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Abstract

We present a novel approach to non-rigid object tracking in this paper by deriving an adaptive data-driven kernel. In
contrast with conventional kernel-based trackers which suffer from the constancy of kernel shape as well as scale and
orientation selection problem when the tracking targets are changing in size, the adaptive kernel can robustly achieve

the adaptation to target variation and act toward the actual target contour simultaneously with the mean shift
iterations. Level set technique is novelly introduced to the mean shift sample space to both cope with insufficient
low-level information and implement the adaptive kernel evolution and update. Since the active contour model is
designed to drive the kernel constantly to the direction that maximizes the appearance similarity, this adaptive kernel
can continually seize the target shape to give a better estimation bias and produce accurate shift of the mean. Finally,
accurate target region can successfully avoid the performance loss stemmed from pollution of background pixels
hiding inside the kernel and qualify the samples fed the next time step. Experimental results on a number of
challenging sequences validate the effectiveness of the technique.

1 Introduction

Object tracking is a challenging research topic in the
field of computer vision. In previous literature, numerous
approaches have been dedicated to compute the trans-
lation of an object in consecutive frames [1-4], among
which the mean shift methods show impressive per-
formances and have received a considerable amount of
attention. As a nonparametric density estimator firstly
appeared in [5], mean shift iteratively computes the near-
est mode of a point sample distribution. Then, it was
applied by Comaniciu [6] to object tracking where the
cost function between two color histograms is minimized
through the mean shift iterations.

Despite its promising performance [7-10], there is a
significant problem facing the traditional mean shift, i.e.,
the unclear kernel scale selection mechanism. Since the
scale of mean shift kernel directly determines the size
of the window within which sample weights are exam-
ined and affect the amount of kernel shift, it is a crucial
parameter for the mean shift algorithm. However, there
is currently no sound mechanism for choosing this scale
maturely. The intuitive approach is to search for the best
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scale by testing different kernel bandwidths and selecting
the one maximizing appearance similarity. This kind of
method easily result in performance loss due to the pol-
lution of non-object regions residing inside the kernel. In
order to better fit the object shape, anisotropic symmetric
kernel is introduced with the selection problem existing
not only in scale but also extending to orientation. By
simultaneously controlling both the scale and orientation,
the estimation bias of the kernel can be controlled by the
underlying distribution (Fig. 1a), and result in better mode
estimation. Nevertheless, objects in practice may have
complex shapes that cannot be well described by simple
geometric shapes, even when using the most appropriate
one (Fig. 1b). With the expectation that the kernel ideally
has the shape of the tracked object, some attempts have
been made to use asymmetric kernel for dynamic track-
ing. However, most of them invite constant kernel shape
throughout the sequence, few consider to adapt it to the
target variation over time.

In this paper, we derive an adaptive data-driven ker-
nel to simultaneously address the kernel scale/orientation
selection problem as well as the constancy of the kernel
shape in non-rigid object tracking application. Level set
technique is novelly introduced to the mean shift sample
space to both cope with insufficient low-level informa-
tion and implement the adaptive kernel evolution and
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Fig. 1 Motivation and improvement illustration of the proposed method, the frame numbers of € are 191, 206, and 219, respectively, in diving
sequence. a Kernel scale/orientation selection. b Complex object shape. € The proposed data-driven kernel and its adaptation to target variation

()

(b)

update. Since the active contour model is designed to
drive the kernel constantly to the direction that maxi-
mizes the appearance similarity, the kernel can robustly
achieve the adaptation to target variation and act toward
the actual target contour simultaneously with the mean
shift iterations. As the adaptive kernel continually seizes
the target shape, it can give a better estimation bias to
produce accurate shift of the mean and successfully avoid
the performance loss stemmed from pollution of the non-
object regions hiding inside the kernel. Briefly, our main
contributions could be summarized as follow:

¢ In contrast to traditional meanshift methods which
use fixed rectangular for target presentation, we
introduce the level set model into the meanshift
framework to realize non-rigid object contour
tracking.

