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Abstract

Long-term visual tracking undergoes more challenges and is closer to realistic applications
than short-term tracking. However, the performances of most existing methods have been
limited in the long-term tracking tasks. In this work, we present a reliable yet simple long-
term tracking method, which extends the state-of-the-art learning adaptive discriminative
correlation filters (LADCF) tracking algorithm with a re-detection component based on the
support vector machine (SVM) model. The LADCF tracking algorithm localizes the target in
each frame, and the re-detector is able to efficiently re-detect the target in the whole
image when the tracking fails. We further introduce a robust confidence degree evaluation
criterion that combines the maximum response criterion and the average peak-to-
correlation energy (APCE) to judge the confidence level of the predicted target. When the
confidence degree is generally high, the SVM is updated accordingly. If the confidence
drops sharply, the SVM re-detects the target. We perform extensive experiments on the
OTB-2015 and UAV123 datasets. The experimental results demonstrate the effectiveness of
our algorithm in long-term tracking.

Keywords: Learning adaptive discriminative correlation filters, Long-term tracking, Re-
detection

1 Introduction
While visual object tracking as a hot research topic in computer vision has been widely

applied in various fields, many challenges are still not resolved especially in target dis-

appearance, partial occlusion, and background clutter, and studying a general and

powerful tracking algorithm is a tough task.

A typical scenario of visual tracking is to track an unknown object in subsequent

image frames by giving the initial state of a target in the first frame of the video. In the

past few decades, visual object tracking technology has made significant progress [1–

10]. These methods are very effective for short-term tracking tasks, which the tracked

object is almost always in the field of view. However, in realistic applications, the re-

quirement for tracking is not only to track correctly, but also to track for a longer

period of time [11]. During the period of time, the tracking output is wrong in the ab-

sence of the target objects. And the training samples will be incorrectly annotated,
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which leads to a risk of model drifts. Therefore, it is important to long-term trackers to

determine whether the target is absent and have the capability of re-detection.

Long-term tracking task also requires the tracker as well as short-term tracking

to maintain high accuracy in the challenges of disappearance and occlusion, espe-

cially to stably capture the target object in a long-term video [12]. Therefore, the

long-term tracking presents more challenges from two aspects. The first issue is

how to determine the confidence degree of the tracking results. In [13], the max-

imum response value of the target is used to determine the confidence of the

tracking result. When the maximum peak value of the response map is lower than

the threshold value, the result is determined to be unreliable. However, the re-

sponse map may fluctuate drastically when the object in occlusion or disappear

condition, only using the maximum response value to judge confidence is incredi-

bility. The average peak-to-correlation energy (APCE) criterion in [14] indicates the

degree of fluctuation of the response map. If the target is undergoing fast motion,

the value of APCE will be low even if the tracking is correct. However, the APCE

criterion is commonly used to update trackers in [14]. Secondly, how to relocate

the out-of-view targets remains unresolved. The tracking-learning-detection (TLD)

[15] algorithm exploits an ensemble of weak classifiers for global re-detection of

the out of view. The method fails to classify the target object due to the huge

number of scanning windows. The long-term correlation tracking (LCT) [13] algo-

rithm proposes a random fern re-detection model to detect the out-of-view target.

In [16], it learns a spatial-temporal filter in a lower-dimensional discriminative

manifold to alleviate the influences of boundary effects. But the method still cannot

solve the target disappearance problem.

This paper proposes a tracking algorithm combining the learning adaptive discrim-

inative correlation filter tracker and re-detector. The proposed method aims to perform

robust re-detection and relocate the target when target tracking fails. Our main contri-

butions can be summarized as follows:

i) We propose a stable long-term tracking strategy to track the targets that may dis-

appear or deform heavily in long-term tracking. With the confidence strategy

adopted, the learning adaptive discriminative correlation filters (LADCF) tracks the

accurate target online. And the support vector machine (SVM) is updated when

the confidence degree is generally high. In contrast, if the response maps fluctuate

heavily, the SVM is used as a re-detector to relocate the target.

ii) We not only utilize the maximum response but also adopt the APCE criterion to

the re-detection component. The fusion of the two criteria can accurately deter-

mine the state of the tracker and improve the accuracy of the tracking system.

iii) We evaluate the proposed tracking algorithm on the OTB-2015 [17] and UAV123

[18] datasets; the experimental results show that the proposed algorithm performs

more stable and accurate tracking performance in the case of occlusion, back-

ground clutter, etc. during the long-term tracking.

