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Abstract
Single-channel speech enhancement in highly non-stationary noise conditions is a very
challenging task, especially when interfering speech is included in the noise. Deep
learning-based approaches have notably improved the performance of speech
enhancement algorithms under such conditions, but still introduce speech distortions
if strong noise suppression shall be achieved. We propose to address this problem by
using a two-stage approach, first performing noise suppression and subsequently
restoring natural sounding speech, using specifically chosen neural network topologies
and loss functions for each task. A mask-based long short-term memory (LSTM)
network is employed for noise suppression and speech restoration is performed via
spectral mapping with a convolutional encoder-decoder network (CED). The proposed
method improves speech quality (PESQ) over state-of-the-art single-stage methods by
about 0.1 points for unseen highly non-stationary noise types including interfering
speech. Furthermore, it is able to increase intelligibility in low-SNR conditions and
consistently outperforms all reference methods.

Keywords: Speech enhancement, Noise suppression, Speech restoration, Two-stage
processing, Long short-term memory, Convolutional neural networks

1 Introduction
Speech enhancement is the task of removing interferences from a degraded speech signal
and thereby improving the perceived quality and intelligibility of the signal. The research
interest in speech enhancement has been consistently high, due to challenges arising with
applications such as mobile speech communication systems, hearing aids, and robust
speech recognition. This paper focuses on the challenging task of single-channel speech
enhancement in non-stationary noise conditions including interfering speech, reflecting
the real-world conditions in many of the aforementioned applications.
Classical speech enhancement algorithms typically operate in the short-time Fourier

transform (STFT) domain and use a frequency bin-wise gain function, also called weight-
ing rule, which is derived using an optimality criterion under specific model assump-
tions for the distributions of speech and/or noise [1–4]. Commonly, estimates of the a
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priori signal-to-noise ratio (SNR) and in turn the noise power are needed for the weight-
ing rule computation. Numerous algorithms exist for the estimation of a priori SNR
[1, 5, 6] and noise power [7–9], where the latter ones are generally based on the assump-
tion that noise in a given analysis segment is more stationary than speech [10, 11]. This
assumption does not hold for highly non-stationary noise types such as speech babble
or restaurant noise and therefore classical speech enhancement algorithms often fail to
provide good performance in such conditions.
With the advent of deep learning, an increasing number of studies using deep neu-

ral networks (DNNs) for speech enhancement have shown that these models are able to
significantly outperform classical and other machine learning-based methods in terms
of speech quality and intelligibility [12–21]. This is especially true for non-stationary
noise conditions, where deep learning-based methods have the advantage of making no
assumptions on the stationarity of noise or the underlying distributions of speech and
noise. Important aspects of these methods are on the one hand the feature and target
representations as well as the loss function used in training and on the other hand the
topology of the neural network. We focus on research addressing each of those aspects in
the next two paragraphs.
In [13] and [14], the authors use a feedforward DNN to directly map from noisy

log-spectral features to the corresponding clean speech features and show that a good
generalization to unseen noise types can be achieved by multi-condition training with a
large amount of different noise types [14]. A comparison of various target representations
for supervised DNN-based speech separation1 has been conducted in [15] and comes to
the result that estimating bounded time-frequency (T-F) ratio masks such as the ideal
ratio mask (IRM) is advantageous compared to directly estimating the clean spectrogram.
Various types of T-F masks have been further investigated in [16] and [22], where the
authors introduce a masked spectrum approximation (MSA) loss that optimizes the mask
estimation task in the domain of speech spectra as opposed to using a mask approxima-
tion (MA) loss with ideal masks as optimization targets. In addition, a phase-sensitive
spectrum approximation (PSA) loss, that takes the phase difference between noisy and
clean speech signals into account while still estimating real-valued masks, is introduced,
showing advantages over other mask-based targets [22]. A way to fully integrate the joint
estimation of clean speech spectral amplitude and phase into mask-based systems is the
usage of complex ratio mask (cRM) targets, which perfectly reconstruct the clean signal
under ideal estimation conditions ([17], with early predecessors for speech quality testing
[23, 24]). A potential drawback of this method is that it uses an MA loss and therefore
does not leverage the advantages of optimization in the speech spectral domain.
The models used in these early studies have mostly been feedforward DNNs [12–15,

17], although Weninger et al. [16] have shown that long short-term memory (LSTM)
networks, with their ability to model temporal dynamics, have benefits in a speech sep-
aration task. An important advantage of LSTMs in comparison to feedforward DNNs is
their ability to focus on a target speaker, taking into account long-term temporal depen-
dencies, and therefore suppressing interfering speech better, as well as providing a better
speaker generalization [25]. Recently, a third type of model, namely convolutional neu-
ral networks (CNNs) have been subject to an increasing amount of studies in the field

1The term speech separation refers to the task of extracting one or more speech sources from a mixture signal and is
often used interchangeably with speech enhancement when only one source is to be extracted from a noise background.
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of speech enhancement and separation [20, 26, 27]. Many of the successful CNN model
architectures are based on the convolutional encoder-decoder (CED) principle adopted
from computer vision research [28, 29]. As opposed to conventional CNN architectures
that only compress the feature dimension by using pooling layers, the CED compresses
in the encoder part and decompresses in the decoder part of the model by using upsam-
pling layers or strided deconvolutions [30]. By adding skip connections from same-sized
layers of the encoder to the decoder, high-resolution structural information can be pre-
served, which is especially important for a regression task such as speech enhancement,
where a mapping from the noisy speech spectrum to a same-sized target clean speech
spectrum has to be learned. Park et al. [27] demonstrate the effectivity of different varia-
tions of CEDs and Takahashi et al. [20] introduce densely connected convolutional layers
and multi-band processing into the architecture. A CED network has also been used by
Zhao et al. to enhance encoded and subsequently decoded speech in a postprocessing
step, showing remarkable generalization capabilities even to unseen codecs [18].
One way of leveraging the advantages of different network topologies is to combine

them into a single model and train this combined model on the task at hand. A combina-
tion of CNN and bidirectional LSTM is shown to significantly outperform feedforward
DNNs and recurrent neural networks (RNNs) [31] for speech enhancement, with the
restriction of the introducedmodel not being capable of real-time processing. Amodel for
real-time processing, which integrates LSTM layers in the bottleneck of a CED network
is introduced in [32].
A second approach for the combination of models in speech enhancement is to employ

multi-stage processing, where either multiple identical models (cf. [33]) or most often dif-
ferent models are used in succession to improve the enhancement performance. Applied
to classical speech enhancement, this principle is generally used to achieve a higher noise
attenuation, e.g., with the multi-stage Wiener filter approach [34], which in turn leads
to degradations of the speech quality. Different from that, some studies have focused
on first performing speech separation and subsequently enhancing the separated signals
using nonnegative matrix factorization [35] or Gaussian mixture models [36]. In combi-
nation with deep learning models, the multi-stage paradigm has been applied to music
source separation using feedforward DNNs for the separation task as well as the subse-
quent task of enhancing the separated signals [37]. A further possibility is proposed in
[38], where denoising and dereverberation are addressed in subsequent stages using sep-
arately trained feedforward DNNs and joint fine-tuning of the two-stage model is carried
out in a second step.
Most of the described deep learning models aim at a high noise attenuation and there-

fore can still degrade speech quality, especially for low SNRs and non-stationary noise
types, or when iterative processing is employed. We propose to address this problem by
first performing noise suppression and subsequently restoring natural sounding speech. Dif-
ferent to [37] and [38], we rely on specifically chosen DNN topologies with beneficial
properties for each of the two tasks. An LSTM-based model with its ability to use long-
term temporal context to distinguish between noise and speech is used for noise suppres-
sion. Inspired by its success for image restoration [28] and speech decoder postprocessing
[18], we employ a CED network for speech restoration and residual noise suppression.We
believe that this type of model is well-suited to perform amapping from the input domain
to an only slightly different target domain, as is the case with slightly distorted speech and
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undistorted clean speech. A further contribution is the reformulation of the MSA loss
function for the joint estimation of real and imaginary parts of the clean speech spectrum,
which is used with the LSTM-basedmodel to aim at a high noise attenuation after the first
processing stage. Finally, our work focuses on highly non-stationary noise types includ-
ing interfering speech, which often have led to trouble in machine learning-based speech
enhancement.2

