(2) ), (@
IN,—k—¢

where Ek,g_l (2) and /h\l(ji 1 (2) are respectively the quotients of dy ¢ 1 (z) and h® k+ek(2) by
their gcd dy ¢ (z) and where hz @ and h,ﬁ( e (%) are obtained from the Bezout equation:

Wy DAk e-1(2) + iy @Dh P04 (2) = diy (2).

Page 8 of 17
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Next, the kth iteration of the recursion (13) is completed by a Gaussian elimination step.
This is achieved by left multiplying A (z) = Zk,g i (2)Ake —1(2) - 'Zm (2), obtained at the
end of the recursion (16), by the polynomial matrix:

Ir—1
. 1
Liz)=| . (18)
Ji@ In—k
where fi(z) =[0 --- 0 h(k)k+gk+1,k(z) .- -h(k)Nr,k(z)]t. The polynomial transition
Lr—1 zeros

matrix in the recursion (13) then readily reads as ®x(z) = L (2)Ax(z) and has the block
diagonal form:

Pi(z) = [1“ (19)

Vi (2) :|
for some polynomial matrix Wi (z). The first kK — 1 rows of ok (z) = CI>k(z)d>(k’1)(z) are
therefore identical to that of ®*~1 (z). Meanwhile, the degrees of the remaining rows are
increased, compared to ®*~1(z), because of the left multiplication by the polynomial
matrix Wi (z). As a consequence, the final matrix:

PNV (z) = dn_1(D)PN-2(2) - - Do (2),

which coincides with Uy, (z) = U (z)~! = ®W=D(y), is badly scaled. This explains why
the post-filter is ill-conditioned [23].

3.1.2 Arobust post-filter

As explained above, the row imbalance induced by the iterations of the decomposition
leads to an ill-conditioned post-filter. Observe that the reduction steps of the decomposi-
tion, implemented by the multiplications by the polynomial matrices A (z), are one of the
main sources of the row unbalance. Recall that these steps are applied to each iteration
k, to reduce the pivot (diagonal element of column k) to the greatest common divisor of
the pivot and the polynomials in column k beneath the diagonal. As already mentioned,
the iterations described in the preceding subsection are applied to R(z) to complete the
decomposition (1). Consider the iteration k in this context and call d(z) the gcd of the
pivot and the polynomials in column k of R(z)7, beneath the diagonal. As a result of the
factorization (5) described above, the corresponding pivot is already the greatest com-
mon divisor of all the subchannels from the original kth transmit antenna to the receive
antennas X, . . ., N,. Now, the reduction step for this iteration seeks d(z) as the ged of (1)
all subchannels from the original kth transmit antenna to the receive antennas %, ..., N,
and (2) all the subchannels linking the transmit antennas &, ..., N; with the kth receive
antenna. Most likely, d(z) will be equal to 1, leading to A (z) = Iy. A direct consequence
is that the pre-filter V), (2) is better conditioned than the post-filter 1/, (z).

We thus come to the conclusion that the noise amplification can be avoided by a simple
modification in the decomposition by swapping the order in which the pre- and post-
filters are computed. To see this, let us consider the decomposition in (1) applied to
G(2) = H(2)T instead of H(2), i.e.,

G(z) = Hiz)T = U()D(2)V (2). (20)
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Table 1 Left-right swapping vs row balancing: comparison of powers and condition numbers

MIMO Post-filter power Post-filter condition number
5@ V()™ S@) V()™
3x3 1.732 28 14 3
4 x4 2.000 6.3 56 14
5x5 2236 10.1 156 23
6x6 2449 224 400 51
7x7 2.646 422 4648 287
8x8 2.828 76.1 9382 520
9x9 3.000 120 35,463 927
10 x 10 3.162 180 135,843 3631
1M x 1 3317 247 191,350 3671
12x12 3.464 424 385,776 21,104
13x 13 3.605 593 908,480 32,509
14 x 14 3.742 955 1,177,939 39,579
15 %x 15 3.873 1733 809,090 65,055

Then transposing back again, we obtain:
H@ = V@ DU@E)T. (21)

The post-filter becomes V (z)”. Now since the design of V(z) is most likely free from the
reduction step, the output noise enhancement is avoided. This allows the post-filter to
have improved properties. Since the pre-filter has no effect on the noise component, its
conditioning properties will not affect the system’s performance.

