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Abstract

The division of fuzzy space is very important in the identification of premise parameters, and the Gaussian
membership function is applied to the premise fuzzy set. However, the two parameters of Gaussian membership
function, center and width, are not easy to be determined. In this paper, based on Fuzzy c-means (FCM) and particle
swarm optimization (PSO) algorithm, a novel T-S fuzzy model optimal identification method of optimizing two
parameters of Gaussian function is presented. Firstly, we use FCM algorithm to determine the Gaussian center for
rough adjustment. Then, under the condition that the center of Gaussian function is fixed, the PSO algorithm is used
to optimize another adjustable parameter, the width of the Gaussian membership function, to achieve fine-tuning, so
as to complete the identification of prerequisite parameters of fuzzy model. In addition, the recursive least squares
(RLS) algorithm is used to identify the conclusion parameters. Finally, the effectiveness of this method for T-S fuzzy
model identification is verified by simulation examples, and the higher identification accuracy can be obtained by
using the novel identification method described compared with other identification methods.
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1 Introduction
In recent years, fuzzy model has been widely studied and
has become an effective tool for complex system iden-
tification. The identification of fuzzy model consists of
structure identification and parameter identification. The
structure identification is divided into the identification of
precursor structure and conclusion structure. Parameter
identification is also divided into premise parameter iden-
tification and conclusion parameter identification. Takagi
and Sugeno [1] has demonstrated that systems based on
fuzzy rules can approximate highly nonlinear systems. T-S
fuzzy model is widely used in nonlinear system mod-
eling and model-based control [2–4]. There are many
methods to realize premise parameter identification and
fuzzy space partition, such as fuzzy c-means (FCM) [5–7],
fuzzy c-regression model (FCRM) [8–12], Gath-Geva
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clustering algorithm [13], and Gustafson-Kessel clustering
algorithm [14].
In order to improve the identification accuracy of the

model and prepare for further control, this article starts
with changing the method of dividing the fuzzy space to
improve the identification accuracy of the fuzzy model.
Various studies and related data show that FCM is very
suitable and widely used to identify the premise param-
eters of T-S fuzzy model. The core problem of FCM
clustering algorithm is to establish a reasonable cluster-
ing index to optimize the division of fuzzy input space.
The FCM algorithm is mainly based on the Euclidean
norm of data clustering center to form spherical clustering
algorithm, which is obtained by optimizing the objective
function of each sample points for all class center mem-
bership degree, and the category of the sample points in
order to achieve the goal of automatic classifying sample
data. Wang et al. [15] used the nearest neighbor clustering
method to preset the initial parameters of fuzzy cluster-
ing to achieve the purpose of improving accuracy. The
method proposed in the article is helpful to the accuracy
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Fig. 1 Flowchart of our fuzzy modeling algorithm

improvement, but because there was no method to opti-
mize the fuzzy space division, the accuracy improvement
is not very large. Liu et al. [16] combined the improved
PSO algorithm with FCM to improve the accuracy of
model identification, but the article did not propose an
improved method for the membership function. The liter-
ature [17] integrated the adaptive parameters of distance
measurement into the FCM algorithm, which can flexibly
control the depth of the relevant information between dif-
ferent attributes in medical data and improve the accuracy
of the algorithm. However, the calculation method of the
membership function in the article was not very accurate.
High-order neural fuzzy c-means clustering algorithm
was used to classify massive heterogeneous data in [18].
FCM clustering algorithmwas used to quickly find out the
central functions of two classes of clustering in the image
domain in [19]. Mahalanobis and Minkowski metrics are
used to replace the usual Euclidean distance in order to
enhance the cluster detection capacity of FCM by allow-
ing more accurate detection of arbitrary shapes of clusters

for high dimensional datasets in [20]. A clustering method
of kernel fuzzy c-regression model based on fuzzy cor-
relation was proposed in [21], which solved the problem
of identifying the presupposition parameters of T-S fuzzy
model.
The division of fuzzy space has a great impact on

improving the accuracy of fuzzy model identification.
There are many methods for dividing fuzzy space, such as
triangle function and bell-shaped Gaussian function. As a
matter of fact, the bell-shaped Gaussian fits FCM because
distance is alsomeasured in a point-to-point fashion. How
to combine the Gaussian membership function with the
traditional FCM algorithm to improve the accuracy of
model identification will be an interesting problem.
In order to identify the premise parameters more accu-