The paper is structured as follows: in Section 2, we introduce the speech enhancement
framework used for both baselines and our proposed approaches based on deep learning.
Next, a detailed description of our two-stage approach and the utilized DNN topologies
is given in Section 3, followed by the experimental setup and network training details in
Section 4. The evaluation results are presented in Section 5, and we conclude the work in
Section 6.

2 Speech enhancement framework, classical and deep learning-based
approaches

For the task of estimating the clean speech signal s(n) from a noisy microphone signal
y(n), we employ a signal model of the form

y(n) = s(n) + d(n), (1)

where the noise signal d(n)with the discrete-time sample index n is assumed to additively
mix with s(n). The corresponding STFT domain representation, computed by applying a
frame-wise window function with a frame length of L and a frame shift of R, followed by
a K-point discrete Fourier transform (DFT), is given by

Y�(k) = S�(k) + D�(k), (2)

with frame index � and frequency bin index k ∈ K = {0, 1, . . . ,K−1}. Most of the classical
speech enhancement approaches and also many deep learning-based approaches rely on
estimating a frame- and frequency bin-wise gain functionG�(k) to subsequently compute
the estimated clean speech following

Ŝ�(k) = G�(k) · Y�(k). (3)

2.1 Classical approaches

In classical speech enhancement approaches employing parametric statistical models of
speech and noise, the computation of the gain function

G�(k) = g (ξ�(k), γ�(k)) (4)

typically depends on the a priori SNR ξ�(k) and the a posteriori SNR γ�(k). In this
work, we consider g(·) to represent the well-known minimum mean-square error log-
spectral amplitude (MMSE-LSA) estimator [2] or the super-Gaussian joint maximum a
posteriori (SG-jMAP) estimator [4] and use the decision-directed (DD) approach [1] for
the estimation of ξ�(k). Additionally, an estimate of the noise power is required for the

2Note that a part of this work has been pre-published in a workshop paper [39]; however, in [39], a convolutional LSTM
layer has been employed and pooling and upsampling layers have been used in the CED architecture, resulting in a
computationally much more complex second stage. Furthermore, in this work, a much more thorough evaluation of the
two-stage approach to learned speech enhancement including all relevant single-stage baselines is provided. In addition
to that, an analysis of the benefits of the two-stage approach and its effects on the enhanced speech spectra, and an
analysis of the computational complexity are presented.
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computation of ξ�(k) and γ�(k) and can be obtained utilizing the minimum statistics (MS)
approach [7].

2.2 Deep learning-based approaches

Deep learning-based approaches use neural network (NN) models being trained before-
hand on a set of training data to perform the speech enhancement task. In general,
they can be described as a mapping from an input feature vector x� to the output
vector

u� = f (x�,h�−1;�) , (5)

based on the non-linear composite function f (·) defined by the network topology, and
the trainable parameters �. The additional input of network hidden states h�−1 for the
preceding frame is used to model temporal context in recurrent neural networks, e.g.,
LSTMs.
In the context of deep learning-based approaches, G�(k) from (3) is often referred to

as a T-F mask separating clean speech and noise. The NN model can be trained in a
supervised fashion to estimate these masks by minimizing the mask approximation (MA)
loss function

JMA
� (�) = 1

K
∑

k∈K

(
Ĝ�(k) − Gideal

� (k)
)2

, (6)

where Gideal
� (k) ∈ R are the ideal mask values representing the training targets and Ĝ�(k)

are the estimated mask values at the network output. In this case, the network output
vector is composed as u� =

(
Ĝ�(0), Ĝ�(1), . . . , Ĝ�

(
K
2

))T
, which can be obtained by

reducing the summation in (6) to the elements k ∈
{
0, 1, . . . , K2

}
only, while halving the

contribution at k = 0 and k = K
2 . A well-established choice for the ideal mask target is

the IRM

Gideal
� (k) = GIRM

� (k) =
( |S�(k)|β

|S�(k)|β + |D�(k)|β
)1/β

(7)

with the common parameter choice of β = 2 [15, 25], making it formally comparable to
the square-root Wiener filter gain function.3

TheMA loss function does not directly optimize the objective of minimizing the differ-
ence between estimated speech spectrum Ŝ�(k) and clean speech spectrum S�(k). In fact,
the contribution of the estimates to the loss for each frequency bin is subject to a ratio of
S�(k) and D�(k) and not directly to the energy distribution of S�(k) and Y�(k). This can
lead to, e.g., the MA loss taking on high values for bins k, where both S�(k) and Y�(k) are
close to zero and therefore no contribution to the loss should be considered regardless
of the estimated mask value Ĝ�(k). Direct optimization of the aforementioned objective,
which also preserves the benefits of estimating a mask value that can be restricted to a
certain value range, can be accomplished by using the masked spectrum approximation
(MSA) loss function [16]

JMSA
� (�) = 1

K
∑

k∈K

(
Ĝ�(k) · |Y�(k)| − |S�(k)|

)2
. (8)

3Note that various ideal mask formulations and their loss functions have already been introduced to data-driven speech
enhancement in 2006 and 2008 by Fingscheidt et al. [40, 41].
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Up to this point, the loss functions presented in (6) and (8) only operate on spectral
magnitudes, which leads to Ĝ�(k) ∈ R and in turn, following (3), the usage of the noisy
phase for the enhanced speech Ŝ�(k). One way of estimating the clean speech phase, that
has been proven beneficial for deep learning-based speech enhancement, is to use an ideal
complex mask GICM

� (k) = S�(k)/Y�(k) as target and separately estimate real and imagi-
nary part of GICM

� (k) using an MA loss for training [17]. Different to that, we propose an
alternative loss function that combines the advantages of clean speech phase estimation
and the MSA loss paradigm of optimizing in the speech spectral domain. Such a complex
MSA (cMSA) loss can be formulated, e.g., as

JcMSA
� (�) = 1

K

⎛

⎝
K/2∑

k=0

(
ĜR

� (k) · � {Y�(k)} − � {S�(k)}
)2

+
K/2−1∑

k=1

(
ĜI

�(k) · � {Y�(k)} − � {S�(k)}
)2

⎞

⎠ ,

(9)

where separate real-valued masks ĜR
� (k) and ĜI

�(k) are used to estimate the real and
imaginary part of S�(k), respectively. Here, �{·} delivers the real part, and �{·} the
imaginary part of the argument. Applying the cMSA loss, the neural network output

becomes u� =
(
ĜR

� (0), . . . , ĜR
�

(
K
2

)
, ĜI

�(1), . . . , Ĝ
I
�

(
K
2 −1

))T
, and the enhanced signal is

computed according to

Ŝ�(k) = ĜR
� (k) · �{Y�(k)} + jĜI

�(k) · �{Y�(k)}. (10)

A third possibility, which we will call complex spectrum approximation (cSA), is to
directly estimate real and imaginary parts of the clean speech spectrum S�(k) following

JcSA� (�) = 1
K

⎛

⎝
K/2∑

k=0

(
ŜR� (k) − � {S�(k)}

)2 +
K/2−1∑

k=1

(
ŜI�(k) − � {S�(k)}

)2
⎞

⎠ , (11)

where ŜR� (k) and ŜI�(k) are the estimated real and imaginary parts, respectively.