3.2 Performance comparison

3.2.1 Performance analysis

The proposed “left-right swapping” scheme is compared to the “row balancing” solution
described in [14]. The condition number of this new post-filter V(z)~! and that of the
post-filter S(z) in (10) obtained with the “row balancing” technique are computed. Also,
the output noise power after post-filtering is computed via (8) with 02> = 1. Thereby,
we consider several (p x p)-MIMO systems, for p = 3,4,---,15. For each system, we
thus calculate the average power and the average! condition number on 100 randomly
simulated Rayleigh fading channels H(z). With the row balancing, the output noise power
is readily given by ,/p. Table 1 displays the obtained results.

The results show that the proposed “left-right swapping” scheme provides a better
conditioned post-filter matrix, with a reasonable norm (output noise power). It is there-
fore expected that this translates into enhanced MIMO-OFDM performance. The effect
in terms of bit error rate is now studied in MIMO-OFDM system. For the simula-
tion, we consider a spatial multiplexing scheme using V-BLAST algorithm, with the
ITU Pedestrian-A channel model with the following parameters: 20 MHz of bandwidth,
N; = 512 subcarriers, CP = Ns/8 = 64 for cyclic prefix length, and 4-QAM modulation.

Figures 5 and 6 show the BER comparison in MIMO-OFDM time-domain spatial mul-
tiplexing, between classical the LU-PMD post-filtering, the modified post-filter based on
“row balancing,” and this “left-right swapping” scheme.

L Actually, the table displays the median values instead of the mean values because the computed condition numbers
exhibit very high variances.
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Significant improvement is obtained with the proposed method in both MIMO 3 x 3
contexts: indoor (5) and outdoor (6). Observe how the performance gain is very important
in the more severe outdoor context. For example, the same BER level of 1073 is reached
with the proposed solution with about 5 dB drop in SNR compared to the “row balancing”
trick. This is due to the fact that the post-filter matrix is better conditioned now, while

the output filtering power remains reasonably high.
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3.2.2 Comparison with QR-based spatial multiplexing

In this subsection, we compare the performance of the improved scheme in MIMO-
OFDM system with those of the QR-based spatial multiplexing [19]. For the QR decom-
position, we have set the tolerance parameter ¢ = 1072 for the off-diagonal elements.
With this value, the residual CCI is insignificant. The truncation parameter is selected
as = 1073 to limit the growth of the degrees of the Laurent polynomials in the final
reduced equivalent channel D(z) . We refer to [18] for more details on the meaning
and roles of these parameters. For the purpose of the comparison, we have simulated a
complete transmission chain from the encoding/interleaving block of the original binary
source to the final demodulation block, through an outdoor pedestrian ITU MIMO 3 x 3
channel. The different BERs are displayed in Fig. 7.

Figure 7 shows that, in terms of BER in MIMO wideband spatial multiplexing, the LU-
PMD using “left-right swapping” compares favorably to the QR approach, even for weak
SNR. The interesting properties of the LU-PMD decomposition (low complexity, CCI
cancelation, and ISI mitigation) are now becoming apparent.

3.3 Arobust and unitary post-filter

As already mentioned before and observed in [14], the “row-balancing” trick improves
the conditioning of the post-filter matrix. Swapping the pre- and post-filter matrices also
results in an improved beamforming system as argued above. We therefore propose in
this section a combination of both improvements, that is, (1) to swap the left and right
factors of the decomposition to obtain a better conditioned post-filter at the reception
and (2) to apply a row balancing to improve further its conditioning. The final resulting
post-filter matrix is subsequently denoted by Q(z). Table 2 shows how this combination
allows one to enhance the good conditioning of the post-filter matrix. These results are
obtained with the same simulation setting as in Table 1.
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Fig. 7 BER comparison of LU-based scheme and QR-based scheme
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Table 2 Comparison of condition numbers: row balancing schemes, left-right swapping, and
combination of both

MIMO Post-filter condition number

S(2) Vz)! Q2
4x4 34 23 16
5x%5 145 86 46
6x6 269 194 %
7x7 915 684 257
8x8 2908 3339 1002
9% 9 4028 2863 1187
10 x 10 21,983 17,495 6399
11 x 11 30,620 21,384 10,075
13x 13 101,547 59,609 40,134

The performance in terms of BER in 3 x 3,4 x 4, and 5 x 5 MIMO systems is studied
with an ITU Pedestrian-A channel model. The results presented respectively in Figs. 8,
9, and 10 confirm the expectation that the combination of the two methods improves the

performance compared to each one taken separately.