rately and obtain higher identification accuracy, it is nec-
essary to optimize the membership function parameters.
FCRMmethod was used to optimize the center and width
of Gaussian function to obtain higher modeling accuracy
in [9]. Chandrakumar and Senthil [22] introduced a new
fuzzy c-means objective function called kernel induced
fuzzy c-means based on Gaussian function for the pur-
pose of segmentation of medical images. The probability
in the algorithm that indicates the spatial influence of
the neighboring pixels on the center pixel plays a key
role in this algorithm, and it obtains efficient method
for calculating membership and updating prototypes by
minimizing the new objective function of Gaussian based
fuzzy c-means. An intuitionistic fuzzy neural network
(IFNN) with Gaussian membership function and Yager-
generating function is proposed in [23], and the incorpo-
ration of the concept of IFL into a fuzzy neural network
(FNN) can enhance the performance of an FNN. It can
be seen that Gaussian function plays an important role in
identification of modeling. This paper adopts a method
to determine and adjust two key parameters of Gaus-
sian function (center and width). The method adopted in
this paper is to determine the center of Gaussian func-
tion by using the FCM algorithm, and to optimize its
width by using PSO algorithm when the center has been
determined and remains unchanged, so as to complete
the fuzzy division of the premise parameters of the fuzzy
model. In addition, the corresponding parameters are
determined by RLS method. The novelty of our paper are
expressed in the following aspects:

(1) For the first time, FCM clustering algorithm is
combined with Gaussian function for fuzzy model
identification.

(2) The creative introduction of PSO algorithm achieves
fine-tuning, making the fuzzy model identification
more accurate.

The rest part of this paper is organized as follows.
Section 2 gives a brief and basic introduction to the T-S
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fuzzy model. In Section 3, we come up with a new fuzzy
system identificationmethod and describe the fuzzymod-
eling method. In Section 4, the validity of the proposed
method is verified by three experiments, and its superior-
ity is proved by comparing with other methods. Section 5
is the conclusion.

2 T-S fuzzymodel
T-S model is a rule-based model in which the precondi-
tions of rules are fuzzy variables and the conclusion is a
linear function of input and output. It is based on local
linearity and achieves global nonlinearity through fuzzy
reasoning. T-S model is generally defined as:
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Fig. 2 Training and testing inputs for a nonlinear differential equation
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Table 1 Center and width of Gaussian membership functions
before and after optimization for the nonlinear difference
equation example

Before optimization After optimization

Center (vc∗r)

−0.1430 0.7568 0.7568 −1.5403 −1.6843 −1.6839

0.6456 2.2100 2.2100 −0.4553 −0.4047 −0.4027

0.9755 2.9367 2.9367 0.6287 1.0216 1.0139

1.1735 3.3726 3.3726 1.6045 2.5294 2.5254

Width (bc∗r)

0.4000 0.4000 0.4000 2.4092 1.0312 1.0561

0.4000 0.4000 0.4000 3.0067 3.4380 3.2153

0.4000 0.4000 0.4000 4.6322 0.7850 0.6624

0.4000 0.4000 0.4000 5.9032 1.8199 1.5576

Ri : If (x1is Ai1) and . . . and (xn isAin)

then
(
yi = pi0 + pi1x1 + pi2x2 . . . + pinxn

)
;

where Ri is the ith fuzzy rule, i = 1, 2, . . . , c; c is the num-
ber of fuzzy rule; Aij is the ith fuzzy subset of variable xj;
x is the input variable, x = [1, x1, x2, . . . , xn]T ; yi is the
output variable of ith fuzzy rule; and pli is the consequent
parameters, l = 0, 1, . . . , n.
Each fuzzy rule has amatching degree, which represents

the contribution of ith rule to the total T-S fuzzy model:

τi = μi1 (x1) × μi2(x2) × . . . × μin(xn)

=
n⋂

j=1
μij

(
xj

) (1)

Some forms of membership functions (triangle, trape-
zoid, and bell) can be applied to the presupposition fuzzy
set. The bell-shaped fuzzy set Aik is used in this paper:

μij
(
xj

) = exp
{
− (

xj − cij
)2

/b2ij
}

(2)

cij and bij are the parameters of Gaussian membership
function. The output of T-S model is a weighted average
of individual rules:

y =
c∑

i=1
ωiyi =

c∑

i=1
ωixTπi (3)

where ωi = τi/
∑c

j=1 τj is the validity function of
ith rule, yi is the output of ith submodel, and πi =
[
p0i , p1i , p2i , . . . , pni

]T , i = 1, 2, . . . , c is the conclusion
parameter of ith rule.