In contrast to traditional level set method that do not
consider any interested target knowledge, we evolve
the level set curve in the meanshift sample space to
drive the curve whose convergence result maximizes
the target appearance similarity.

e We proposed an adaptive data-driven kernel based
on the level set model within the meanshift
framework, which addresses the fix kernel shape and
kernel scale/orientation selection problem facing
traditional kernel trackers.

Figure 1 illustrates the motivation and improvement of
our proposed method.

2 Related work
2.1 Tracking methods with kernel scale/orientation
selection

After the intuitive 10% method in [6], Collins proposed a
method [11] using difference of Gaussian mean shift ker-
nel for efficient blobs tracking through scale space. Khan
et al. in [12] derive a multi-mode anisotropic mean shift,
where the center, size, and orientation of the bounding
box are simultaneously estimated during the tracking. In
[13], the authors present a probabilistic formulation of
kernel-based tracking methods where the EM-estimation
conjunction with KL-divergence are used to develop
a target-center and kernel bandwidth update scheme.
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However, all of them roughly represent the objects by
simple geometric shape kernels that easily result in back-
ground pollution. In contrast, the proposed data-driven
kernel can adapt to the shape of actual object for track-
ing and as well qualify the samples for appearance model
update.

2.2 Tracking methods using asymmetric kernel

In [14], asymmetric kernels are generated using implicit
level set functions. After extending the search space
to higher dimension, the method simultaneously esti-
mates the new object location, scale, and orientation.
Yi et al. propose a method for object tracking based
on mean shift algorithm in [15]. They use an object
mask to construct the asymmetric kernel and imple-
ment probabilistic estimation for the orientation change
and scale adaptation. These methods, however, invite
constant kernel shape during the tracking task which
could not therewith to the object shape in case of
out-plane rotations by scale and orientation estima-
tion. In contrast, we evolve the data-driven kernel and
adapt it to target variation simultaneously with the mean
shift iterations to implement tracking of deformable
objects.

2.3 Tracking methods using level set

Level set technique has been widely used for dynamic
tracking [16—19]. Bibby et al. [20] derive a posterior
framework for robust tracking of multiple previously
unseen objects where the shapes are implicit contours
represented using level set. In [21], the authors add
Mumford-Shah model into the particle filter framework.
Once the particle filter gives the candidate positions in
prediction step, the level set curve evolution is included,
without considering any target bias, to give the candi-
date contours. In [22], dynamical statistical shape pri-
ors are introduced and integrated in a Bayesian frame-
work for level set-based image sequence tracking. In [23],
the authors propose a fragments based tracking method
within the level set framework, where the whole target
and background are segmented by an efficient region-
growing procedure. Differently, our method introduce the
active contour model to the mean shift sample space to
both cope with the insufficient low-level information and
obtain the adaptive kernel that maximizes the appearance
similarity for non-rigid object tracking within mean shift
framework.

3 The mean shift estimation

The mean shift method iteratively computes the closest
mode of a sample distribution starting from a hypothe-
sized mode. In specifically, considering a probability den-
sity function f(x), given n sample points x;, i = 1,--- , 1,
in d-dimensional space, the kernel density estimation (also
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known as Parzen window estimate) of function f(x) can
be written as
i K wixy)
hd Z?=1 w(x;)
where w(x;) > 0 is the weight of the sample x;, and K (x) is
a radially symmetric kernel satisfying [ k(x)dx = 1. The
bandwidth % defines the scale in which the samples are
considered for the probability density estimation.
Then, the point with the highest probability density in

current scale /2 can be calculated by mean shift method as
follow:

foo = (1)

>oim GEEwWx)xX
Yo G w(x))

where the kernel profile k(x) and g(x) have the relation-
ship of g(x) = —K'(x).

The kernel recursively moves from the current location
x to the new location m1;(x) according to mean shift vector
and finally, converges to the nearest mode.