The structure of the rest of the paper is as follows: Section 2 overviews the related

work. Section 3 presents the proposed method. Section 4 reports the experimental re-

sults and experimental analysis. Section 5 concludes the paper.
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2 Related works
2.1 Correlation filter

Correlation filters have shown outstanding results for target tracking [17, 19]. These

methods exploit the circular correlation of the filter in the frequency domain to locate

the target object. Bolme et al. [4] propose the pioneering MOSSE tracker, using only

gray image features to train the filter. The circulant structure of tracking-by-detection

with kernels (CSK) tracker [20] employs the illumination intensity features and applies

DCFs in a kernel space. The kernelized correlation filters (KCF) [6] further improves

CSK by the use of the multi-channel histogram of oriented gradient (HOG) features.

Danelljan et al. [5] exploit the color attributes of the target object and learn an adaptive

correlation filter. The literature [21] proposes a patch-based visual tracker that divides

the object and the candidate area into several small blocks evenly and uses the average

score of the overall small blocks to determine the optimal candidate, which greatly im-

proves under the occlusion circumstances. The literature [22] proposes an online repre-

sentative sample selection method to construct an effective observation module that

can handle occasional large appearance changes or severe occlusion.

The estimation of the target scale is another important aspect for testing an outstand-

ing tracker. It not only improves better performance, but also provides computational

efficiency. The discriminative scale space tracking (DSST) tracker [23] performs trans-

lation estimation and scale estimation separately, using a scale pyramid to respond to

the scale change. Li and Zhu [24] present an effective scale adaptive scheme, which de-

fines a scale pool to turn the samples of each scale into the same size as the initial sam-

ple by the bilinear interpolation method.

The formulation of DCFs exploits the circular correlation which implements learning

efficiently by applying fast Fourier transform (FFT). However, it induces the circular

boundary effects, which has a drastic negative impact on tracking performance. Danell-

jan et al. [25] suggest reducing these boundary effects by introducing a spatial

regularization component. Nevertheless, regularization will make the cost of the model

optimization higher. Galoogahi et al. [26] propose an idea to the pre-multiply a fixed

masking matrix containing the target regions to address such deficiency of DCFs. Then,

they apply the alternating direction method of multipliers (ADMM) [27] algorithm to

solve the constrained optimization problem in real time. The context-aware correlation

filter tracking (CACF) [28] algorithm selects the background reference around the tar-

get by considering the global information and adds the background penalty to the

closed solution of the filter. The discriminative correlation filter with channel and

spatial reliability (CSRDCF) [29] method distinguishes the foreground and background

by segmenting the colors in the search area. The learning adaptive discriminative cor-

relation filters (LADCF) [16] approach adds adaptive spatial feature selection and tem-

poral consistency constraints to alleviate the spatial boundary effects and temporal

filter degradation problems that exist in the DCF method.

2.2 Long-term tracking

Kalal et al. [15] propose a tracking-learning-detection (TLD) algorithm, which decom-

poses the tracking task into tracking, learning, and detection. Among them, tracking

and detection facilitate each other, the short-term tracker provides training examples
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for the detector, while the detectors are implemented as a cascade to reduce com-

putational complexity. Enlightened by the TLD framework, Ma et al. [13] propose

a long-term correlation filter tracker using a KCF as a baseline algorithm and a

random fern classifier as a detector. The FCLT-A fully correlational long-term

tracker (FCLT) [30] trains several correlation filters on different time scales as a

detector and exploits the correlation response to link the short-term tracker and

long-term detector.

3 Methods
In this section, we describe our tracker. In Section 3.1, we introduced the main

tracking framework of our algorithm, which is shown in Fig. 1. In Section 3.2, we

introduce the tracker based on LADCF correlation filtering. In Section 3.3, we

introduce the composite evaluation criteria of the confidence degree and the SVM

based re-detector.

Fig. 1 The framework of the algorithm in this paper
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3.1 The main framework of the algorithm

The proposed algorithm aims to combine both the DCF tracker and the re-detector for

long-term tracking. First, the baseline correlation filter tracker is adopted to estimate

the translation in the tracking stage. Second, the maximum response value and the

APCE criterion are utilized to judge the confidence level of the target. Finally, when the

value of confidence is higher than the threshold, the baseline tracker achieves the track-

ing target alone. When the confidence level drops sharply, it indicates tracking failure.