3 The proposed T-S fuzzymodel identification
approach

In present section, we will introduce a novel prerequisite
parameter identification method of T-S fuzzy model in
detail. Firstly, FCM algorithm is used to initialize input-
output space, decompose input space into c fuzzy sub-
space, and determine the clustering center of fuzzy sub-
space. After that, the center of the fuzzy subspace which
is gotten in the first step is substituted into the Gaussian

membership function. In the third step, the PSO algo-
rithm is utilized to optimize the width of the Gaussian
function and determine the membership function while
keeping the center of the Gaussian function unchanged.
The center and width of the Gaussian function are not
easy to be determine. Finally, RLS method is used to iden-
tify the conclusion parameters. Then, the identification
model is obtained and the specific flow diagram of this
method is shown in Fig. 1.
The key problem of the new modeling method pro-

posed in this paper lies in the application of Gaussian
membership function and how to quickly optimize its
two parameters, center and width. These are discussed in
detail in this section.

3.1 A novel premise parameter identification method is
based on FCM and PSO

In this part, we will elaborate the method of using tra-
ditional FCM clustering algorithm and PSO algorithm
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Fig. 3 Gaussian function center and width optimization in regard to
variable u(k) for the nonlinear difference equation example
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Fig. 4 The nonlinear differential equation example fuzzy model performance

to determine the parameters of Gaussian function. FCM
algorithm is used to obtain rough tuning results, and
then, PSO algorithm is used to achieve fine-tuning. The
used methods of minute forming fuzzy set are all con-
ventional algorithms, which are characterized by simple
structure and helpful tomake the identification of premise
parameters more concise and effective.

3.1.1 Determination of center of Gaussianmembership
function by FCM

The FCM algorithm [10] can be expressed as minimizing
the following objective function:

Jm(U , v) =
n∑

j=1

c∑

i=1

(
μij

)m (
dij

)2 (4)
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Table 2 Comparison of model evaluation indexes of different
models for the nonlinear differential equation example

Model No. of rules
MSE

Training Test

Farag et al. [26] 75 0.0374 0.0403

Wang and Lee [27] 8 0.6184 0.2037

Evsukoff et al. [28] 100 0.1577 0.0185

Bagis [29] 4 0.0341 0.0378

Li et al. [12] 4 0.0149 0.0115

Our model 4 0.0069 0.0046

satisfying
c∑

i=1
μij = 1, 1 ≤ j ≤ n,μij ≥ 0, 1 ≤ i ≤ c (5)

where n is the input variable dimension and c is the clus-
ter center number. m > 1 is weight index of membership
function. If m is too small, the membership of the input
variable is around 1, which will affect the identification
accuracy; ifm is too large, the number of crossover among
membership functions is too much, which will also affect
the identification accuracy. In practice, m = 2 is often
taken. U is a fuzzy partition matrix containing the mem-
bership of each feature vector for each cluster. z is the
center of clustering, z = {z1, z2, . . . , zc}, zi ∈ Rn. The clus-
tering center can be calculated according to formula (6):

zi =
n∑

j=1

(
μij

)m xj/
n∑

j=1

(
μij

)m ,∀i (6)

The fuzzymembership functionmatrixU can be obtained
by the following formulas:

μij = 1/
c∑

k=1

( dij
dkj

)2/(m−1)
(7)

dij = ‖xj − zi‖ > 0,∀i, j (8)

if dij = 0, then μij = 1, μkj = 0, for all k �= i

The initial value of the FCM center matrix z is given
at random; after that, the fuzzy partition matrix U is cal-
culated by using formula (7) for all the eigenvectors. The
initialization of z is obtained by randomly selecting the
eigenvalues of each cluster center

(
zij

)
, which should be

within the set of the listed eigendata. The stop condition
is achieved by setting ε. Set it according to users’ needs.
Offline calculation method is as follows:

(1) Random number generator is used to give the initial
value to the clustering center matrix z, and the
clustering center was recorded, and set k = 0;

(2) The initial value of the fuzzy partition matrix U(k=0)

is calculated by using Eqs. (7) and (8);
(3) Increase k so that k = k + 1, and use Eq. (6) to

update cluster center z;
(4) Equations (7) and (8) are used to renew the fuzzy

partition matrix U(k);
(5) If ‖U(k) − U(k−1)‖ < ε is satisfied, the calculation

stops; otherwise, repeat steps 3∼5.