2)

mp(X) =

4 Methods

4.1 Kernel representation

Kernel is a crucial factor to the performance of the mean
shift algorithm, which defines the scale of the target can-
didate and the number of samples considered in the mode
seeking process. Inappropriate kernel may result in either
noisy background pollution or poor object localization.
An ideal kernel is expected to have the shape of the
actual tracked object which may be complex, and with
the capability of adapting to the object variation. Level set
methods, first proposed by Osher and Sethian in [24, 25],
offer a very effective representation of contours and are
widely used. The basic idea of the level set approach is to
embed the contour C as the zero level set of the graph of a
higher dimensional function ¢ (x, 5, 7), that is

Ce ={(x o (x,9,7) = 0} ®3)

where 7 is an artificial time-marching parameter and then
evolve the graph so that this level set moves according
to the prescribed flow. In this manner, the level set may
develop singularities and change topology, while ¢ itself
remains smooth and maintains the form of a graph.

Based on the competitive properties described above,
the level set comes into sight as a reasonable consideration
of presenting the expected adaptive kernel. A kernel func-
tion K : R? — R in the mean shift framework is supposed
to satisfy

K() = k(lIx]1?) (4)
where x> = xTx and k :[0,00] > R is the profile

function with following properties:

® [ is non-negative.
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e Lk is non-increasing, i.e., if a < b then k(a) > k(b).
e k is piecewise , and [ k(r)dr < co.

Implicit level set function ¢(x), encoding the signed
distances of the pixels x from the object boundary, pro-
vides a smooth and differentiable function, and basically
meet the requirements of a mean shift kernel. How-
ever, there is an exception that the signed distance func-
tion of level set is negative outside the object bound-
ary. Therefore, we truncate the level set function of the
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outside boundary portion (set to 0) as in [14] and nor-
malize the inside portion to meet the density estimator
standard

—Z(p(xj)r(i’}; ’;)(x,y'r), if [x y] inside C,

Kx,y,1) =
) 0, else

(5)

Figure 2 illustrates the level set kernel mechanism. In [14],
the asymmetric kernel is constructed only for once and
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Fig. 2 lllustration of the level set kernel mechanism. d and e are the corresponding three-dimensional map of the level set function and kernel, the
frame numbers of f are 0, 87, and 107, respectively, in hand sequence. a Target contour. b Level set function. ¢ Level set kernel. f Tracking out-plane
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used constantly throughout the sequence. Since it does
not adapt to object change in shape, the method can only
estimate the object scale and orientation of in-plane rota-
tions. In case of 3D or in-depth rotations, it is a challenge
for the method to therewith to the object shape (Fig. 2f).
Differently, we novelly introduce the active contour model
into the mean shift sample space and derive a data-driven
kernel, which is able to adapt to the object shape and act
toward the actual target contour simultaneously with the
mean shift iterations.

4.2 Data-driven kernel evolution

Our goal is to evolve the kernel to the expected image
area of the target being tracked. Let I; : x — R’ denote
the image at time 7 that maps a pixel x =[x y]T € R?
to a value, where the value is a scalar in the case of a
grayscale image (m = 1) or a three-element vector for
an RGB image (m = 3). Effective image preprocessing
technical could also be used to generate the value. Let
C(s) =[x(s) y(s)]T ,s €[ 0,1], denote a closed curve in R?.
An implicit function ¢ (x, y) is defined as a signed distance
function of the curve

d((x,9),Cy), if[x y]T inside C;
¢(x7y1t): 07 lf[x y]Tat C‘[
—d((x,y), Cp), if [x y]T outside C,

(6)

such that the zeroth level set of ¢ is C, that is, ¢ (x,y) = 0
if and only if C(s) =[x y]T for some s €[0,1]. Then
the contour is deformed in the form of embedding level
set function until it minimizes an image-based energy
function.

Given an initial kernel region learned from previous
observations, we extend the view of candidate object
region to a larger ring of neighboring, within which the
samples are evaluated by the Bhattacharyya measurement.
Therefore, a new kernel function can be adapted with-
out being confined to the current kernel scope. Let g and
p denote the color distribution functions generated from
the object model and candidate regions, then the weight
at pixel x is given by:

w(x) = g (x))/p(x)) (7)

It is obvious that the weight map of the candidate object
region contains two kinds of samples. Samples that are
more likely to belong to the target than to the back-
ground get larger weights, and vice versa for those are
more likely derive from the background. In order to dis-
tinguish these samples, we include the active contour
model into this sample space as an unsupervised cluster-
ing manner to automatically separate the samples into two
classes (foreground/background) and drive the kernel to
the maximum possible area of being the target.

