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Abstract

A measurement matrix and sensing dictionary are the basic tools for signal compression sampling and
reconstruction, respectively, which are important aspects in the field of compression sensing. Previous studies
which have divided the measurement matrix and sensing dictionary into two separate processes did not make full
use of their inherent intercorrelations. In case of which could be fully utilized, the mutual coherence of the atoms
of measurement matrix and sensing dictionary can be further reduced under the premise of ensuring that the
original signal information is stored, which could improve the accuracy of signal recovery. The present study
attempted to reduce the mutual coherence between the sensing dictionary and measurement matrix by proposing
the t-average mutual coherence coefficient as an evaluation index for the sensing dictionary. A mathematical
model for co-constructing a measurement matrix and sensing dictionary is firstly proposed. Then, the measurement
matrix and sensing dictionary cooperative construction(MSCA)algorithm is proposed to solve the model at a faster
rate. The simulated results for sparse signal and binary image show that the proposed algorithm has faster
computing speed and higher solution precision than the state-of-the-art construction algorithms.
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1 Introduction
ADS-B (automatic dependent surveillance and broadcast)
is an important technology for monitoring aircraft opera-
tions. However, the effects of signal interference on this
method can introduce hazards into aircraft operations.
One potential way of addressing this problem is to use an
array antenna to estimate the DOA (direction of signal ar-
rival) based on the spatial sparsity of ADS-B signals.
Implementing this method requires an accurate signal re-
covery algorithm that is effective in the presence of a high
compression ratio. Compression sensing (CS) was first
proposed for breaking the limitation of the Nyquist sam-
pling theorem, by permitting the original sparse signal to
be reconstructed with high accuracy from a small amount
of sampling data using an optimization algorithm.

CS involves constructing a measurement matrix and
applying a recovery algorithm to the sparse signal. There
has been a considerable amount of researches about the
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construction of the measurement matrix, because the in-
formation in the original signal preserved during com-
pression sampling plays a vital role in determining the
signal recovery performance. Several studies have dem-
onstrated the applicability effectiveness of a Gaussian
random matrix [1], Bernoulli random matrix [2], and
random local Hadamard matrix as the measurement
matrix. However, the application of a random matrix has
some drawbacks associated with the presence of random
elements, such as the difficulty of implementation in
hardware, high storage complexity, and transmission dif-
ficulties [3]. These drawbacks mean that using a random
matrix cannot ensure the stability and efficiency of com-
pression sampling, which led to the proposal of using a
deterministic measurement matrix [4]. The most popu-
lar algorithm for constructing deterministic matrices can
be divided into four categories based on different gener-
ation methods for the matrix elements: (1) a finite
framework, such as the expander graph [5]; (2) encoding,
such as chirp codes [6] or the Toeplitz deterministic
matrix [7]; (3) the maximum Welch boundary, such as
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that constructed using a difference set algorithm [8] and
numerical searching algorithm [9]; and (4) a training
mode by optimizing the restricted isometry property of
the initial matrix [10] and implemented by a projection
algorithm and gradient-based training algorithm.

This paper focuses on the fourth category, namely, on an
algorithm for constructing the measurement matrix based
on training. The reason is that it can exhibit better signal-
recovery performance while not being constrained by the
matrix dimensions compared with the other methods. By
constructing a sensing dictionary that has the same dimen-
sions and a low mutual coherence with the measurement
matrix, the sensing dictionary included in the reconstruc-
tion algorithm can achieve a better sparse approximation to
the original signal. Consequently it improves the accuracy
of signal recovery. The previous study demonstrated that a
measurement matrix with a smaller mutual coherence can
significantly improve the signal recovery performance [11].
This study proposes a measurement matrix and sensing
dictionary cooperative construction algorithm (MSCA) to
improve the accuracy of the original sparse signal by utiliz-
ing a sensing dictionary.

The remainder of this paper is organized as follows. In
Section 2, the conventional sensing dictionary method is
introduced. In Section 3, a mathematical model for co-
constructing a measurement matrix and sensing diction-
ary is firstly proposed. Then, the measurement matrix
and sensing dictionary cooperative construction (MSCA)
algorithm is proposed to solve the model. In Section 4, a
series of simulations are conducted. In Section 5, con-
clusions and future research directions are presented.