The center of Gaussian function (the clustering center)
can be obtained from the above steps.

3.1.2 Optimization of the width of Gaussianmembership
function by PSO

In 1995, Kennedy et al. proposed PSO algorithm [24],
which has the advantages of evolutionary computation
and swarm intelligence, and it is a heuristic global opti-
mization algorithm. In this paper, the purpose of using
PSO is to optimize the width of Gaussian function and
realize the fine-tuning of fuzzy division of premise param-
eters to get higher modeling accuracy. In addition, when
optimizing the width parameter, the minimum mean
square error (MSE) (formula (18)) is used as the objective
function of PSO algorithm for global search to find the
best particle location.
The PSO algorithm is briefly described as follows: let

particles search in D-dimensional space, and the num-
ber of particles is N. Where the position of kth particle
is Bk = (bk1, bk2, . . . , bkD), the velocity of the particle
is Vk = (vk1, vk2, . . . , vkD), each particle is a solution to

Table 3 Center of Gaussian membership functions before and after optimization for the Box and Jenkins example (case 1)

Center (vc∗r)

Before optimization

0.0590 0.0590 0.0590 53.0500 53.0500 53.0500

0.9840 0.9840 0.9840 55.5333 55.5333 55.5333

1.4465 1.4465 1.4465 56.7750 56.7750 56.7750

1.7240 1.7240 1.7240 57.5200 57.5200 57.5200

After optimization

−1.5724 −1.57394 −1.5724 48.9316 48.9559 48.9836

−0.3519 −0.3570 −0.3575 52.2294 52.2705 52.3161

0.6625 0.6535 0.6506 55.2552 55.2838 55.3178

1.6878 1.6819 1.6806 58.1957 58.2380 58.2777
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Table 4 Width of Gaussian membership functions before and after optimization for the Box and Jenkins example (case 1)

Width (bc∗r)

Before optimization

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

After optimization

0.5915 0.2889 1.4532 2.4482 0.7629 4.0486

0.4509 1.0336 0.5369 1.1616 3.2833 1.1024

0.7113 3.0976 4.0372 0.3325 0.3561 0.4420

0.4605 0.5408 1.7274 0.9292 1.7803 1.9757

the optimization problem, and the particle finds a new
solution by constantly changing its position and speed.
The optimal solution of the kth particle searched so far is
Pk = (pk1, pk2, . . . , pkD), and the optimal position experi-
enced by the whole group is Pg = (pg1, pg2, . . . , pgD). The
velocity and position of each particle vary in line with Eqs.
(9) and (10):

vkd(t + 1) =ωvkd(t) + c1r1 (pkd(t) − bkd(t))
+ c2r2

(
pgd(t) − bkd(t)

) (9)

bkd(t + 1) = bkd(t) + vkd(t + 1) (10)
where r1 and r2 are the random numbers between [0,1];
c1 and c2 are the normal numbers, which are called accel-
erators; and w is the inertia weight. The range of velocity
and position variation in d-dimension of each particle is[−vd,max, vd,max

]
and

[−xd,max, xd,max
]
. If the maximum

velocity of the particle, vd,max, is too high, it might cause
the particle to fly through the best solution; if the maxi-
mum velocity is too small to make the search speed too
slow, it may lead to fall into local optimal solution. Iner-
tia weight w can well control the search range of particles.
When w is large, particles are searched in a wide range.
When w is small, particles are excavated in a small range.
When PSO algorithm is used to optimize the width of
Gaussian function, the learning factors c1, c2 are both set
as 2 and the inertia weight ω is updated by the following
formula:

ω = ωmin + DT · ωmax − ωmin
maxDT

(11)

where DT is the number of iterations. Let maxDT = 100
be the maximum number of iterations, and ωmin = 0.4,
ωmax = 0.9.
According to the above methods, the optimal widths

of Gaussian membership function are obtained. The new
premise parameter identification method can be specifi-
cally described as:

1) Determine the number of input variables r, and make
a fuzzy division of each input space (determine c).
Initialize the center and width of the Gaussian.