(2020) 2020:9
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Let m; and m;, denote the within class weight center of
the target and background classes; then, we can define the
variance of a cluster D, around its center by

=Y |lwx) — m.? ®)

xeD,

where * € {¢,b} denotes the target and background,
respectively. Under the intuition that we would like weight
values of pixels on the object and background to both be
tightly clustered, i.e., low within class variance, we use the
sum of squared error criterion as the clustering criterion
function

Je= Y D lIwe) —my|? )

x€{t,b} XD

The clustering criterion function optimization is a com-
binatorial optimization problem and has been proved to
be a NP problem. Since the exhaustive computation is
unrealistic, we bring this problem into the level set frame-
work and convert the process of iteratively finding approx-
imate solution to the form of level set function evolution.
We define the energy function of the active contour as

Exms, ©) = / w0 — ml2dx+ [ w0 — my|2dx
Qt Q-

—I—S/ —T(x)dx—l—,u%ds
c c

where Q7 presents the region inside curve C and cap-
tures the samples belonging to the object class, while QT
denotes the region outside C and captures the samples of
the background class. T'(x) is the image gradient for edge
detecting

(10)

T(x,y) = |V[Go (%) * I (x,)] > (11)
where V denotes spatial gradient operator, * denotes con-
volution, and G, is the Gaussian filter with standard
deviation o. & and u are the coefficients that weight the
relative importance of each item.

The first two items are used to measure the within class
variation of the object and background classes. The third
item is used to ensure the two classes division is on the
object boundary. The last item measures the length of the
curve C, playing the role of smoothing region boundaries.
Therefore, when we minimize the energy function of (10),
obviously, we expect to obtain the classification result that
both tightly clusters the object/background samples and
with division rightly convergent to object edge.

Employing the level set function as a differentiable
threshold operator, we unify the integral region and
rewrite (10) as
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Ecma¢) = /Q w0 — my | 2H (6 (0)dx
+ /Q 1w — my|P[1 — Hg ()] dx
_ /Q 50N ETX) — uIVe 1 dx  (12)

where @ = QT [ Q™ is the image domain, H(-) denotes

. . 1,ifz>0
the Heaviside function that H(z) = 0. else and 8o (+)

is the Dirac function.
By fixing the class means of the target and background
samples as

_ JowOH(¢(x) dx

Jow®)[1 - H($((x))] dx
my = =
Jo H(@(x)) dx

Joll = H@x))] dx
(13)

’

and minimizing the energy functional (12), the associ-
ated Euler-Lagrange equation for this functional can be
given by

and implemented by the following gradient descent:

2 sty [%w(x) ) (W) — ) +ET00 + udliv (%)]

(15)
where div is the divergence operator, and

1 €

Se@) = —
(@) w2+ 22

(16)

Since the data-driven kernel is designed within the mean
shift sample space to act constantly toward the image area
with maximum appearance similarity, the kernel curve,
in the proposed algorithm, can be steered to the target
region from a wide variety of states, without any request
of the initial curve that must be inside or outside the target
completely.

4.3 Mean shift formulation

For an initial kernel contour 6,_1 learned from previous
observations, we evolve it according to the new observa-
tion at time 7, I;, and the target model g as discussed
in Section 4.2. This can be realized by doing a gradient
descent on the image energy Ej:

C; = evolve(S;, I, q) = sS4 (17)

where S; denotes the curve at time 7, and go through M
iterations in the direction of reducing the energy Ey. as fast
as possible:
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s _ glo=1) _ U(w)VSEk (Wl*,S(w_l)) )

w=1,2-,Mand S? =C,_; (18)

Based on the object/background division contour 6},
we can obtain the corresponding kernel K(x,y) as
described in Section 4.1. Then the density estimator can
be given by

-~ 1
f0 =5 ) Kx—x) (19)

ieQt

where N is the number of samples in T, the inside region
of C;. The mean shift vector that maximizes the density is
computed by

Yica+r K(xi = x)w(x;) (x; — x)
Yicar K(xi —x)w(x;)

AX = (20)

Figure 3 illustrates the tracking mechanism of the pro-
posed algorithm.