3 New LSTM-based noise suppression followed by CNN-based speech
restoration

The underlying idea of our newly proposed system is to employ separate processing stages
for speech denoising and restoration, both using deep NN topologies with advantageous
properties for the respective tasks. In the noise suppression stage, an LSTM-based net-
work trained with the cMSA loss from (9) is employed to attain a strong noise attenuation,
even at the cost of potentially introducing speech distortions. The subsequent restora-
tion stage restores speech and further attenuates residual noise. For this second task a
CED network is used, which has been found to be very well-suited for the restoration of
slightly corrupted structured signals, e.g., in image restoration [28] or enhancement of
coded speech [18]. The CED network training employs the cSA loss function defined in
(11) and therefore a direct spectral mapping is performed in the second stage. The cSA
loss function is chosen over a mask-based loss for two reasons: On the one hand, the



Strake et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:49 Page 7 of 26

restoration of missing T-F regions in the estimated signal can be quite difficult for a mask-
based approach, requiring very large mask values. On the other hand, the CED network
is specifically designed to map to outputs of the same domain as the input, in this case
speech spectra rather than spectral masks. In the following, an overview of the system is
given and the chosen network topologies for both stages are described in detail.

3.1 System description

The overall processing scheme of our two-stage approach is depicted in Fig. 1. At first,
the STFT representation of the noisy speech Y�(k) is input to the noise suppression stage.
A feature extraction including mean and variance normalization (MVN) is performed to
obtain the normalized feature vector x̃(1)

� , where the MVN is carried out using vectors of
means μ

(1)
x and standard deviations σ

(1)
x obtained during network training. The feature

extraction also includes concatenating L− frames of past and L+ frames of future context
to the features extracted for the current frame, but for more strict latency requirements
the system can also work with L+ = 0, i.e., no lookahead at all. Based on the input features
x̃(1)

� and the network parameters �(1) obtained during training, the noise suppression
network estimates separate real-valued masks ĜR

� (k) and ĜI
�(k) for the real and imagi-

nary part of the noisy speech spectrum Y�(k). In the subsequent masking block, these
masks are applied following (10) and the estimated denoised speech spectrum Ŝ(1)

� (k) is
obtained.
The interpolation block in between the two stages is increasing the frequency resolution

for processing in the speech restoration stage to enable the employed CED network to
fully leverage its potential of mapping to a high-resolution estimated spectrum and in turn
restoring spectral details of the clean speech signal. The interpolation is realized through
applying a K-point inverse DFT (IDFT) followed by zero-padding in the time domain and
subsequent transformation back to the frequency domain via a K ′-point DFT

(
K ′ > K

)
,

resulting in the interpolated denoised speech spectrum Ŝ(1)
�

(
k′).

In the speech restoration stage, a second feature extraction, including MVN using
the vectors of means μ

(2)
x and standard deviations σ

(2)
x obtained during speech restora-

tion network training, is employed. The resulting feature representation x̃(2)
� is input to

the speech restoration network, which directly maps to the enhanced speech spectrum
Ŝ(2)
�

(
k′), using the trained network parameters �(2). Reconstruction of the correspond-

ing enhanced time-domain signal ŝ(2)(n) is subsequently realized through IDFT, synthesis
windowing, and overlap-add (OLA).

Fig. 1 Block diagram of the proposed two-stage enhancement approach including the first-stage noise
suppression, followed by the second-stage speech restoration used to restore a natural sounding speech
signal. For details on the noise suppression network block and the speech restoration network block refer to
Figs. 2 and 3, respectively
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Fig. 2 Block diagram of the noise suppression network utilizing LSTM and fully connected feedforward (FF)
layers. The sizes of the one-dimensional feature representations inside the network are shown at the input
and output of each layer. Except for the input features, these sizes are determined by the number of nodes in
the preceding layer

3.2 First-stage noise suppression network topology

The noise suppression network relies on the LSTM-based topology depicted in Fig. 2,
where FF denotes fully connected feedforward layers and the sizes of the feature rep-
resentations for each layer of the network are shown before and after the respective
layers. The input feature vector x̃(1)

� is composed of MVN-normalized spectral magni-
tudes4 using only the non-redundant DFT bins, which results in a feature vector size of
C = (L− + 1 + L+) ·

(
K
2 + 1

)
.

The employed network uses a single FF layer upfront, which can help to learn a good
feature representation for the temporal modeling in the two following LSTM layers
[25, 42]. Two additional FF layers lead to the output layer estimating the T-F masks for
noise suppression. All of the FF layers are composed of 425 nodes and use rectified linear
unit (ReLU) activations [43] with the exception of the output layer, which has a number of
nodes corresponding to the DFT sizeK and uses a tanh activation to restrict the estimated
masks to ĜR

� (k), ĜI
�(k) ∈[−1, 1]. Such a restriction of mask values has been found to ease

optimization and to decrease the ideally achievable estimation accuracy only marginally
[17, 22]. The LSTM layers use the standard implementation as introduced in [44] without
peephole connections, and also consist of 425 nodes.

3.3 Second-stage speech restoration network topology

The network topology we deem best-suited for the speech restoration stage is the CED
network, of which two different architectural setups are depicted in Figs. 3 and 4. The
sizes of the feature representations for each layer are once again shown before and after
each layer, where the first two sizes refer to the frequency and frame axis, respectively,
and the third size refers to the number of feature maps. The input features for the CED
are constructed from the complex denoised spectrum Ŝ(1)

�

(
k′) according to

x(2)
�,1 =

(
�

{
Ŝ(1)
� (0)

}
, . . . ,�

{
Ŝ(1)
�

(
K ′
2

)}
, 0, 0, 0

)T
(12)

x(2)
�,2 =

(
0,�

{
Ŝ(1)
� (1)

}
, . . . ,�

{
Ŝ(1)
�

(
K ′
2 −1

)}
, 0, 0, 0, 0

)T

using separate feature maps for real and imaginary part and applying MVN to obtain

the normalized feature representation x̃(2)
� =

((
x̃(2)

�,1

)T
,
(
x̃(2)

�,2

)T)T
, with (·)T being the

transpose. The way these feature maps are constructed makes sure that the convolutional

4Remarkably, preliminary experiments comparing with features composed of real and imaginary parts of Y�(k) (called RI
features) revealed the superiority of magnitude-based features for the noise suppression network, even though clean
magnitude and phase are indirectly estimated. This effect could be due to the noise in the input preventing the network
from extracting additional relevant information from the phase inherent to the RI features, as opposed to focusing only
on the information inherent to the magnitude features.
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Fig. 3 Block diagram of the speech restoration network utilizing a CED network including encoder and
decoder sub-networks with maximum pooling and upsampling layers (du-setup). The sizes of the feature
representations inside the network regarding the frequency, frame, and feature map axis, respectively, are
shown at the input and output of each layer

kernels in the first network layer always see matching bins of real and imaginary parts in
their receptive fields. The additional zero-padding in (12) is used to obtain a frequency
axis sizeM that is a multiple of four, which is necessary for a total dimension reduction by
a factor of four in the encoder and subsequent reconstruction of equally sized output fea-
tures in the decoder. The output structure corresponds to that of the input features, when
replacing Ŝ(1)