2 Sensing dictionary

For a one-dimensional sparse signal, xeRN*! with a
measurement matrix ®eR"*N, M« N. The com-
pressed signal can be described as y = @x, y€ R”*'. The
viewpoint of energy loss also means the information loss
in the signal during compression sampling. Suppose that
@ =1 and it holds that [x||5 = ||®x|. This means that
the energy of the original signal can be preserved 100%,
although this is hardly ever the case for most @ € R *™
when M « N. It is obvious that a smaller difference be-
tween measurement matrix @ and the orthogonal matrix
will maintain the energy in the original signal and so im-
prove the ability to perform the reconstruction. On the
other hand, from the viewpoint of signal recovery, the
state-of-the-art OMP reconstruction algorithm can be
described as follows: calculate b= ®"y and determine
the maximum in vector b, whose position corresponds
to the position of the atom in @ that matches best up to
y. Suppose that @ satisfies @@ =1, then b=®'y=
@ ®x =x. A precise signal reconstruction can be ob-
tained in this situation, namely, the identified elements
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in the supporting set are 100% accurate. The above as-
sumptions indicate that constructing internal atoms of
measurement matrix @ requires a low mutual coher-
ence; however, this situation is almost never achieved
since @ is not a square matrix.

In order to resolve the above difficulties, a sensing dic-
tionary Y. that has the same dimensions and a low mu-
tual coherence with @ needs to be constructed. 3”@ has
greater orthogonality than does ®”®. And then, we use
the sensing dictionary to take place of the measurement
matrix to reconstruct the signal, since of the coherence
between internal atoms of sensing dictionary is lower
than measurement matrix, and the sensing dictionary
could better save the information of the original signal.
As a result, we could achieve a better sparse approxima-
tion to the original signal in signal recovery. The ele-
ments of the support set are then identified using a
greedy algorithm such as the OMP algorithm. This algo-
rithm can be described as follows:

i = argmax | (g;,7) | (1)
1<isN

where ¢; is the ith atom of sensing dictionary ¥.

The analysis above shows that the goal of constructing
the measurement matrix is to reduce the coherence be-
tween the internal atoms. The t-average coherence coef-
ficient is defined as [12, 13]

i21si,/sN,i:;(|G(ivj)‘Zt) | G(i, /) |

'ut(®)_ lei,iSN,i¢j(‘G(i7j)‘2t) (2)

where G(i, /) is the element at the ith row and jth col-
umn of the Gram matrix G = @’ ®. The t-average coher-
ence coefficient is the average value of all non-diagonal
elements with an absolute value greater than a specific
threshold ¢ in matrix G. The sensing dictionary is con-
structed with the aim of ¥ ® being a sufficiently accur-
ate approximation to I In this situation, the inner
product of each corresponding atom in ¥ and @ obey

| (&, @) |= 1,ifi =
{ | (e, @) |= 0,if izj (3)

The sensing dictionary and measurement matrix were
constructed cooperatively in this study based on a re-
vised t-average index. The basic idea is to first set up the
inner product between ¢; and ¢; equal 1, according to
Eq. (3), and then calculate G =3”® and tighten the
non-diagonal elements so that they gradually approach 0
using a greedy algorithm until y,(¥, @) satisfies threshold
t. After these steps are finished, a pair of @ and ¥ can be
constructed. This process can be described as follows:
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2
argmin HZT(D—I H (4)
@,Z F

The value of threshold ¢ can be set to > 0 in order to
reduce the number of iterations. Tropp et al. [14] dem-
onstrated that the minimum achievable value of the

non-diagonal elements was t = ‘E/m’(’;fnl) =+ for a matrix

with the ETF (equidimensional tight framework) prop-
erty. Because G is similar to the ETF matrix, we set ¢ =
tr. Equation (4) can be modified to

o [0 g

where matrix HeRY*N and has unit diagonal ele-
ments and non-diagonal elements equal to tzsign(G (i,

).

3 Co-construction algorithm
In order to evaluate the performance of the sensing diction-
ary, the t-average mutual coherence coefficient is proposed:

Zl§i7j§N,izj(|G/(i7j)‘Zt) | Gl(iaf) |
lei,/sN,iszG/(i?j”Zt)

where G(j,j)is the ijth element of Gram matrix
G=x"o. U(Z, @) calculates the average value of all
non-diagonal elements in G with absolute values greater
than the specific threshold £ A smaller u, (X, @) will
make ¥7® closer to I and result in the sensing dictionary
exhibiting better performance.