5 Results and discussion

In this section, firstly, the proposed method was qualita-
tively evaluated on several video sequences with different
challenges for tracking. All the sequences derive from
real-world objects records. Then, the proposed method
was further tested on two public datasets for quantitative
evaluation. In all cases, the target objects and candidates
are modeled in RGB space by the weighted histogram with
16 bins along each dimension. The initial curve of the first
frame was a rough polygon supplied manually while the
subsequent ones were fed by the results of previous frame.

5.1 Qualitative evaluation

The first sequences consist of 230 frames and describe a
waving hand with significant shape deformations as well
as scaling, rotation changes. From the tracking results
shown in Fig. 4 (red), we can see that the proposed
method can accurately follow the target due to the adap-
tation of the data-driven kernel to the object shape
variation. For the same sequence, the conventional mean
shift tracker (green) could not give well presentation by
typical symmetric kernel conjunction with different band-
widths selection.

We further compared three mean shift-based algo-
rithms on a high jump sequence to show the superiority of
our approach. This sequence records a high jump match,
which contains a player undergoing significant shape
deformations simultaneously with fast and drastic motion.
The three algorithms we tested are (a) standard mean shift
using symmetric kernel with different scales selection [6],
(b) constant asymmetric kernel-based tracker with both
scale and orientation adaptation [14], and (c) the pro-
posed method. Figure 5 shows the tracking results of these
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(2

the mean shift framework for deforming object tracking tasks (i)

Fig. 3 Tracking mechanism of the proposed method. Employing pedestrian sequence as an example, a and b show the initial curve obtained from
previous frame where we admit 15 pixels extension for the new kernel adaptation. ¢ The corresponding candidate samples weights. Then, we
include the active contour model into this sample space (d) to separate them into two classes (foreground/background) and obtain the adaptive
kernel that maximizes the appearance similarity (e). g The level set function of the contour and f, h the corresponding kernel which is used within

algorithms. We can see that in typical mean shift, the pol-
lution of background pixels in the rough kernel region
easily results in performance loss and does not guarantee
to focus on the target accurately. The algorithm (b), based
on constant kernel shape throughout the image frames,
is impotent to well present the deforming target only
by scale and orientation adjustment. The proposed algo-
rithm, in contrast, effectively adapts the kernel to target
variation and obtains pleasant results.

Then, we compared our work with conventional level
set-based deformable object tracker [21] on a pedestrian
sequence. This sequence describes a woman with multi-
colored appearance walking in a clutter street with large
posture changes and sheltering cases. In [21], the tradi-
tional Mumford-Shah method is added within the parti-
cle filter framework without considering any target bias.
Since the typical level set model emphasizes the intensity

consistence only, its convergence on multi-colored region
highly depends on the initial curve. Therefore, incompe-
tent results are shown in Fig. 6 a due to the unreliable
initial curves derived from the prediction step of parti-
cle filter procedure. In contrast, the proposed algorithm,
based on the weighted mean shift samples, can simulta-
neously segment out the two class pixels and obtain the
accurate target contour. Additionally, we use the decreas-
ing rate of object size over previous few frames as an
occlusion detector. Once detected, we slow down the
speed of updating the target density distribution, enabling
tracking to resume when the target reappears (Fig. 6b).
Another three challenging sequences were tested to fur-
ther evaluate the proposed method. The first sequence
describes a complex scenario where a girl is moving
quickly in a circular path with a boy, undergoing signifi-
cant scale changes and shape deformation as she moves

Fig. 4 Tracking results of the proposed method (red) and standard mean shift (green) on hand sequence. #5, 54, 83, 108, 154
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Fig. 5 Tracking results on high jump sequence for frames of 0, 13, 27, 39, and 64. a Standard mean shift [8]. b The method in [34]. ¢ The proposed
method

(b)