�

(
k′) in (12) with the final clean speech spectrum estimates Ŝ(2)

�

(
k′). The

features x̃(2)
� do not use a frame lookahead or any other information from future frames,

which results in the speech restoration stage not adding any additional algorithmic delay.
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Fig. 4 Block diagram of the speech restoration network utilizing a CED network including encoder and
decoder sub-networks with strided and transposed convolutions (tr-setup), where /2 indicates a stride of 2.
The sizes of the feature representations inside the network regarding the frequency, frame, and feature map
axis, respectively, are shown at the input and output of each layer

The actual network topology is inspired by the CED network from [18] and com-
prises several building blocks. Convolutional layers are denoted by Conv(F ,N × 1), with
F determining the number of filter kernels, N being the kernel size on the frequency
axis and the kernel size on the frame axis being specified as one, resulting in one-
dimensional convolutions. Transposed convolutions [45] are denoted correspondingly by
ConvT (F ,N × 1). All convolutional and transposed convolutional layers use the leaky
ReLU activation function [46], zero-padding to ensure a consistent size of the output fea-
ture maps with respect to the input, and a stride of one, except where indicated by a /2
besides the blocks, denoting a stride of two. The encoder part of the CED uses either
maximum pooling (Fig. 3) or convolutions with a stride of two (Fig. 4), each reducing the
size of the features with respect to the frequency axis by a factor of two. As a counter-
part in the decoder, either upsampling layers (Fig. 3) or transposed convolutions with a
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stride of two (Fig. 4) are employed, leading to a doubling of the frequency axis size. We
indicate these different setups by du and tr, respectively, where the tr-setup can signifi-
cantly reduce the computational complexity with respect to the number of multiplications
needed [47]. In the bottleneck between encoder and decoder, we also employ a convolu-
tional layer and use a total number of two skip connections from encoder to decoder at
points of matching feature map dimensions.

4 Databases, training, andmeasures
4.1 Databases and preprocessing

For the training and evaluation of our proposed system, we use clean speech data from
the TIMIT [48] and NTT super wideband [49] databases (British and American English
only for NTT), both downsampled to 8 kHz. We merge both databases to one large set
containing a total amount of 7.5 h of speech and construct distinct training, development,
and test sets by using 60%, 20%, and 20% of the total data, respectively. We make sure that
there is no overlap in speakers between the distinct sets and the amount of female and
male speakers is balanced.
The clean speech data is mixed with cuts of three different café noises (noise file

durations of 34:00, 39:23, and 42:02 minutes) from the QUT noise database [50] and
the babble and restaurant noise (with durations of 3:55 and 4:46 min, respectively)
from the AURORA-2 database [51]. We deliberately choose only highly non-stationary
noise types including interfering speech to evaluate the performance of our system
under challenging conditions. The noisy data is generated by defining three distinct
parts of each noise file for training, development, and test (spanning 60%, 20% and
20% of the noise file duration, respectively) and mixing random cuts of the respec-
tive parts with the clean speech data. For the training set, each speech file is mixed
with a cut of each of the 5 noise files, applying SNRs of 0, 5 and 10 dB, resulting in
a total of 5 · 3 = 15 training conditions, corresponding to a total amount of 67.5
h of training material. The development and test data is constructed accordingly, but
additionally using SNRs of −5 and 15 dB unseen in training. Please note that these
additional SNR conditions are only used for reporting of results and are removed from
the development set for parameter optimization and loss monitoring during training.
Furthermore, a separate test set employing the pub and office call center noises from
the ETSI database [52] as unseen noise files is constructed and used to evaluate the
generalization properties of the tested systems. Please note that the office call center
noise contains interfering speech as well as non-stationary non-speech sounds such
as clatter or typing, whereas pub noise mainly contains interfering speech. To further
evaluate the generalization properties to non-stationary noise types without interfering
speech, we include an additional separate evaluation using the traffic noise from the ETSI
database [52].
Input features and targets for both models are computed from the time domain signals

using a frame length of L = 256 and a frame shift of R = 128 samples in combination with
a square-root Hann window function. For the first-stage training and the evaluation of the
two-stage system, a DFT of size K = 256 is used to obtain the spectral representations,
which results in a first-stage feature vector size of C = 645 for the chosen values of
L− = L+ = 2. The inputs and targets for the second-stage training are computed from
the windowed time domain signals using zero-padding and a DFT of size K ′ = 2K =
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512. Thus, the input signal representations for second-stage network training match the
output of the interpolation block (see Fig. 1) during two-stage processing, resulting in a
second-stage feature size ofM = K ′

2 +4 = 260 on the frequency axis.

4.2 Training of the LSTM-based noise suppression

Training of the LSTM-based network for noise suppression is conducted using the back-
propagation through time (BPTT) algorithm [53] in combination with the cMSA loss
function (9) and the Adam optimizer [54]. We use an initial learning rate of μ = 0.001, a
batch size of 25, and set the remaining parameters for Adam according to the recommen-
dations in [54]. To prevent the network from overfitting, an L2 weight-decay of 0.0002
is employed. The BPTT training is carried out in a truncated fashion with fixed-length
sequences of size 100 being extracted from the training set utterances. Any remain-
ing shorter sequences are zero-padded to match this size. The contributions of padded
sequence parts are set to zero for the computation of gradients in BPTT. During training,
we monitor the development set loss and halve the learning rate once it does not decrease
for more than three epochs, restarting training using this new learning rate from the
epoch with currently lowest development set loss. Training is stopped when a minimal
learning rate of μmin = 0.0001 is reached.

4.3 Training of the CNN-based speech restoration

The CNN-based CED networks for both the du- and tr-setup are trained using stan-
dard backpropagation [55] employing the cSA loss function (11). The Adam optimizer
with an initial learning rate of μ = 0.0001, a batch size of 16, and otherwise the same
parameter settings as in LSTM training is utilized. During CED training, the learning
rate is multiplied by a factor of 0.6 and network training is resumed from the epoch
with best development set loss, if the development set loss does not decrease for more
than two epochs. The training is once again stopped when a minimal learning rate of
μmin = 0.00001 is reached. The parameters defining the network topology in terms of
number of filter kernels and the kernel size on the frequency axis are chosen to F = 88
and N = 24, respectively. These parameter values have been obtained from the optimal
values found in [18] for a similar CED network by keeping proportions with regard to the
input feature size fixed.