We do not update the model and exploit the SVM model to re-detect the target object

in the current frame. The structure of the algorithm in this paper is shown in Fig. 1.

The tracking framework is summarized as follows:

(1) Position and scale detection: We utilize DSST to achieve the target position and

scale prediction. The t − th frame target is It, and the filter model is θmodel. When a

new frame It appears, we extract multiple scale search windows ½Ipatcht fsg� from it,

s = 1, 2, …, S, with S denoting the number of scales. For each scale s, the search

window patch is centered around the target center position pt − 1 with a size of

aNn × aNn pixels, where a is the scale factor and N ¼ b2s − S − 1
2 c. The size of the

basic search window size is n × n, which is determined by the target size ω × h and

padding parameter as n ¼ ð1þ ϱÞ ffiffiffiffiffiffiffiffiffiffiffiffi
ω� h

p
. So, the bilinear interpolation is

applied to resize each patch into n × n. Then, we extract multi-channel features for

each scale search window as χðsÞϵRD2�L. Given the filter template, the response

score can efficiently be calculated in the frequency domain as [16]:

f̂ sð Þ ¼ x̂ sð Þ⊙θ̂
�
model ð1Þ

After the implementation of the IDFT on each scale, the maximum value of f ∈ℝD2�S

is the relative position and scale.

(2) Updating: We adopt the same updating strategy as the traditional DCF method:

θmodel ¼ 1 − αð Þθmodel þ αθ ð2Þ

where α is the updating rate. More specifically, since θmodel is not available in the learn-

ing stage for the first frame, we use a pre-defined mask that only the target region is ac-

tivated to optimize θ as in BACF. And then, we initialize θmodel = θ after the learning

stage of the first frame.

3.2 Correlation filter tracker

In this paper, we set LADCF [16] as the baseline algorithm of our tracking approach.

The LADCF algorithm proposes a new DCF-based tracking method, which utilizes

the adaptive spatial feature selection and temporal consistent constraints to reduce the

impact of spatial boundary effect and temporal filter degradation. The feature selection

process is to select several specific elements in the filter to retain distinguishable and
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descriptive information, forming a low-dimensional and compact feature representa-

tion. Considering an n × n image patch x∈ℝn2 as a base sample for the DCF design, the

circulant matrix for this sample is generated by collecting its full cyclic shifts, XΤ

¼ ½x1; x2;…; xn2 �Τ∈ℝn2�n2 with the corresponding Gaussian-shaped regression labels y

¼ ½y1; y2;…; yn2 � . The spatial feature selection embedded in the learning stage can be

expressed as:

argmin
θ;ϕ

θ⊛x − yk k22 þ λ1 ϕk k0
s:t:θ ¼ θϕ ¼ diag ϕð Þθ;

ð3Þ

where θ denotes the target model in the form of DCF, and ⊛ denotes the circular con-

volution operator. The indicator vector ϕ can potentially be expressed by θ and

‖ϕ‖0 = ‖θ‖0, and diag(ϕ) is the diagonal matrix generated from the indicator vector of

selected features ϕ. The ℓ0-norm is non-convex, and the ℓ1-norm is widely used to ap-

proximate the sparsity [24], so a temporal consistency is constructed by ℓ1-norm relax-

ation spatial feature selection model [16]:

argmin
θ

θ⊛x − yk k22 þ λ1 θk k1 þ λ2 θ − θmodelk k1 ð4Þ

where λ1 and λ2 are tuning parameters, and λ1<<λ2. θmodel denotes the model parame-

ters estimated from the previous frame.

The ℓ2-norm relaxation is adopted to further simplify the following expression:

argmin
θ

θ⊛x − yk k22 þ λ1 θk k1 þ λ2 θ − θmodelk k22 ð5Þ

where the lasso regularization controlled by λ1 select the spatial feature. In the above

formula, the filter template model is used to increase smoothness between consecutive

frames to promote time consistency. In this way, the temporal consistency of spatial

feature selection can be preserved to extract and retain the diversity of the static and

dynamic appearance.