2) FCM algorithm is used to optimize the centers of
Gaussian function and determine the centers of
Gaussian function. The center of Gaussian function
is determined by FCM algorithm. Firstly, the FCM
algorithm is used to automatically obtain the initial
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Fig. 5 Gaussian function center and width optimization in regard to
variable u(k) for the Box and Jenkins example (case 1)
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Fig. 6 Box and Jenkins example (case 1) fuzzy model performance

cluster centers of the dataset. Then, it is optimized
step by step. Finally, the determined clustering
centers are treated as the centers of Gaussian
function. This algorithm is not sensitive to the initial
value. On the basis of the above results, the width of
Gaussian membership function is determined by

PSO algorithm. First, the initial value is 0.4 according
to the experience, and then, it is optimized gradually
to determine the width of Gaussian function.

3) Under the condition that the center is determined
and unchanged, PSO intelligent optimization
algorithm is used to optimize the width of Gaussian
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Table 5 Comparison of model evaluation indexes of different
models for the Box and Jenkins example (case 1)

Model No. of inputs No. of rules MSE

Box and Jenkins [30] 6 6 0.202

Xu and Lu [31] 2 25 0.328

Kung and Su [11] 6 2 0.0518

Kim et al. [9] 6 2 0.055

Kim et al. [10] 6 2 0.048

Li et al. [12] 6 4 0.0498

Liu et al. [16] 2 6 0.1238

Our model 6 4 0.0431

function, and a relatively ideal membership function
is finally obtained.

3.2 Consequent parameter identification
The identification of the premise parameters is deter-
mined, followed by the identification of the consequent
parameters.
The output of the system can be expressed as:

y =
c∑

i=1
ωiyi/

c∑

i=1
ωi (12)

ωi =
∏

k∈I
μAkj(xk)

I = {1, 2, . . . , n}, i = 1, 2, . . . , c
(13)

where xk is the kth input variable of the fuzzy model; μAjk
is the membership of the jth fuzzy subset of variable xk ,
which is obtained by the previous fuzzy partition; yi is the
output of rule i; and

∏
is a fuzzy operator, usually using

small operation.
Define

ωi = ωi/
c∑

m=1
ωm (14)

so the output of the fuzzy system is:

y =
c∑

i=1
ωiyi

=
c∑

i=1
ωi

(
pi0 + pi1x1 + pi2x2 + . . . + pinxn

)

= [
ω1 ω1x1 . . . ω1xn ωc ωcx1 . . . ωcxn

]

× [
p10 p11 . . . p1n . . . pc0 pc1 . . . pcn

]T

(15)

substituteN pairs of input and output data into (14) to get
a matrix equation.

Y = XP (16)

where P is the L = (r + 1)c-dimensional consequent
parameter vector and Y and X are the matrices of N × 1
and N × L. r is the number of input variables, and c is the
fuzzy rule number. P∗ = (

XTX
)−1 XTY is the least square

estimation of P. In order to iteratively optimize the con-
sequent parameter matrix P and avoid matrix inverse, the
recursive least squares algorithm is adopted here. If the ith
row vector of X is xi and the ith component of Y is yi, then
the recursive algorithm is:

Pi+1 = Pi +
Si+1 · XT

i+1 · (
yi+1 − XT

i+1 · Pi
)

1 + Xi+1 · Si · XT
i+1

(17)

Si+1 = Si −
Si+1 · XT

i+1 · Xi+1 · Si)
1 + Xi+1 · Si · XT

i+1

i = 0, 1, . . . ,N − 1
(18)

Initial condition is P0 = 0, S0 = αI. α is always going to be
more than 10,000. I is the identity matrix of L×L. Formula
(16) is used to calculate the optimal conclusion parame-
ters in the sense of error square, and output the conclusion
parameters and the minimum mean square error MSE
after the recursive termination.