4.4 Baseline and proposedmethods

We compare our new approach against several baseline methods, first considering the
classical MMSE-LSA and SG-jMAP weighting rules using the DD a priori SNR estimator
and theMS noise power estimator, as described in Section 2.1. These classical approaches
use optimal parameters adopted from [56]. Furthermore, LSTM-based baseline methods
using an MA loss (6) with IRM targets (7) and β = 2, or alternatively the MSA loss func-
tion (8) are considered and referred to as LSTM-IRM and LSTM-MSA, respectively. Both
use LSTM topologies comparable to the proposed noise suppression network (LSTM-
cMSA), with the only difference of employing a sigmoid output activation for the estima-
tion of magnitude masks in the range [0, 1]. Note that the LSTM-IRM baseline is quite
comparable to the approach used in [25], with only slight changes to the employed LSTM
topology and the usage of spectral magnitude features for comparability to the proposed
approach. As a further baseline, the proposed second-stage CED network (du-setup) is
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trained as a single-stage enhancement method using the cSA loss (11) and is referred to as
CED-cSA-du.
A first (novel) two-stage method dubbed LSTM-cMSA+DNN-cSA is investigated, con-

sisting of the proposed LSTM-cMSA network in the first stage, followed by a feedforward
DNN network trained with the cSA loss (11), the same training scheme as described in
Section 4.3, and also the same features and targets used for training of the finally pro-
posed second-stage network (CED-cSA). The DNN-cSA second-stage network uses five
hidden layers with 800 units each, resulting in a total amount of parameters comparable
to the CED-cSA network. Furthermore, we report results of our proposed novel model
using the du- and tr-setup described in Section 3.3 for the second-stage network architec-
ture (called LSTM-cMSA+CED-cSA-du and LSTM-cMSA+CED-cSA-tr, respectively).
We also experimented with an additional joint fine-tuning step after separate training
of both stages, which did not obtain significantly improved results with respect to only
training separately. Furthermore, a joint training of both models from scratch has been
evaluated, but did not lead to converging trainings. Therefore, both fine-tuning variants
were not further considered for the experimental evaluation. As an additional reference,
we include the two-stagemethod pre-published in [39], which uses a convolutional LSTM
layer [57] in between encoder and decoder of the second-stage network. A further dif-
ference to our proposed model is the usage of maximum pooling and upsampling layers
instead of the computationally more efficient strided and transposed convolutions in the
proposed CED-cSA-tr network.We call the method from [39] LSTM-cMSA+CLED-cSA-
du and compare it to the proposed methods in terms of performance and computational
complexity.

4.5 Instrumental quality measures

We choose to only employ instrumental measures5 operating on the enhanced speech
ŝ(n), the noisy speech y(n), and the clean speech reference s(n). The signal-to-noise
ratio improvement (SNRI) provided by the system under test is measured according to
ITU-T G.160 [58]. Note that the G.160 Recommendations [58] do not include highly
non-stationary noise conditions, but nonetheless, SNRI is regularly used for evaluation
under such conditions [59–61]. Thus, we employ SNRI only as an indicator for the noise
suppression capabilities of the respective system. Furthermore, we use perceptual evalu-
ation of speech quality (PESQ) [62] to obtain a mean opinion score for listening quality
objective (MOS-LQO), which is quite correlated with the overall speech quality percep-
tion of human listeners, although not perfectly suited for speech with (residual) noise.
To assess the intelligibility of the enhanced speech, the short-time objective intelligi-
bility (STOI) measure [63] is utilized. The STOI measure is specifically designed for

5For quality evaluation of speech enhancement algorithms, it is often preferable to use a component-wise evaluation
according to the so-called white-box [64] or black-box [23] approaches, to be able to investigate the effects on the speech
component and the noise component of the noisy mixture separately. These approaches rely on the multiplication of the
clean speech spectrum S�(k) and the noise spectrum D�(k) with the estimated gain function Ĝ�(k) or an artificial
complex-valued gain function computed from the enhanced speech Ŝ�(k) and the noisy speech Y�(k) to compute the
filtered speech component S̃�(k) and the filtered noise component D̃�(k). Unfortunately, those component-wise
approaches can be problematic when using phase-aware processing with Ĝ�(k) = |Ĝ�(k)| · ej∠Ĝ�(k) ∈ C, where the
multiplication with Ĝ�(k) includes applying the phase factor ej∠Ĝ�(k) to S�(k) and D�(k). This can lead to artifacts in the
reconstructed filtered components s̃(n) and d̃(n) after IDFT and OLA, which would have been suppressed through the
combination of phase terms in Ŝ�(k) = Ĝ�(k)(S�(k) + D�(k)) and subsequent reconstruction of ŝ(n) via IDFT and OLA.
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the evaluation of noise reduction methods and provides values in the range [ 0, 1] with
high values correlating strongly with high intelligibility.

5 Results and discussion
In the following, we discuss the results of the experiments conducted with seen and
unseen noise types and subsequently analyze our proposed approach to give further
explanations for the performance improvements we observe compared to the baseline
methods.

5.1 Results on seen noise types

The results for the development set data using noise types that were seen during train-
ing are presented in Table6 1. On average, but also for each single SNR condition, the deep
learning-based methods substantially outperform the classical MMSE-LSA and SG-jMAP
in terms of PESQ, STOI, and SNRI. Most notably, the classical methods are not able to
improve the intelligibility in terms of STOI compared to the unprocessed noisy speech,
which has an average STOI value of 0.75. In contrast, the deep learning-based methods
improve on that value by up to 0.13 points (0.88) averaged over the SNR conditions. This
observation is in line with the results of earlier studies [14, 17], which also report higher
intelligibility improvements for deep learning-basedmethods, especially in low-SNR con-
ditions. Furthermore, MMSE-LSA and SG-jMAP only slightly improve the overall quality
in terms of PESQ over unprocessed noisy speech for the very challenging −5 dB condi-
tion, whereas the deep learning-based methods are able to significantly improve PESQ,
although not having seen a comparably low SNR during training.
Comparing the single-stage baselines LSTM-IRM and LSTM-MSA, we observe consis-

tent superiority of LSTM-MSA in terms of PESQ and SNRI with average improvements
of 0.08 MOS points and 1.52 dB, respectively, confirming the advantage of optimization in
the speech spectral domain as opposed to the mask domain. The proposed LSTM-cMSA
noise suppression network, employed without second-stage processing, can further
improve PESQ by 0.02 MOS points and SNRI by an impressive 5.22 dB (23.11 dB) com-
pared to LSTM-MSA (17.89 dB) and averaged over all SNR conditions. For the low-SNR
conditions −5 and 0 dB though, LSTM-cMSA provides lower PESQ values than LSTM-
MSA. This could be due to the fact that LSTM-cMSA is implicitly estimating the clean
phase or at least incorporates phase information by using real and imaginary part of the
clean speech spectrum S�(k) as targets. Leveraging this information is potentially very
difficult for low SNRs where noise can be dominant in the mixture and therefore con-
ceal relevant information on phase inherent to the magnitude features, e.g., the location
of harmonics. Nonetheless, LSTM-cMSA provides considerably higher noise suppression
than all other single-stage methods in terms of SNRI, even in low-SNR conditions. This is in
line with the original idea of aiming at a very high noise suppression in the first stage and
allowing some speech distortions, which in turn can be restored by the second stage. Due
to this observation in combination with providing the best average performance on the
development set, we choose to employ LSTM-cMSA as the first processing stage for all
experiments including second-stage processing. Employing CED-cSA-du as a single-stage
enhancement network leads to a deterioration compared to LSTM-cMSA of PESQ by 0.04

6Note that no noise file portions have been seen both in training and development, only different portions of the same file.
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Table 1 Instrumental measures for baseline and proposed approaches averaged over seen noise
types of the development set data. Note that the SNR conditions of −5 and 15 dB are unseen during
training, whereas the remaining SNRs have been seen. Best two approaches are in boldface