Fig. 6 Tracking results on pedestrian sequence for frames of 0, 17, 27, 33, and 47. a Conventional level set-based deformable object tracker [26].
b The proposed method
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Fig. 7 Experimental results of further evaluation. a Tracking results of the proposed method on children sequence for frames of 3, 16, 28,40, 51, and
64. b Tracking results of the proposed method on riding sequence for frames of 100, 216, 239, 268, and 367. ¢ Tracking results of the proposed
method on toy QQ sequence for frames of 0, 53, 180, 210, and 288

toward or deviating from the camera. It is a challenge
for traditional symmetric kernel or intensity edge-based
level set methods to represent the child accurately. As
we can see in Fig. 7a, the proposed method shows pleas-
ant results, demonstrating the effectiveness of the tech-
nical. Compared with the method of [23], where the
whole target and background are segmented into inten-
sity consistent fragments and separately modeled in GMM
manner, ours include the active contour model in the
mean shift sample space and is committed to obtain the
adaptive kernel for deformable object tracking within the
mean shift framework, overcoming the computational
complexity problem facing the traditional contour track-
ers. The second sequence contains a man riding on a
busy road, with the camera moving fast and background
changing dramatically. From the tracking results shown
in Fig. 7b, we can see that our method performs well
even in a complicated scene. The third sequence describes
a toy QQ being pulled across the table with clutter
background behind and similar icon beside. During this
course, large appearance changes occur when the toy is
occluded or turned around. Figure 7 ¢ shows the track-
ing results of this sequence, indicating the competence of

the proposed method in dealing with these challenging
cases.

5.2 Quantitative evaluation

In this part, for quantitative analysis, we evaluate the
proposed method using two public sets of challenging
video sequences and compare it to several state-of-the-
art tracking methods. The first dataset is VOT2014! [26]
which comprises 25 sequences (an overall size of more
than 10,000 frames), and the second is the VOT20162
which consists of 60 sequences. These sequences show
various objects with different challenges for visual track-
ing, including large shape deformations, scale variations,
illumination variations, occlusion, and so on.

Firstly, we compare the proposed method with sev-
eral related bounding box trackers that also make use
of the segmentation techniques for target tracking: the
DF tracker in [27], which divides the image into sev-
eral layers that present the probabilities of a pixel tak-
ing each feature value to define the distribution field as

Thttp://www.votchallenge.net/vot2014/dataset.html
Zhttp://www.votchallenge.net/vot2016/dataset.html
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Table 1 Evaluation results of the compared methods on VOT2014 dataset: percentage of correctly tracked frames (score > 0.5)

Sequence Pix[28] DF[27] HT[32] SLSM[34] RPT29] Proposed
1 Ball 100 3731 15.12 100 99.50 100
2 Basketball 41.79 4.00 9.10 3743 96.55 3559
3 Bicycle 149 98.52 6343 96.27 83.39 89.3
4 Bolt 10.00 257 1.14 2.29 143 2.86
5 Car 65.87 39.68 64.68 6548 100 8532
6 David 91.69 89.22 7234 7857 100 84.94
7 Diving 35.16 2740 0.46 100 1598 100
8 Drunk 413 18.02 3.14 372 100 100
9 Fernando 3356 62.67 2.05 16.10 6541 59.93
10 Fish1 1.61 2.29 1.15 6.65 2.29 10.09
11 Fish2 2419 2324 5.81 18.06 10.65 935
12 Gymnastics 7246 44.93 9.66 100 42.04 100
13 Hand1 1743 95.90 100 20.75 2131 2459
14 Hand2 1948 20.60 4757 48.69 16.85 26.22
15 Jogging 2.28 2150 80.78 2215 2248 100
16 Motocross 6.71 11.59 100 18.29 18.90 15.24
17 Polarbear 100 100 100 100 100 100
18 Skating 9.25 38.00 85.50 5375 90.00 2375
19 Sphere 100 9.95 100 100 100 100
20 Sunshade 10.06 50.58 100 68.60 100 100
21 Surfing 98.57 100 100 100 100 100
22 Torus 80.46 20.83 100 100 98.86 100
23 Trellis 87.70 53.08 7293 39.72 100 369
24 Tunnel 1.78 58.55 3967 25.03 5773 49.11
25 Woman 17.59 94.47 1843 88.78 93.80 94.97
Average 41.3304 44.996 517184 56.4132 65.4868 65.9264