MSE =
N∑

i=1
(yi − ŷi)2 /N (19)

The complete fuzzy identification algorithm proposed
in this paper is as follows:

Table 6 Center of Gaussian membership functions before and after optimization for the Box and Jenkins example (case 2)

Center (vc∗r)

Before optimization

0.0590 0.0590 0.0590 52.9000 52.9000 52.9000

0.9840 0.9840 0.9840 55.5333 55.5333 55.5333

1.4465 1.4465 1.4465 56.5500 56.5500 56.5500

After optimization

−1.3863 −1.3802 −1.3900 48.7186 48.7561 48.7456

0.1611 0.1847 0.1854 52.4433 52.5454 52.5965

1.4585 1.4662 1.4627 56.9984 57.0210 57.0316
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Table 7 Width of Gaussian membership functions before and after optimization for the Box and Jenkins example (case 2)

Width (bc∗r)

Before optimization

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

After optimization

3.6963 2.9739 2.8264 2.1233 0.5232 0.3797

3.7974 3.9682 0.9303 2.1257 0.5094 0.1820

1.1199 3.3114 0.0278 3.7457 1.8712 0.9683

(1) Determine the number of input variables r, and
conduct fuzzy division of each input space
(determine c);

(2) Calculate the premise parameters μAij(xj) according
to Eq. (2) of this paper;

(3) Get X from Eq. (14);
(4) P is obtained by using Eqs. (16) and (17);
(5) Calculate the performance indicator MSE. If the value

is less than the threshold or two adjacent times are
unchanged, then go to step 6. Otherwise, go to step 4;

(6) If MSE satisfies the required recognition accuracy,
the identification is terminated; if not, add c and go
to step 2.

4 Simulation experiment and application
In this paper, two well-known simulation examples and
a practical application system are cited to confirm that
the performance of the proposed identification method
is superior to some previous methods, which mainly
includes the prediction performance and generalization
of the model. In the simulation example, through com-
parison with other methods in the literature, such as the
traditional FCM algorithm [9], FCRM algorithm [10], and
some other improved FCM algorithms [12], the predic-
tion performance of the model in simulation examples is
verified. In order to verify the generalization of the model,
the data sample set is divided into two parts: training and
testing. The training data is used to build the fuzzy model,
and the testing data is used to check the generalization of
the model.

4.1 A nonlinear difference equation
In this section, the nonlinear difference equation pro-
posed by Narendra and Parthasarathy [25] is taken as the
simulation object, whose expression is formula (20):

y(k) =y(k − 1)y(k − 2) (y(k − 1) + 2.5)
1 + y2(k − 1) + y2(k − 2)

+ u(k) (20)

This experiment uses cross-validation to test the predic-
tive performance of the proposed method. The random
number between [−2, 2] is taken as the input signal u(k)
of the training data and is substituted into formula (20) to

obtain 500 training data. Then, we change the input signal
to u(k) = sin(2k/25) and plug it into the formula to get
500 sets of test data. The training data and test data are
demonstrated in Fig. 2.
In this model, u(k), y(k−1), y(k−2) are selected as input

data and y(k) as output data for modeling. The number of
fuzzy rules is set as 4. After the first phase of modeling is
completed, the test data-driven model is used to test the
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Fig. 7 Gaussian function center and width optimization in regard to
variable u(k) for the Box and Jenkins example (case 2)
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a c

b d

Fig. 8 Box and Jenkins example (case 2) fuzzy model performance

predictive performance. Table 1 indicates the results of the
center and width of the Gaussian function before and after
optimization, and Fig. 3 shows the change of member-
ship function from initial optimization center to further
optimization width under the 4 rules represented by vari-
able u(k) in this case. The comparison diagram of model
output and error obtained after the simulation experiment
is shown in Fig. 4. At the same time, the mean square
error of modeling and testing of the fuzzy model and the
real model is also obtained, and the detailed values and
comparison are shown in Table 2.