SNR Method PESQ STOI SNRI

-5 Noisy 1.35 0.53 0.00

MMSE-LSA 1.39 0.50 3.51

SG-jMAP 1.38 0.49 4.13

LSTM-IRM 1.61 0.65 11.76

LSTM-MSA 1.65 0.66 12.61

LSTM-cMSA 1.60 0.64 15.83

CED-cSA-du 1.52 0.65 11.75

LSTM-cMSA + DNN-cSA 1.61 0.68 17.07

LSTM-cMSA + CED-cSA-du 1.63 0.69 17.12

LSTM-cMSA + CED-cSA-tr 1.63 0.69 17.27

0 Noisy 1.52 0.65 0.00

MMSE-LSA 1.64 0.63 4.37

SG-jMAP 1.63 0.63 5.19

LSTM-IRM 1.99 0.79 17.14

LSTM-MSA 2.08 0.80 19.21

LSTM-cMSA 2.03 0.80 24.59

CED-cSA-du 1.92 0.81 19.15

LSTM-cMSA + DNN-cSA 2.06 0.83 26.55

LSTM-cMSA + CED-cSA-du 2.12 0.85 26.10

LSTM-cMSA + CED-cSA-tr 2.12 0.84 26.50

5 Noisy 1.77 0.76 0.00

MMSE-LSA 1.97 0.75 5.10

SG-jMAP 1.98 0.75 6.14

LSTM-IRM 2.42 0.87 18.39

LSTM-MSA 2.53 0.88 20.20

LSTM-cMSA 2.55 0.89 26.13

CED-cSA-du 2.43 0.90 21.98

LSTM-cMSA + DNN-cSA 2.61 0.91 28.60

LSTM-cMSA + CED-cSA-du 2.70 0.92 27.79

LSTM-cMSA + CED-cSA-tr 2.70 0.92 28.47

10 Noisy 2.12 0.86 0.00

MMSE-LSA 2.36 0.84 5.54

SG-jMAP 2.41 0.85 6.88

LSTM-IRM 2.84 0.92 17.92

LSTM-MSA 2.93 0.93 19.22

LSTM-cMSA 3.01 0.93 25.51

CED-cSA-du 2.97 0.95 24.09

LSTM-cMSA + DNN-cSA 3.08 0.95 28.29

LSTM-cMSA + CED-cSA-du 3.17 0.96 27.17

LSTM-cMSA + CED-cSA-tr 3.19 0.96 28.16

15 Noisy 2.54 0.92 0.00

MMSE-LSA 2.76 0.91 5.53

SG-jMAP 2.87 0.92 7.22

LSTM-IRM 3.24 0.96 16.64

LSTM-MSA 3.32 0.96 18.20

LSTM-cMSA 3.39 0.96 23.47

CED-cSA-du 3.42 0.97 25.58

LSTM-cMSA + DNN-cSA 3.43 0.97 26.39
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Table 1 Instrumental measures for baseline and proposed approaches averaged over seen noise types
of the development set data. Note that the SNR conditions of−5 and 15 dB are unseen during training,
whereas the remaining SNRs have been seen. Best two approaches are in boldface (continued)

SNR Method PESQ STOI SNRI

LSTM-cMSA + CED-cSA-du 3.51 0.97 25.03

LSTM-cMSA + CED-cSA-tr 3.54 0.97 26.31

Mean Noisy 1.86 0.75 0.00

MMSE-LSA 2.02 0.73 4.81

SG-jMAP 2.05 0.73 5.91

LSTM-IRM 2.42 0.84 16.37

LSTM-MSA 2.50 0.85 17.89

LSTM-cMSA 2.52 0.85 23.11

CED-cSA-du 2.45 0.85 20.51

LSTM-cMSA + DNN-cSA 2.56 0.87 25.38

LSTM-cMSA + CED-cSA-du 2.62 0.88 24.64

LSTM-cMSA + CED-cSA-tr 2.63 0.88 25.34

points and SNRI by 2.60 dB averaged over all SNRs, while STOI remains comparable. For
the 0 and 5 dB SNR conditions, CED-cSA-du performs worst of all deep learning-based
methods in terms of PESQ and worse than LSTM-MSA and LSTM-cMSA in terms of
SNRI. However, the performance of CED-cSA-du compared to the LSTM-based methods
improves for high-SNR conditions, even providing the best performance among single-
stage methods in terms of all measures for 15 dB SNR. This shows that CED-cSA-du is
well-suited for high input SNRs, which supports its usage as a second-stage network,
where noise suppression has already been applied in the first stage.
The proposed two-stage method (for both du- and tr-setup of LSTM-cMSA+CED-cSA)

improves all employed instrumental measures for all SNR conditions compared to only
using LSTM-cMSA and all except SNRI for the 15 dB SNR condition compared to only
using CED-cSA, providing a notable average PESQ improvement of 0.11 MOS points
over the best single-stage method. Even higher PESQ improvements of up to 0.18 MOS
points with respect to the best performing single-stage methods can be obtained for
the 5 and 10 dB SNR conditions. Comparison with the other investigated two-stage
method (LSTM-cMSA+DNN-cSA) shows significantly higher PESQ, when using the
CED-cSA as second stage, while being comparable or even slightly worse in terms of
SNRI. Our interpretation of this observation is that the CED-cSA network, while pro-
viding comparable additional noise suppression, is better suited to restore missing or
degraded parts of speech and therefore provides better overall speech quality in terms of
PESQ. Although yielding only second-best performance in terms of PESQ for the diffi-
cult −5 dB SNR condition, the second-stage processing with CED-cSA can still slightly
improve on using LSTM-cSA only. Concerning the intelligibility in terms of STOI, the
LSTM-based single-stage methods roughly provide the same performance, but using
the LSTM-cMSA+CED-cSA methods further improves STOI for all SNR conditions.
It provides gains of up to 0.05 points for the lower SNR conditions, where improv-
ing the intelligibility is very relevant. Direct comparison of the different second-stage
setups LSTM-cMSA+CED-cSA-du and LSTM-cMSA+CED-cSA-tr shows comparable or
slightly better performance of PESQ and improved noise suppression in terms of SNRI
for the tr-setup.
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Comparing the results on the development set with the results obtained on the test set
depicted in Table 2, the same conclusions on performance trends and model ranking for
all three measures are obtained from the evaluation of both sets. The overall performance
on the test set is slightly worse for all models including the classical methods, which do
not rely on the development set for parameter tuning. This shows that the test set is

Table 2 Instrumental measures for baseline and proposed approaches averaged over seen noise
types of the test set data. Note that the SNR conditions of −5 and 15 dB are unseen during training,
whereas the remaining SNRs have been seen. Best two approaches are in boldface,
high-complexity reference LSTM-cMSA+CLED-cSA-du excluded