image descriptor for target modeling; PixelTrack in [28],
which combines a generalized Hough transform based
detector with a probabilistic segmentation method in
a co-training manner to track deformable objects; and
reliable patch tracker in [29], which divides the target
into rectangular patches, tracks them with the kernel-
ized correlation filters [30], and integrates them within
a particle filter framework [31]. Then, we also compare
the proposed method to other relevant contour track-
ers, which also exploit segmentation technique to extract
the target object contour for dynamic tracking. The first
method is HoughTrack (HT) proposed by Godec et al.
[32], where the authors proposed a patch-based voting
algorithm with Hough forests [33]. By back-projecting the
patches that voted for the object center, the authors ini-
tialize a graph-cut algorithm to segment foreground from
background. The second method is the SLSM in [34], in
which a single boosting target model is learnt to guide the
level set curve evolution to obtain the interested target
region.

For the quantitative analysis, for each video, we deter-
mine the percentage of frames in which the object is cor-
rectly tracked. Since the ground truth annotation included
in the datasets is represented by a rotated bounding box,
and to let the contour trackers be compared fairly with
other bounding box trackers, we measure the tracking
accuracy using the Agarwal-criterion [35] as in [32] and
[34]. It is defined as score = W&, where Ry is
the output target region from the tracking algorithm and
Rgt the ground truth. In each image frame, the tracking
is considered correct if the Agarwal overlap measure is
above a threshold (set to 0.5). Since the VOT2016 dataset

Table 2 Evaluation results of the compared methods on
VOT2016 dataset: percentage of correctly tracked frames
(score > 0.5)

Methods Pix[28] DF[271 HT 321 SLSM[34] RPT[29] Proposed
Average 40.3302 42.0626 45.7331 47.8365 54.0174 545296
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Fig. 8 Visible tracking examples of the proposed method on the VOT2014 and VOT2016 datasets. a Tracking results of the proposed method on
surfing sequence of the VOT2014 dataset, for frames of 1, 34,47, 125, and 195. b Tracking results of the proposed method on fish3 sequence of the
VOT2016 dataset, for frames of 1, 238, 250, 402, and 429. ¢ Tracking results of the proposed method on ball1 sequence of the VOT2016 dataset, for
frames of 2, 24, 28, 33, and 40

(b)

Fig. 9 Experimental results of evaluation on gray scale video sequences. a Tracking results of the proposed method on fish sequence for frames of
48,162,196, 299, and 355. b Tracking results of the proposed method on toy dog sequence for frames of 231, 270, 361, 383, and 542
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contains 60 sequences and for the consideration of space,
we select the VOT2014 dataset to show the entire eval-
uation results of the compared methods (see Table 1).
As we can see, for 12 out of 25 video sequences the
proposed method outperforms the others, and also the
average of correct tracking. Table 2 summarizes the quan-
titative analysis of the compared methods on VOT2016
dataset. Figure 8 gives some visible tracking results of the
proposed method on the two datasets.

Finally, we show the ability of the proposed method to
work on gray scale images. The first sequence captures
a fish whose shape undergoes sudden deformation as it
turns or gets occluded. The second sequence describes a
toy dog which is held and swayed under a lamp with large
appearance and illumination changes as the toy moves and
turns. Figure 9 shows the tracking results of these gray
scale video sequences. As we can see in images, our work
can get pleased performance even with large appearance
changes and severe sheltering cases in gray scale images.

6 Conclusion

We have presented a novel data-driven kernel in this paper
for non-rigid object tracking. By introducing the active
contour model into the mean shift sample space, the adap-
tive kernel can be evolved and updated to adapt to target
variation simultaneously with the mean shift iterations.
Since the active contour model is designed to drive the
kernel constantly to the direction maximizing the appear-
ance similarity, this adaptive kernel can continually seize
the target shape to give a better estimation bias and pro-
duce accurate shift of the mean, addressing the problem
of constant kernel shape and scale/orientation selection
facing typical kernel-based trackers. Experimental results
have verified the effectiveness of the proposed method in
many complicate scenes.
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