4.2 Box-Jenkins system
The famous gas furnace data such as the Box-Jenkins
dataset (Box and Jenkins [30]) have been used by many
scholars as standard experimental data to test identifica-

tion methods. The input u(k) is the flow to the gas stove,
and the output y(k) is the concentration of carbon dioxide
at the outlet. The Box-Jenkins system is a SISO dynamic
system, which has 296 pairs of input-output measure-
ments. Here, u(k), u(k − 1), u(k − 2), y(k − 1), y(k − 2),
y(k − 3) are chosen as input variables and y(k) is chosen
as output, which are conducted simulation experiment.
In order to verify the effectiveness of the algorithm, this

experiment is set as two cases. In case 1, all 296 sets of
data are used to build the model; in case 2, the data is
divided into two groups, one of which is used as training
data to establish a fuzzy model, and the other set of data is
used as test data to test the prediction performance.When
all the data is used for modeling, the fuzzy rule number
c is set as 4, and the fuzzy rule number c is set as 3 in
case 2.
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Table 8 Comparison of model evaluation indexes of different
models for the Box and Jenkins example (case 2)

Model No. of inputs No. of rules
MSE

Training Test

Kim et al. [10] 6 2 0.034 0.244

Tsekouras [32] 6 7 0.022 0.236

Li et al. [12] 6 3 0.0159 0.1255

Our model 6 3 0.0124 0.1699

Tables 3 and 4 respectively exhibit the centers and
widths before and after the membership function opti-
mization of this experiment case 1, and the change of
membership function from optimization center to fur-
ther optimization width under the 4 rules represented by
variable u(k) is shown in Fig. 5. Figure 6 shows the per-
formance of the fuzzy model identified in case 1, where
Fig. 6a visually exhibits the original output andmodel out-
put, and Fig. 6b demonstrates the error between model
output and predicted output of each data point. The
model performance evaluation index MSE of case 1 is
0.0428, and the comparison results with other methods

are exhibited in Table 5. It can be seen from the perfor-
mance comparisons shown in Table 3 that the method
we proposed has great advantages in modeling. The fuzzy
rules of the fuzzy system obtained in this case are shown
as follows:

R1: If u(k) is A11 and u(k − 1) is A12 and u(k − 2) is
A13 and y(k−1) isA14 and y(k−2) isA15 and y(k−3)
is A16

Then y1=9.8901+6.8226u(k) +7.7769u(k − 1) +
5.0171u(k − 2) +1.8158y(k − 1) − 0.1480y(k − 2)
−0.3980y(k − 3);
R2: If u(k) is A21 and u(k − 1) is A22 and u(k − 2) is
A23 and y(k−1) isA24 and y(k−2) isA25 and y(k−3)
is A26

Then y2=0.1320−4.0212u(k) +0.5494u(k − 1) +
1.4731u(k − 2) −0.3340y(k − 1) + 1.0539y(k − 2)
−0.8154y(k − 3);
R3: If u(k) is A31 and u(k − 1) is A32 and u(k − 2) is
A33 and y(k−1) isA34 and y(k−2) isA35 and y(k−3)
is A36

Then y3=−1.7639+0.0195u(k)−0.0027u(k−1)+
1.7228u(k − 2) +0.8379y(k − 1) + 1.8002y(k − 2)
+1.5261y(k − 3);

Pneumatic 
couplet

IPC

D/A

Pressure
 sensor

A/D 

I/O

M

Fig. 9 Structural diagram of the variable load pneumatic loading system
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Fig. 10 Square wave loading test results for the variable load pneumatic loading system

R4: If u(k) is A41 and u(k − 1) is A42 and u(k − 2) is
A43 and y(k−1) isA44 and y(k−2) isA45 and y(k−3)
is A46

Then y4=−1.1831+0.3165u(k)−0.9875u(k−1)−
0.7267u(k − 2) +0.3323y(k − 1) − 0.3059y(k − 2)
+0.0961y(k − 3);

Tables 6 and 7 respectively demonstrate the center and
width before and after the membership function opti-
mization of this experiment case 2. The change of mem-
bership function is shown in Fig. 7. Figure 8 exhibits the
fuzzy model performance of case 2, where a and b are the
fuzzy modeling output of the training data and the mod-
eling error of each data point, and c and d are the fuzzy
model performance reflected in the prediction data. The
modeling evaluation index of case 2 is 0.0123, and the pre-
diction evaluation index is 0.168. The detailed comparison
is shown in Table 8. In this case, although the prediction
accuracy of the model is improved, it is not obvious. How-
ever, to some extent, it also proves the effectiveness of the
algorithm in prediction.