Since the multi-channel features share the same spatial layout [16], the multi-channel

input is represented as Χ = {x1, x2,…, xL}, and the corresponding filter is represented as

θ = {θ1, θ2,…, θL}. By minimization, the goal can be extended to multi-channel functions

with structured sparsity [16]:

argmin
θ

XL

i¼1
θi⊛xi − yk k22 þ λ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

i¼1
θi⊙θi

r�����
�����
1

þ λ2
XL

i¼1
θi − θmodel ik k22 ð6Þ

where θj is the jth element of the ith channel feature vector θi∈ℝD2
. ⊙ denotes the

element-wise multiplication operator. The structured spatial feature selection term cal-

culates the ℓ2-norm of each spatial location and then executes the ℓ1-norm to achieve

joint sparsity.

Subsequently, utilizing ADMM [27] to optimize the above formula, we introduce the

relaxation variables to construct the goals based on convex optimization [31]. Then, we

could obtain the global optimal solution of the model through ADMM and form an

enhanced Lagrange operator [16]:
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L ¼
XL
i¼1

θi⊛xi − yk k22 þ λ1
XD2

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

θ j
i

� �2

vuut
������

������
1

þ λ2
XL
i¼1

θi − θmodel ik k22

þ μ
2

XL

i¼1
θi − θ

0
i þ

ηi
μ

����
����
2

2

ð7Þ

where H ¼ fη1; η2;…; ηLg are the Lagrange multipliers, and μ > 0 is the corresponding

penalty parameter controlling the convergence rate [16, 32]. As L is convex, ADMM is

exploited iteratively to optimize the following sub-problems with guaranteed

convergence:

θ ¼ arg min
θ

L θ; θ
0
;H ; μ

� �

θ
0 ¼ arg min

θ
0

L θ; θ
0
;H ; μ

� �

H ¼ arg min
H

L θ; θ
0
;H ; μ

� �

8>>>><
>>>>:

ð8Þ

3.3 Re-detector

3.3.1 Confidence criterion

Most existing trackers do not consider whether the detection is accurate or not. In fact,

once the target is detected incorrectly in the current frame, severely occluded, or com-

pletely missing, this may cause the tracking failure in subsequent frames.

We introduce a measure to determine the confidence degree of the target objects,

which is the first step in the re-detection model. The peak value and the fluctuation of

the response map can reveal the confidence about the tracking results. The ideal re-

sponse map should have only one peak while all the other regions are smooth. Other-

wise, the response map will fluctuate intensely. If we continue to use the uncertain

samples to track the target in the subsequent frames, the tracking model will be

destroyed. Thus, we exploit to fuse two confidence degree evaluation criteria. The first

one is the maximum response value Fmax of the current frame.

The second one is the APCE measure which is defined as:

APCE ¼ Fmax − Fminj j2

mean
P

w;h Fw;h − Fmin
� �2� � ð9Þ

where the Fmax and Fmin are the maximum response and the minimum response of the

current frame, respectively. Fw, h is the element value of the wth row and the hth col-

umn of the response matrix.

If the target is moving slowly and is easily distinguishable, the APCE value is gener-

ally high. However, if the target is undergoing fast motion with significant deforma-

tions, the value of APCE will be low even if the tracking is correct.

3.3.2 Target re-detection

In this section, we describe the re-detection mechanism used in the case of tracking

failure. In the re-detection module, when the confidence level is lower than the thresh-

old, the SVM [33] is used for re-detection. Considering a sample set (x1, y1), (x2, y2), …,

(xi, yi), …, xi ∈ R
d, including positive and negative samples, where d is the dimension of
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the sample, yi ∈ (+1, −1) is sample labels, SVM can make segmentation of positive and

negative samples to obtain the best classification hyperplane. The classification plane is

defined as [33]:

ωΤxþ b ¼ 0 ð10Þ

where ω represents the weight vector, and b denotes the bias term. In the case of the

linearly classifiable, for a given dataset T and classification hyperplane, the following

formula is used for classification judgment:

ωΤxþ b≤1; yi ¼ − 1
ωΤxþ b≥1; yi ¼ þ1

�
ð11Þ

Combining the two equations, we can abbreviate it as:

y ωΤxþ b
� �

≥1 ð12Þ

The distance from each support vector to the hyperplane can be written as:

d ¼ ωΤxþ b
		 		

ωk k ð13Þ

The problem of solving the maximum partition hyperplane of the SVM model can be

expressed as the following constrained optimization problem:

min
1
2

ωk k2
s:t:yi ω

Τxi þ b
� �

≥1
ð14Þ

Next, the paper introduces the Lagrangian function to solve the above problem [33].