4 Discussion

In a spatial multiplexing problem, a common and underlying assumption is that the
coefficients of the polynomial matrix representing the MIMO channel are available.
Accordingly, in all the preceding experiments, the pre- and post-filters correspond exactly
to the right and left factors of the decomposition of the channel that is actually used
to simulate the transmission system. However, the channel coefficients result from an
estimation procedure. The pre- and post-filters therefore do not stem from the decompo-
sition of the exact transmission MIMO channel. In this section, we thus study the impact
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Fig. 8 BER performance in MIMO 3 x 3 by combining “row balancing” and “left-right swapping” methods
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Fig. 9 BER performance in MIMO 4 x 4 by combining “row balancing” and “left-right swapping” methods

of channel estimation errors in a MIMO wideband system using LU-based spatial multi-
plexing. The exact channel polynomial matrix is still denoted by H(z) and its estimation
will be denoted by H (z) = H(z) + AH(z). The power of the estimation error AH(z) is
given by the square of the L, matrix norm:

E=|AH®@)|2 = |H(z) — H@)|2. (22)
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Fig. 10 BER performance in MIMO 5 x 5 by combining “row balancing” and “left-right swapping” methods
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Fig. 11 LU-PMD: BER performance with imperfect channel estimation

In the sequel, we compute the pre- and post-filters from the decomposition of H(z) but
the MIMO transmission system is still simulated using the exact channel matrix H(z).
QR-based decomposition is also implemented in this channel-pre/post-filter mismatch
setting for comparison. We evaluate the BER performance for different values of the
relative error E, = E/||[H(2)||2. The results are presented in Figs. 11 and 12.
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Fig. 12 QR: BER performance with imperfect channel estimation
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For E, = 0.01, we observe that for both the LU-based and QR-based methods, the BER
curves obtained with the exact channel coincide with that corresponding to the estimated
channel. Very small channel estimation errors do not affect the BER for both methods.
However, the BER performance drops significantly as the estimation errors increase, and
this is particularly visible for high SNR, when the noise effect is no longer dominant. The
proposed LU spatial multiplexing scheme appears to be more robust to channel estima-
tion imperfection than the QR-based method. Therefore, the proposed LU-PMD with
“left-right swapping” scheme is more realistic than the QR-based approach because it
provides better BER performance in the presence of channel estimation errors.

5 Conclusion

Unlike the QR-based decompositions of polynomial matrix, the LU-based decomposition
is simple and exact. Nonetheless, this approach was hitherto discarded in MIMO wide-
band spatial multiplexing applications, due to an amplification of the output noise. We
have presented in this paper a simple but effective solution to this problem of output noise
enhancement. We have clearly established in previous studies that performance limitation
of the LU-based spatial multiplexing was essentially due to an ill-conditioning of the cor-
responding post-filter polynomial matrix. Matrix row balancing has then been proposed,
and a significant reduction of the noise amplification was observed. Here, we have shown
that the ill-conditioning of the post-filter matrix is caused by the pivot reduction step
during the polynomial matrix factorization. A simple permutation of the left and right
factors of the decomposition was sufficient to significantly improve the BER performance
compared to the previous row balancing solution. Then, a combination of both solutions
results in an LU-based polynomial matrix decomposition approach for MIMO spatial
multiplexing in which the noise amplification is now avoided. Finally, we have shown that
this proposed LU-based multiplexing scheme compares favorably to the state-of-the-art
QR-based methods, in the realistic setting where knowledge of the channel’s coefficient
matrices is corrupted by estimation errors.
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