SNR Method PESQ STOI SNRI

-5 Noisy 1.35 0.53 0.00

MMSE-LSA 1.38 0.49 3.34

SG-jMAP 1.37 0.49 3.92

LSTM-IRM 1.60 0.64 11.68

LSTM-MSA 1.64 0.65 12.51

LSTM-cMSA 1.58 0.64 15.56

CED-cSA-du 1.52 0.64 11.45

LSTM-cMSA + DNN-cSA 1.59 0.67 16.75

LSTM-cMSA + CED-cSA-du 1.61 0.69 16.85

LSTM-cMSA + CED-cSA-tr 1.61 0.69 16.99

0 Noisy 1.52 0.65 0.00

MMSE-LSA 1.63 0.62 4.18

SG-jMAP 1.62 0.62 4.96

LSTM-IRM 1.98 0.78 17.02

LSTM-MSA 2.07 0.80 19.16

LSTM-cMSA 2.02 0.79 24.44

CED-cSA-du 1.92 0.80 18.74

LSTM-cMSA + DNN-cSA 2.05 0.83 26.38

LSTM-cMSA + CED-cSA-du 2.11 0.84 25.92

LSTM-cMSA + CED-cSA-tr 2.11 0.84 26.32

5 Noisy 1.77 0.76 0.00

MMSE-LSA 1.96 0.74 4.90

SG-jMAP 1.97 0.75 5.91

LSTM-IRM 2.41 0.87 18.24

LSTM-MSA 2.52 0.88 20.11

LSTM-cMSA 2.54 0.88 26.04

CED-cSA-du 2.42 0.90 21.65

LSTM-cMSA + DNN-cSA 2.60 0.91 28.50

LSTM-cMSA + CED-cSA-du 2.68 0.92 27.65

LSTM-cMSA + CED-cSA-tr 2.69 0.92 28.34

10 Noisy 2.11 0.86 0.00

MMSE-LSA 2.35 0.84 5.35

SG-jMAP 2.39 0.85 6.66

LSTM-IRM 2.83 0.92 17.83

LSTM-MSA 2.93 0.93 19.15

LSTM-cMSA 3.00 0.93 25.52

CED-cSA-du 2.96 0.94 23.91

LSTM-cMSA + DNN-cSA 3.07 0.94 28.31

LSTM-cMSA + CED-cSA-du 3.17 0.95 27.15

LSTM-cMSA + CED-cSA-tr 3.18 0.95 28.14
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Table 2 Instrumental measures for baseline and proposed approaches averaged over seen noise
types of the test set data. Note that the SNR conditions of −5 and 15 dB are unseen during training,
whereas the remaining SNRs have been seen. Best two approaches are in boldface,
high-complexity reference LSTM-cMSA+CLED-cSA-du excluded (Continued)

SNR Method PESQ STOI SNRI

15 Noisy 2.53 0.93 0.00

MMSE-LSA 2.75 0.90 5.38

SG-jMAP 2.85 0.91 7.04

LSTM-IRM 3.24 0.96 16.63

LSTM-MSA 3.32 0.96 18.17

LSTM-cMSA 3.39 0.96 23.50

CED-cSA-du 3.41 0.97 25.57

LSTM-cMSA + DNN-cSA 3.43 0.96 26.42

LSTM-cMSA + CED-cSA-du 3.51 0.97 25.03

LSTM-cMSA + CED-cSA-tr 3.54 0.97 26.30

Mean Noisy 1.86 0.75 0.00

MMSE-LSA 2.01 0.72 4.63

SG-jMAP 2.04 0.72 5.70

LSTM-IRM 2.41 0.83 16.28

LSTM-MSA 2.50 0.84 17.82

LSTM-cMSA 2.51 0.84 23.01

CED-cSA-du 2.44 0.85 20.26

LSTM-cMSA + DNN-cSA 2.55 0.86 25.27

LSTM-cMSA + CED-cSA-du 2.62 0.87 24.52

LSTM-cMSA + CED-cSA-tr 2.62 0.87 25.22

LSTM-cMSA + CLED-cSA-du [39] 2.66 0.88 25.13

slightly more difficult to process for different types of speech enhancement methods and
the deep learning-based approaches generalize well to the test set data. Average results
of the best proposed method LSTM-cMSA+CED-cSA-tr are only very slightly worse in
terms of PESQ and STOI, but even slightly improved in terms of SNRI with respect to the
high complexity reference LSTM-cMSA+CLED-cSA-du.

5.2 Results on unseen noise types

The results obtained from evaluating the unseen noise test dataset are presented in
Table 3, where results are averaged over both noise types (pub and office noise). Once
again, similar trends and model rankings compared to the evaluation with seen noise
types can be observed, which shows a good generalization of the deep learning-based
methods to these highly non-stationary unseen noise types in general. Especially, the
two-stage LSTM-cMSA+CED-cSA-tr network is able to provide improvements over
LSTM-cMSA comparable to the ones obtained with seen noise types (0.11 MOS points,
0.03, and 2.40 dB in terms of PESQ, STOI, and SNRI, respectively).
The comparison of deep learning-based methods for unseen pub and office noise in

5 dB SNR, depicted in Fig. 5, shows that all single-stage methods perform notably better
in office noise according to PESQ. However, pub noise, which contains mostly interfering
speech, seems to be quite difficult for the single-stage methods. This difference in over-
all quality can be mitigated to some extent by the usage of the proposed second stage
(LSTM-cMSA+CED-cSA-tr), which improves PESQ in pub noise by an impressive 0.17
MOS points with regard to LSTM-cMSA. The additional analysis for unseen traffic noise
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Table 3 Instrumental measures for baseline and proposed approaches averaged over unseen noise
types of the test set data. Note that the SNR conditions of −5 and 15 dB are unseen during training,
whereas the remaining SNRs have been seen. Best two approaches are in boldface,
high-complexity reference LSTM-cMSA+CLED-cSA-du excluded

SNR Method PESQ STOI SNRI

−5 Noisy 1.40 0.55 0.00

MMSE-LSA 1.39 0.51 3.01

SG-jMAP 1.38 0.51 4.13

LSTM-IRM 1.60 0.63 9.42

LSTM-MSA 1.62 0.65 11.05

LSTM-cMSA 1.57 0.64 13.65

CED-cSA-du 1.55 0.67 11.59

LSTM-cMSA + DNN-cSA 1.57 0.67 14.85

LSTM-cMSA + CED-cSA-du 1.59 0.69 14.98

LSTM-cMSA + CED-cSA-tr 1.59 0.69 15.15

0 Noisy 1.59 0.68 0.00

MMSE-LSA 1.65 0.65 3.74

SG-jMAP 1.64 0.65 4.47

LSTM-IRM 1.95 0.78 13.44

LSTM-MSA 2.01 0.80 14.96

LSTM-cMSA 1.98 0.80 19.12

CED-cSA-du 1.89 0.82 16.33

LSTM-cMSA + DNN-cSA 1.99 0.83 20.94

LSTM-cMSA + CED-cSA-du 2.04 0.85 20.94

LSTM-cMSA + CED-cSA-tr 2.05 0.85 21.27

5 Noisy 1.86 0.80 0.00

MMSE-LSA 1.98 0.77 4.41

SG-jMAP 1.98 0.78 5.35

LSTM-IRM 2.39 0.88 15.70

LSTM-MSA 2.48 0.89 17.35

LSTM-cMSA 2.49 0.89 22.07

CED-cSA-du 2.39 0.91 19.73

LSTM-cMSA + DNN-cSA 2.53 0.91 24.45

LSTM-cMSA + CED-cSA-du 2.61 0.92 24.11

LSTM-cMSA + CED-cSA-tr 2.63 0.93 24.71

10 Noisy 2.22 0.89 0.00

MMSE-LSA 2.37 0.86 4.85

SG-jMAP 2.40 0.87 6.06

LSTM-IRM 2.84 0.93 16.58

LSTM-MSA 2.93 0.94 18.20

LSTM-cMSA 2.97 0.94 23.19

CED-cSA-du 2.96 0.95 23.40

LSTM-cMSA + DNN-cSA 3.03 0.95 25.88

LSTM-cMSA + CED-cSA-du 3.12 0.96 25.11

LSTM-cMSA + CED-cSA-tr 3.15 0.96 26.06

15 Noisy 2.65 0.95 0.00

MMSE-LSA 2.77 0.92 4.88

SG-jMAP 2.86 0.93 6.36

LSTM-IRM 3.27 0.97 15.76

LSTM-MSA 3.35 0.97 17.92

LSTM-cMSA 3.39 0.97 22.66
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Table 3 Instrumental measures for baseline and proposed approaches averaged over unseen noise
types of the test set data. Note that the SNR conditions of −5 and 15 dB are unseen during training,
whereas the remaining SNRs have been seen. Best two approaches are in boldface,
high-complexity reference LSTM-cMSA+CLED-cSA-du excluded (Continued)