Lðω; λ; cÞ ¼ 1
2

ω 2 −
Xl

j¼1
ciyiðω � xi þ bÞ þ

Xl

i¼1
ci

������ ð15Þ

where ci > 0 is the Lagrange multiplier, the solution of the optimization problem satis-

fies the partial derivative of L(ω, λ, c) to ω and b be 0. The corresponding decision func-

tion is expressed as:

f ðxÞ ¼ signðω� � xþ b�Þ ¼ signfðXl

j¼1
c�j y jðx j � xiÞÞ þ b�g ð16Þ

Then, the new sample points are imported into the decision function to get the sam-

ple classification.

In the case of linear inseparability, we use the kernel function to map it to the high-

dimensional space. In this work, we use the Gaussian kernel function as follows:

k xi; x j
� � ¼ e

−
xi − x jk k2

2σ2


 �
ð17Þ

When a frame is re-detected, an exhaustive search is performed on the current frame

using a sliding window, and the HOG features are extracted for each image patch as

the Χ vector in the above formula. And the f(x) is calculated by formula (16). Then, we

obtain the sample area with the largest f(x). When the response value is greater than

the threshold, it will be used as the location of the tracking target again.
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The training process of SVM is as follows [33]. By the confidence level, we determine

the quality of the sample. Then, samples with high confidence are used as the positive

samples, and samples with low confidence are used as the negative samples. The HOG

features from positive and negative samples are extracted to obtain the feature vectors.

The feature vectors are represented as (xi, yi), i = 1, 2, …, n, where n denotes the num-

ber of training samples, xi represents the HOG feature vector, and yi represents the at-

tribute of the extracted sample. If the training sample is positive, then yi = 1, and if the

sample is negative, then yi = − 1. For the binary classification problem of our samples,

the loss function is defined as formula (18).

Lossðx; y;ωÞ ¼ − maxð0; 1 − yðx � ωÞÞ ð18Þ

When the value of loss is negative, the parameters of SVM are updated as follows.

ω� ¼
Xl

j¼1
c�j y jx j ð19Þ

b� ¼ yi −
Xl

j¼1
y jc

�
j ðx j � xiÞ ð20Þ

where cj is the Lagrangian coefficient, x is the feature vector extracted from the sample,

and y is the label corresponding to the sample.

4 Experimental results and discussion
In this section, we evaluate the proposed algorithm on OTB-2015 and UAV123 bench-

marks [17] with comparisons to other detection-based tracking algorithms and classical

correlation filtering tracking algorithms. Section 4.1 introduces the experimental platform

and parameter settings of the experiments. Section 4.2 introduces the experimental data-

sets and the evaluation criteria for the experiments. Section 4.3 describes the quantitative

evaluation of the results and describes the qualitative evaluation in Section 4.4

4.1 Experimental setups

The experimental software environment is MATLAB R2016a, and the hardware envir-

onment is Intel Core i5-4200M processor, 4GB memory, Windows 8 operating system.

The regularization parameters λ1 and λ2 are set to 1 and 15, respectively; the initial pen-

alty parameter μ = 1; the maximum penalty parameter μmax = 20; the maximum number

of iterations K = 2; the padding parameter as ϱ = 4; the scale factor as a = 1.01; the thresh-

old for re-detection is set to tr = 0.13; and the update threshold is set to tu = 0.20.

4.2 Experimental datasets and evaluation criteria

The OTB-2015 dataset has a total of 100 video sequences, including 11 challenges,

namely, illumination variation (IV), scale variation (SV), occlusion (OCC), deformation

(DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rota-

tion (OPR), out-of-view (OV), background clutter (BC), and low resolution (LR). The

UAV123 consists of 143 challenging sequences, including 123 short-term sequences

and 20 long-term sequences. Their evaluation criteria adopt the distance precision and

overlap precision in one-pass evaluation (OPE) as the criteria of the evaluation algo-

rithm. The overlap precision is defined as the percentage of overlap ratios exceeding

0.5. The distance precision shows the percentage of location error within 20 pixels.
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4.3 Quantitative evaluation

In this paper, we compare our algorithm with 6 state-of-the-art trackers on the OTB-