4.3 The variable load pneumatic loading system
The variable load pneumatic loading system has the
advantages of low cost, high output/mass ratio, no pollu-
tion, convenient maintenance, and so on, which is widely
used in the field of industrial automation [33, 34]. Because
of the complexity of gas flow, the compressibility of gas,
the nonlinearity of valve, the friction characteristics of
cylinder, and the vulnerability of system parameters to
environment, the modeling and control of pneumatic
loading system have become a very challenging work.
Generally speaking, there are two ways to establish the

system model: one is that the operation law of the system
is completely known and the model is built according to
the physical law; the another one is to identify the system
model from the operation and experimental data of the
system. In this paper, data-driven fuzzy modeling method
is used to build the model of the variable load pneumatic
loading system.
Figure 9 is the structure diagram of the pneumatic load-

ing system for test. The system includes stabilized pres-
sure air source, pneumatic couplet, SMC ITV2050 pilot
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electric proportional pressure valve, SMC CDQ2A50 sin-
gle rod double acting cylinder with cylinder diameter of
40 mm and stroke of 50 mm, and other pneumatic com-
ponents. The measurement and control system includes
MCL-L pull pressure sensor for real-time pressure mea-
surement, Advantech PCI1710 data acquisition card for
analog input, and Advantech PCI17 20 for control output.
The system controller is IPC-610H industrial computer.
In this paper, in the dynamic range of the system, the

pseudo-random sequence is used as the excitation signal,
which continuously acts on the system in the open-loop
state and collects the input and output data of the system.
The sampling period is 0.1 s, the sampling time is 100 s,
and 1000 sample points

[
u(k), y(k)

]
are obtained, of which

the first 800 data were used as training data and the rest
were predicted data. The following variables u(k), u(k −
1), u(k − 2), y(k − 1), y(k − 2), and y(k − 3) are selected
as the candidate input variables of the model, and y(k) as
the output variable. The number of fuzzy rules is set as 3.
Figure 10 shows the offline modeling process curve of

the variable load pneumatic loading system based on the
method proposed in this paper, where Fig. 10a shows the
outputs of the fuzzy model comparing with that of the
real system, and Fig. 10b shows the errors between the
system outputs and the model outputs. Figure 10c and
d show the output and error of the predicted data. If
6 variables above are all selected as inputs, the training
MSE of the our model is 0.6982 and the testing MSE is
18.1004. Table 9 shows the comparison between the tradi-
tional identification method (Gaussian function based on
bisection method and optimizing the center of Gaussian
function using FCM) and the method presented in this
paper.
The experimental results show that the algorithm pro-

posed in this paper can effectively reduce the influence
of time delay on the system, more effectively control the
variable load pneumatic loading system, and achieve the
rapid response and accurate tracking of the system, and
has good adaptive ability.

5 Results and discussion
In order to improve the accuracy and efficiency of model
recognition, a novel method of prerequisite structure
recognition is proposed in this paper. On the condition

Table 9 Comparison of model evaluation indexes of different
models for the variable load pneumatic loading system

Model No. of inputs No. of rules
MSE

Training Test

Gaussian 6 3 30.9576 21.8597

Gauss+FCM 6 3 14.4222 32.2377

Our model 6 3 0.6982 18.1004

of not using complex structure and algorithm, FCM algo-
rithm, which is commonly used in fuzzy space partition,
is selected to complete the coarse-tuning of the algorithm.
In order to further complete fine-tuning, we choose PSO
optimization algorithm. After two steps of adjustment, the
Gaussian fuzzy set can be obtained, and the identification of
the premise parameters can be completed. At the same time,
the RLS method is used to identify the conclusion param-
eters and complete the identification of the fuzzy model.
In this paper, the robustness and predictive performance

of the proposed algorithm are verified by two interna-
tional standard examples and an actual system applica-
tion. In order to highlight the advantages of this algorithm,
the modeling accuracy is compared with other methods in
literatures, which fully verifies that this method has obvi-
ous advantages in improving the modeling accuracy. With
the continuous development and maturity of intelligent
optimization algorithms, more and more excellent opti-
mization algorithms have emerged, such as hybrid frog
leaping algorithm, firefly algorithm, and cockroach algo-
rithm. For a specific fuzzy identification problem, it is a
more practical research direction to the appropriate intel-
ligent optimization algorithm which is used for parameter
identification, to explore a fuzzy identification method
with faster convergence speed and higher accuracy, and to
better and more successfully apply it to the actual fuzzy
system identification.
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