SNR Method PESQ STOI SNRI

CED-cSA-du 3.44 0.97 25.69

LSTM-cMSA + DNN-cSA 3.41 0.97 25.42

LSTM-cMSA + CED-cSA-du 3.50 0.97 24.24

LSTM-cMSA + CED-cSA-tr 3.54 0.98 25.55

Mean Noisy 1.94 0.77 0.00

MMSE-LSA 2.03 0.74 4.18

SG-jMAP 2.05 0.75 5.27

LSTM-IRM 2.41 0.84 14.19

LSTM-MSA 2.48 0.85 18.12

LSTM-cMSA 2.48 0.85 20.14

CED-cSA-du 2.44 0.86 19.35

LSTM-cMSA + DNN-cSA 2.51 0.87 22.30

LSTM-cMSA + CED-cSA-du 2.57 0.88 21.88

LSTM-cMSA + CED-cSA-tr 2.59 0.88 22.54

LSTM-cMSA + CLED-cSA-du [39] 2.62 0.89 22.47

is also depicted in Fig. 5 and shows that the evaluated methods also generalize well to a
non-stationary noise type not containing interfering speech (whereas model training was
focused on noise types including interfering speech). The proposed two-stage network
LSTM-cMSA+CED-cSA-tr is able to improve on using only LSTM-cMSA by 0.11 MOS
points, whereas the two-stage reference network LSTM-cMSA+DNN-cSA does not pro-
vide an improvement in speech quality in terms of PESQ. For all three evaluated noise
types, using the tr- over the du-setup of our proposed system improves all three quality
measures.

5.3 Model complexity

An analysis of the computational complexity of our proposed LSTM-cMSA+CED-cSA
setups and the high-complexity reference LSTM-cMSA+CLED-cSA-du [39] in terms of
number of parameters, multiplications, and the average time needed to process one frame
(L = 256 samples), resulting in a real-time factor, is presented in Table 4. The frame pro-
cessing time was measured on an Intel Core i5 machine clocked at 3.4GHz using
our Tensorflow implementation without any further optimizations to speed up infer-
ence and relying exclusively on CPU processing. With an average total frame processing
time of 10.8ms while using a frame shift of 16ms (R = 128), the proposed approach
using the tr-setup can be processed in real-time (real-time factor 0.68) without employ-
ing GPU processing. The du-setup increases the number of multiplications, which leads
to a real-time factor of 1.14, while showing even slightly worse performance compared
to the tr-setup (c.f. Table 3). The usage of a convolutional LSTM layer and maximum
pooling and upsampling operations instead of strided and transposed convolutions in the
LSTM-cMSA+CLED-cSA-du reference adds complexity in terms of number of parame-
ters and multiplications, leading to a furthermore increased real-time factor of 1.85. In
combination with the overall comparable performance that LSTM-cMSA+CLED-cSA-du
offers with respect to our newly proposed method (slight improvements in PESQ, but
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Fig. 5 Comparison of deep learning-based approaches for unseen noise types here also including traffic noise.
Measures are PESQ, STOI, and SNRI, evaluated in the 5 dB SNR condition

lower SNRI, c.f. Table 3), we conclude that a recurrent model structure is not needed for
the second stage of our two-stage system and we therefore can drastically reduce model
complexity, while we are able to preserve performance.

5.4 Analysis of the two-stage approach

To further analyze the reasons for the observed quality improvements with our proposed
two-stage approach, the enhanced speech spectrograms obtained with the deep learning-
based methods are compared, using an exemplary test set utterance in pub noise at 5 dB
SNR. The spectrograms of clean speech s(n), noisy speech y(n), and enhanced speech ŝ(n)

for the different methods are shown in Fig. 6. Comparing the output of the two single-
stage methods LSTM-MSA and LSTM-cMSA (third and fourth spectrogram from the

Table 4 Comparison of complexity in terms of number of trainable parameters, multiplications and
real-time factor (measured on an Intel Core i5machine clocked at 3.4 GHz) for our proposed
methods and the high-complexity reference pre-published in [39]. Comparisons are given for the
second stage, for which the methods differ, and for the total two-stage system

Method
Number of
parameters [ 106]

Number of
multiplications [ 106] Real-time factor

Second
stage only

Total Second
stage only

Total Second
stage only

Total

LSTM-cMSA + CLED-cSA-du [39] 5.2 8.8 630.4 634.0 1.54 1.85

LSTM-cMSA + CED-cSA-du (new) 3.4 7.0 509.5 512.1 0.86 1.14

LSTM-cMSA + CED-cSA-tr (new) 3.4 7.0 364.6 369.2 0.45 0.68
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Fig. 6 Spectrograms of reference and enhanced speech for a male speaker in unseen pub noise at 5 dB SNR.
From top to bottom: clean speech, noisy speech, LSTM-MSA, LSTM-cMSA, new LSTM-cMSA+DNN-cSA,
proposed LSTM-cMSA+CED-cSA-tr, and high-complexity reference LSTM-cMSA+CLED-cSA-du
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top, respectively) shows the higher noise suppression that can be obtained with LSTM-
cMSA. This comes at the cost of suppressing some parts of the speech signal as well,
which can be examined in the highlighted areas in the respective spectrograms. Proceed-
ing to the outputs after second-stage processing with DNN-cSA (third from bottom) and
CED-cSA-tr (second from bottom), it can be observed that certain previously missing or
distorted parts are restored (again highlighted in the respective spectrograms). Further-
more, CED-cSA-tr is able to more accurately restore the harmonic details of the original
clean speech compared to DNN-cSA, as can be seen, e.g., in the rightmost highlighted
region. We can credit this to the CED topology, which, as opposed to a fully connected
topology, puts a focus on local dependencies over frequency through the use of convolu-
tional kernels and is able to process different frequency regions with shared parameters,
which we believe to be especially advantageous for the reconstruction of harmonic struc-
tures. Moreover, the CED is able to use high-resolution information on the clean speech
inherent to the noisy features directly via its skip connections, which can also aid a
more detailed reconstruction. The comparison of the proposed LSTM-cMSA+CED-cSA-
tr network with the high-complexity reference LSTM-cMSA+CLED-cSA-du furthermore
shows, that comparable speech restoration and noise suppression capabilities can be
achieved with our newly proposed method, while employing significantly less model
parameters and computational resources.7

6 Conclusion
In this paper, we have proposed a new two-stage approach for speech enhancement, using
specifically chosen network topologies for the subsequent tasks of noise suppression and
restoration of natural sounding speech. The first stage consists of an LSTM network esti-
mating T-F masks for real and imaginary parts of the noisy speech spectrum, while the
second stage performs spectral mapping using a convolutional encoder-decoder (CED)
network. Employing only the noise suppression stage trained with the complex masked
spectrum approximation (cMSA) loss, we observe an impressive gain of more than 5 dB
in SNR compared to the baselines, but only slight or no gains in terms of overall qual-
ity (PESQ). When employing both stages, average improvements of PESQ by about 0.1
MOS points can be obtained in unseen highly non-stationary noises including interfering
speech. Furthermore, our approach also improves STOI in low-SNR conditions compared
to the baselines.
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