2015 dataset, including 2 tracking-by-detection algorithms, such as LCT [13] and large

margin object tracking with circulant feature maps (LMCF) [14], and 4 mainstream

correlation filtering tracking algorithms, such as CSK [20], KCF [6], DSST [23], and

background-aware correlation filters (BACF) [26]. Figure 2 shows the OPE success rate

and precision plots of these algorithms. It can be seen from Fig. 2 that the proposed al-

gorithm has been significantly improved compared with other algorithms. The preci-

sion and success rate of our method are 81.4% and 59.9%, respectively. Through

experiments, we found that the short-term target trackers learn some wrong informa-

tion, when the target is occluded or disappears. Thus, the template is polluted by the

wrong information and unable to track the target correctly in subsequent frames.

Therefore, compared with the BACF algorithm, our method improves the precision

and success rate by 14.8% and 7.8%, respectively. The LCT exploits the random fern al-

gorithm to re-detect targets, which is slow to operate. Thus compared with the

tracking-by-detection LCT algorithm, the proposed algorithm improves the precision

and success rate by 8% and 9.3%, respectively. Compared with the LMCF algorithm

with multi-peak detection, our method increased the precision and success rate by

11.2% and 11.1%, respectively.

In order to further verify the superiority of our method, we analyze the tracking per-

formance through attribute-based comparison in Table 1, which shows the area under

the curve (AUC) scores of the success plots with 11 different attributes.

As shown in Table 1, the proposed algorithm in this paper achieves the best perform-

ance on 11 attributes. In the case of OCC, our algorithm score is 10.1% higher than

that of the LMCF algorithm (tracking-by-detection style) and 12% higher than the algo-

rithm BACF algorithm (short-term correlation filtering style). For FM images, our algo-

rithm is 4.6% higher than the second-ranked BACF algorithm and 5.1% higher than the

LCT algorithm using random fern re-detection. In the above condition, the target

model may be contaminated, which makes target tracking difficult. Meanwhile, our

model can solve this problem by accurate re-detection via SVM. In the case of OPR,

LCT achieves a score of 48.5%. And our tracker provides a gain of 8.7%. This is because

the baseline algorithm applied in this paper solves the influence of boundary effects to

Fig. 2 Precision and success rate plots of the proposed method and state-of-art methods over OTB-2015
benchmark sequences using one-pass evaluation (OPE)
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a certain extent and can achieve higher accuracy when the target rotation occurs. In

the case of OV, the score of our algorithm is 50.7%, which is 3.9% higher than the

BACF algorithm. The reason is that our template stops updating when the target goes

out of view; the SVM is used to detect the target again. When the target reappears in

the field of view, our model is not contaminated and can continue tracking the target

correctly.

Furthermore, we present the OPE success rate and precision plots on UAV123 in Fig. 3.

As shown in Fig. 3, our method beats other algorithms on the UAV123 dataset. Spe-

cifically, our method achieves the AUC scores of 65.2% and 46.1%, which is better than

LCT by 13.1% and 13.4%. At the same time, the proposed method is 16.1% and 10.5%

higher than BACF, because the proposed re-detection approach provides a novel solu-

tion to re-detect the low-confidence targets to improve tracking accuracy.

4.4 Qualitative evaluation

We selected 7 representative benchmark sequences from OTB-2015 to demonstrate

the effectiveness of our algorithm. The visual evaluation results are shown in Fig. 4. As

it can be seen from Fig. 4, in the “Jogger” sequence, the target is blocked at the 70th

Table 1 The AUC scores of success plots on OTB-2015 sequences with different attributes

CSK KCF DSST BACF LCT LMCF Ours

IV 0.357 0.470 0.533 0.523 0.509 0.524 0.610

SV 0.299 0.385 0.454 0.505 0.420 0.456 0.563

OCC 0.313 0.429 0.452 0.456 0.462 0.475 0.576

DEF 0.309 0.404 0.414 0.465 0.457 0.446 0.513

MB 0.287 0.431 0.439 0.505 0.498 0.471 0.548

IPR 0.354 0.441 0.482 0.475 0.511 0.453 0.565

FM 0.297 0.434 0.422 0.489 0.484 0.447 0.535

OPR 0.332 0.440 0.450 0.483 0.485 0.469 0.572

OV 0.230 0.371 0.350 0.468 0.423 0.440 0.507

BC 0.382 0.481 0.503 0.539 0.501 0.502 0.597

LR 0.248 0.290 0.381 0.502 0.281 0.399 0.526

Fig. 3 Precision and success rate plots of the proposed method and state-of-art methods over UAV123
benchmark sequences using one-pass evaluation (OPE)
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frame and the target reappears in the field of view at the 84th frame. Due to the re-