Measurement matrix @ and sensing dictionary ¥, can
be obtained by solving Eq. (8), which can be decom-
posed into the following two subproblems:

oo H|
‘ HF

u,(Z, @)z

(6)

@ construct @ =argmin
[

. 2
@ construct X = arg mlnHZTCD —~ HHF ;
z

These subproblems can be alternately solved using an it-
erative process, with the performance of @ and X then
evaluated using Egs. (2) and (6) in each iteration. If the
variation between two results of consecutive iterations is
less than threshold & or the number of iterations ex-
ceeds a defined maximum, the algorithm is terminated
and @ and Y. are outputted.

3.1 Gradient-based approach for constructing the
measurement matrix

A descending gradient-based method was adopted for
solving problem (O in this study that can reduce the
value of nondiagonal elements of G = ®*® [15], namely,
the mutual coherence of the internal atoms in @ can be
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reduced gradually. The optimization routine can be de-
scribed as follows:

1) Define the cost function as C = ||(DT(D—HH?D;
2) Calculate the gradient of the cost function:

0 0 T T/ T
a—g:a—q)Tr{((I) o-H)" (0" -H) | (7)

Simplify (7) with the matrix derivative rule [6] to

aC
56 40(0" O-H) (8)

3) The full update equation will then be

oC
D(r41) = Doy~ FTon 9)

where k is the number of iterations and S is the step
length.

4) Calculate the t-average coherence coefficient of @
using Eq. (2), and estimate whether the variation
between two results of consecutive iterations is less
than threshold & if so, terminate the algorithm and
output .

The above method is used to update @ so as to grad-
ually reduce cost function C and finally converge to a
local optimal value. The convergence of the above
method is proved in [16, 17]. The paper above proves
that the algorithm performs to the maximal iterations
and gets the convergency value when S takes a mini-
mum of 0.001. The rate of convergence and the conver-
gency value be expressed by u,(®) are equivalent when
0.005 < 8 <0.01, namely, the value of 5 in this range has
little effect on the convergence of gradient algorithm.

3.2 Tightening and SVD-based approach for the sensing
dictionary

Measurement matrix @ will be obtained after solving
problem @. Problem @ can be solved based on the pre-
vious results. There are two key points associated with
solving problem @: (1) take full advantage of the correl-
ation between matrices Y, and @ and (2) ensure that the
mutual coherence between X and @, namely p, (¥, @), is
as low as possible. In order to implement these two
points in the process of solving the problem, this study
proposed the following methods: (1) construct matrix
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G =3x"®, (2) shrink non-diagonal elements of G using
the tightening operator to gradually make Gclose to H,
and (3) obtain a pair of sensing dictionary and measure-
ment matrix by SVD decomposition [18].

The numerical range of non-diagonal elements of
matrix G is [- 1, 1] since @ and Y were normalized in
the initial stage, and this range could be further reduced
to [-y,y] (y<1) using a tightening operator. A simple
operator for mapping [— 1, 1] to [y, y] is [21]

4 o
pP=_y arctan(G (171)) (10)

The tightening operator only needs one parameter to
adjust the scope of non-diagonal elements of G in the it-
eration process; we set y = 0.4 in this study.

Finally, matrix G is decomposed by SVD to achieve a
pair of @ and ¥, [19]:

G=u"vw (11)

In order to make G closer to H, we arranged all diag-
onal elements in V from the top left to bottom right and
retained the maximum M elements in a new matrix Vj,
[20]. @ and X could then be constructed as follows:

1 1
Y =viu, &=Viyw (12)

In order to ensure the inner-product corresponding
atoms between @ and Y. equal 1, the following equations
should be used:

b &i

¢, = 5 & = —-
gl T e ) |
This approach constructs a pair of sensing dictionary

Y. and measurement matrix @ with low mutual coher-
ence. The MSCA is listed in Algorithm 1.

mber of iterations [erations,

(13)

Input: threshold &, step siz

rix with column normalized @ . ¥ = @

2. lterate the following iterations,,, —times:

1) Setup ' =1:

ac
2) Update @, H:(I:nm—,/iﬁ

c
3) Caleulate Py =Py =f nd G=d'D
E
91 [ (©) = 1, (D) < & then break the loops othervise = +1. retum t0
Step2)
3. Caleulate G =3
4. Update G with tightening operator:
1 i=j
G@.))=

4 .
— yarctan(G (i, /), i # j
™

5. Decompose (G ={J7 VI using SVD, and obtain V), ;

! i
6. C d vely: 1 — 2
onsimit ® and X cooperaivly: 5 _ 31y 2y
[ &,
7. Perform normalization: ¢ =1 , & =77
141, (ea)
8. Calculate My (2, @) = 1, (2, D) and  then
(14, (@) = g1, (@) < & i yes, end loop and utput > and ;o

Algorithm 1. The MSCA algorithm

3.2.0.1 Algorithm 1. The MSCA algorithm
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4 Simulations and discussion

We used simulations to verify the validity of the MSCA.
Suppose that the length of the original sparse signal is N
= 256, the measurement matrix is @, and the sensing
dictionary is ¥ with @, € R™*Y, where M is the num-
ber of measurements. In order to access the perform-
ance of matrix @ or ¥ for different compression ratios,
we varied M from 100 to 150 with a step size of 5. We
adopted the matrix coherence coefficient and t-average
mutual coherence coefficient as the evaluation indices,
and the OMP algorithm was used for signal reconstruc-
tion. In addition, a Gaussian random matrix and gradi-
ent algorithm [21] were selected for comparison. The
corresponding Welch boundary was used to compare
the performances of the various algorithms. The simula-
tion results are shown in Fig. 1.

Figure 1 indicates that the MSCA can reduce the coher-
ence of the matrix compared with the Gaussian random
matrix and the gradient algorithm. Figure la shows that
both the MSCA and the gradient algorithm are more ef-
fective than the Gaussian random matrix in reducing the
coherence of @, and the performance of the MSCA is
slightly better than that of the gradient algorithm: based
on the gradient algorithm, the coherence coefficient of the
matrix decreased gradually from 0.22 to 0.17 as the mea-
sured signal length changed, while the index decreased
gradually from 0.11 to 0.08 based on the MSCA, which is
closer to the Welch boundary. Figure 1b presents the re-
sults for the t-average coherence coefficient as an index to
evaluate the performance of @ between the various algo-
rithms. The MSCA was still closer to the Welch boundary
than for the Gaussian random matrix and the gradient al-
gorithm. Figure 1c shows the performance of the sensing
dictionary when comparing the t-average mutual coher-
ence coefficient of ¥ and the z-average coherence coeffi-
cient of @. The figure indicates that for the same signal
compression ratio, the t-average mutual coherence coeffi-
cient of ¥ was smaller than the t-average coherence coeffi-
cient of @. Namely, the average of the off-diagonal
elements of G =Y"® is less than the G=®’®, which
means that ¥’ @ approaches I more closely on the prem-
ise of diagonal elements equal 1 [22, 23]. Collect-
ively, the t-average mutual coherence coefficient of
the sensing dictionary could be closer to the Welch
boundary, so that the original signal support set can
be identified more accurately through ¥ [24].

We compared the reconstruction performances of the
abovementioned algorithms. It is clear from Fig. 2 that the
reconstruction performances of the gradient algorithm and
the MSCA were better than that of the Gaussian random
matrix. In Fig 2a, some signal components are not recov-
ered because of the internal atoms of the Gaussian random
matrix have bigger mutual coherence than other two
matrix [25].
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Fig. 1 Performances of the measurement matrices constructed
using various algorithms. a Matrix coherence coefficient. b t-average
coherence coefficient. ¢ t-average mutual coherence coefficient

In order to accurately estimate the precision of the
recovery result, we calculated the reconstruction error
as

= ],

error_reconstruction =
1]

(14)

We remain the size of the original signal unchanged in
the simulation and set the signal sparsity as a variable.
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——Recovery
— Original

L L L
100 150 200

(a) Gaussian random matrix
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(b) Gradient algorithm
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(c) MSCA

L
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Fig. 2 Performance in reconstructing sparse sampled signals for
various algorithms. a Gaussian random matrix. b Gradient algorithm.