detection mechanism, our tracker can track the target correctly. But the short-time cor-

relation filter tracking algorithm learns error information during occlusion, which leads

to tracking errors in subsequent frames. In the “Soccer” and “Matrix” sequences, due to

background clutter, the algorithms such as LCT and BACF lose the target. In contrast,

the proposed algorithm can successfully handle such situations. In the “Car4” sequence,

due to the scale change problem, the scale-based DSST algorithm and the proposed al-

gorithm both show better performance. In the “Shaking” sequence, the proposed algo-

rithm loses its target in the 17th frame due to issues such as similar lighting changes

and background. However, owing to the supplement of a re-detection mechanism, the

proposed algorithm relocates the target at the 18th frame and keeps tracking correctly.

In the “Bolt” sequence, our algorithm follows the target very closely even in the case of

rapid motion of the target. In the “Dog” sequence, when the target is deformed, our al-

gorithm can accurately track the target, while the BACF and LMCF algorithms have a

Fig. 4 The tracking results of each algorithm on 7 video sequences (from top to bottom are Jogging,
Soccer, Matrix, Car4, Shaking, Bolt, Dog, respectively)
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certain offset. It can be seen from the above description that our algorithm achieves

higher accuracy in these 7 sequences.

Furthermore, we compare our method with the baseline tracker using 7 representa-

tive benchmark sequences of OTB-2015 in Fig. 5. The first three rows are short-term

Fig. 5 The performance comparison of two algorithms on 6 video sequences (from top to bottom are
Soccer, Ironman, Bird1, Sylvester, Lemming, Rubik, Liquor, respectively)
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sequences which none of which exceeds 1000 frames, and the last four rows are long-

term sequences, which all exceed 1000 frames.

As shown in Fig. 5, in the experiments for the short-term sequences, the LADCF

tracker drifts when the target objects undergo heavy occlusions (Soccer) and does not

re-detect targets in the case of tracking failure. Moreover, the LADCF tracker fails to

handle background clutter and deformation (Ironman, Bird1), since only the tracking

component without the re-detection mechanism makes it less effective to discriminate

targets from the cluttered background. In contrast, our method can track the object

correctly on these challenging sequences because the trained detector effectively re-

detects the target objects.

In the Sylvester and Lemming sequences, the LADCF algorithm tracks incorrectly

due to the rotating conditions encountered in these sequences, while our method pro-

vides better robustness to these conditions. In the Liquor sequence, the LADCF track-

ing algorithm is similar to our algorithm before the target is occluded. But when the

target is occluded, the LADCF method fails to locate the occluded target. In the Rubik

sequence, since the target object has undergone deformation and color variation at the

854th frame, the LADCF tracker fails to track correctly. Our method is able to track

successfully due to re-detection. In our method, if the tracking fails, we perform the re-

detection procedure and initialize the tracker so that the target can be re-detected.

Thus, our method can correctly track the target all the time.

Overall, our method performs well in estimating the positions of the target objects,

which can be attributed to three reasons. Firstly, the combined confidence criterion of

our method can correctly identify the target even in very low-confidence cases. Sec-

ondly, our re-detection component effectively re-detects the target objects in the case

of tracking failure. Thirdly, our baseline tracker achieves adaptive discriminative learn-

ing ability on a low-dimensional manifold and improves the tracking effect.

5 Conclusions
This paper proposes a long-term target tracking algorithm, where the two main com-

ponents are a state-of-the-art LADCF short-term tracker which estimates the target

translation and a re-detector which re-detect the target objects in the case of tracking

failure. Besides, the algorithm introduces a robust confidence criterion to evaluate the

confidence value of the predicted target. When the confidence value is lower than the

specified threshold, the SVM model is utilized to re-detect the target objects and the

template is not updated. The algorithm is suitable for long-term tracking because it can

detect the target accurately in real time and update the template with high reliability.

Numerous experimental results show that the proposed algorithm achieves better per-

formances than the other tracking algorithms.
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