¢ MSCA
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Signal sparsity indicates the number of non-zero bits in
the signal. The results show the signal reconstruction
under different signal sparsity and with competing meas-
urement dictionary methods, namely Gaussian random
matrix and the gradient matrix [26]. Since the original
constructed sparse signal is random, the simulation was
repeated 100 times with different signal sparsity, and the
average error was calculated. The results are presented
in Fig. 3.

We construct a pair of measurement matrix and
sensing by the use MSCA algorithm in this simulation;
the MSCA measurement matrix in Fig. 3 indicates the
average reconstruction error based on MSCA measure-
ment matrix only. Correspondingly, the MSCA co-
operative construction in Fig. 3 indicates the average
reconstruction error based on measurement matrix
and MSCA sensing dictionary cooperatively. While, we
indicate the MSCA sensing dictionary to show the re-
sult obtained reconstructing the signal with the meas-
urement matrix lonely. Figure 3 shows that the
reconstruction error was smallest for the MSCA-
cooperative construction in the same signal sparsity,
followed by the MSCA-measurement matrix and gradi-
ent algorithm, and highest for the Gaussian random
matrix. Moreover, the MSCA was better than the
Gaussian random matrix in terms of reconstruction
stability. Result of simulation proves that the sensing
dictionary  plays a  better  performance in
reconstruction.

In order to verify the processing ability of the MSCA
algorithm to the image, we use the MSCA matrix to
compress an image like Fig. 4a. By the way, this paper
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only simulates the binary image for the purpose of
simplifying the process of compression and recon-
struction [27, 28]. The stimulation experimental flow
is as follows: (1) converting the original image to a 0—
1 matrix " with '€ R**" by binarization; (2) N pair
of measurement matrix @; and sensing dictionary ¥;
with @;, Y;e "™, m <M be constructed by using
MSCA algorithm; (3) compressive sampling: Y=Y,
y;=®;Y;, i=1, 2, ..., N; (4) the signal Yis recon-
structed by using the sensing dictionary-based OMP
algorithm [29]; and (5) image reconstruction and the
result are shown as the Fig. 4c.

It is observed that the results of image reconstruction
by MSCA sensing dictionary and gradient matrix are
better than the Gaussian random matrix by comparing
Fig. 4 a, b, ¢, and d. In order to compare the effects of
compression sensing of the three methods on the image
signal more clearly, we calculate the reconstruction error
as formula (14). The results are shown in the Table
1. Specific results are as follows:

This illustrates that the MSCA matrix could retain the
information of the original signal better than the Gauss-
ian random matrix and gradient matrix, and the coupled
sensing dictionary also could be used in the reconstruc-
tion for signal [30, 31].

5 Conclusion

This study addressed the optimization of compression
measurements. In this work, a mathematical model
for co-constructing a measurement matrix and
sensing dictionary was proposed. Then, the measure-
ment matrix and sensing dictionary cooperative

1 T T T T
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Fig. 3 Average reconstruction error
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construction (MSCA) algorithm is proposed to solve
the model at a faster rate. The proposed MSCA
makes full use of the inherent correlation between
the measurement matrix and sensing dictionary. The
advantage of our approach is that it involves con-
structing the measurement matrix and sensing dic-
tionary cooperatively rather than dividing this into
two separate processes, which should also improve
the performance in sparse recovery. The t-average
mutual coherence coefficient was defined for evaluat-
ing the performance of the sensing dictionary. The
results obtained from simulations have shown that
the sensing dictionary has a lower mutual coherence

Table 1 The accuracy of reconstruction by the three methods

and can successfully reconstruct the sparse signal
using the proposed algorithm. Compared with the
state-of-art algorithms, the simulation results showed
that MSCA is better than the other algorithms in en-
suring the low coherence of the measurement matrix
and that ¥ has better coherence than @.

Based on the results of the proposed cooperative
construction method for the measurement matrix
and sensing dictionary in this work, we will continue
the following work: (1) sparse reconstructed algo-
rithm based on sensing dictionary [32] and (2) adap-
tive sparse representation compatible with sensing
dictionary [33].

Method Gaussian random matrix

Gradient matrix MSCA sensing dictionary

Accuracy 74.67%

89.43% 94.27%
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