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Abstract

This paper proposes a new approach for finding the conditionally optimal solution (the
classifier with minimum error probability) for the classification problem where the
observations are from the multivariate normal distribution. The optimal Bayes classifier
does not exist when the covariance matrix is unknown for this problem. However, this
paper proposes a classifier based on the constant false alarm rate (CFAR) and invariance
property. The proposed classifier is optimal conditionally as it has the minimum error
probability in a subset of solutions. This approach has an analogy to hypothesis testing
problems where uniformly most powerful invariant (UMPI) and uniformly most
powerful unbiased (UMPU) detectors are used instead of the non-existing optimal UMP
detector. Furthermore, this paper investigates using the proposed classifier for
modulation classification as an application in signal processing.

Keywords: Classification problem, Hypothesis testing problem, Modulation
classification, GLR, Separating function estimation test (SFET)

1 Introduction
Binary decision-making problems are classic and well-studied in statistical signal process-
ing literature[1–15]. Generally, there are two different criteria applied to decision-making
problems namely minimum error probability and Neyman-Pearson (NP)[16, 17]. In NP
criteria, a predefined threshold is set on the false alarm probability (PFA), and the missed
detection probability (PMD) is minimized with respect to this threshold. However, in the
minimum error probability criterion, the average error is minimized. In this study, we call
those problems with minimum error probability criterion “classification problems” and
those under NP lemma “hypothesis testing problems.” Furthermore, the solution to the
problems is named the “classifier” and the “detector,” respectively.
The classification problems are solved in two different approaches, the non-parametric

approach and the parametric one [18, 19]. In the non-parametric approach, two steps
should be taken: 1-feature extraction, 2- feature-based classification with the aid of non-
parametric classifiers [18]. There are many features proposed in the literature for different
classification problems. As an example for the modulation classification problem -which
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is the main case study of this paper- different features are proposed in the literature like
instantaneous amplitude, phase and frequency [20], fourth-order cumulant [21], constel-
lation shape [22], cyclostationarity [23], and wavelength coefficients [24]. For the second
step, i.e., non-parametric classification, different methods have been proposed in the lit-
erature like artificial neural network (ANN) [25] and support vector machine (SVM) [26].
These approaches are not optimal as the mathematical system model of the problem is
not taken into study. However, they are computationally more simple and more robust to
model parameter mismatches.
On the other hand, in the parametric approach, the firm mathematical system model

is exploited in order to derive optimal classifiers and therefore is the focus of this
paper. The optimal solution for the classification problem is named Bayes’ classifier. In
many practical signal processing applications, the Bayes’ classifier does not exist due
to the existence of the unknown parameters under the test. Therefore some (subop-
timal) alternatives are employed in the literature like averaged likelihood ratio (ALR)
[18, 27–30], generalized likelihood ratio (GLR)[18, 31–33], hybrid likelihood ratio (HLR)
[18, 31, 34–36], and quasi HLR (QHLR)[37]. These techniques are all common in the
fact that they are based on the likelihood function of the different classes being con-
sidered. However, the way they treat unknown parameters is different. In ALRT, the
unknown parameters are considered random variables (RVs); therefore, the likelihood
function of different classes is calculated by integrating over the unknown parame-
ters. The ALR is optimal in the sense that the considered pdf for different param-
eters is valid. However, this assumption can not be guaranteed. Moreover, the ALR
approach is very computationally complex. In GLRT, however, the unknown param-
eters are considered unknown but deterministic and the maximum likelihood (ML)
estimates of unknown parameters are used instead. The GLRT is suboptimal; however,
it can be proved that it has asymptotic optimality [17]. Furthermore, the GLR classi-
fier can not be used for nested problems [18]. The HLRT however, by averaging over
data symbols removes the difficulty of GLRT for nested constellations. The QHLRT
is an HLRT in which the unknown parameters are estimated using low-complexity
techniques.
In this paper, our focus is on finding a conditionally optimal solution for a specific classi-

fication problem in which the observations are from the multivariate normal distribution.
This problem and its special cases have been used extensively for blind receiver applica-
tions like AMC in frequency selective fading channel [1], AMC for Alamouti space time
blind code (STBC) scheme [2], blind identification of Alamouti or spatial multiplexing
(SM)[5], and so on. Based on the aforementioned references first, some sorts of features
are extracted, and then the suboptimal parametric classification methods are applied.
However, in this paper, we propose a conditionally optimal classifier for such a problem.
By conditionally optimal classification, we mean that the proposed classifier is optimal in
a subgroup of solutions that are all common in having a constant error floor in high sig-
nal to noise ratio (SNR) regimes. Interestingly, the adopted procedure leads to solving a
corresponding hypothesis testing problem (a problem by NP criterion) instead of solving
the original classification problem (a problem by minimum error probability criterion).
We have proved that the optimal uniformly most powerful (UMP) detector for the corre-
sponding hypothesis testing problem is an optimal uniformly minimum error probability
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(UMEP)1 classifier in the group of classifiers (which have error floor in high SNR regime)
for the original classification problem. This technique, i.e., restricting the domain of
solutions of an arbitrary classification problem -which is one the main novelties of this
paper- has an analogy to the adopted approach in hypothesis testing problems when
the optimal UMP detector does not exist. In these cases in hypothesis testing litera-
ture, the alternative UMP invariant (UMPI) and UMP unbiased (UMPU) detectors are
employed instead[39–43]. UMPI and UMPU are optimal in the sense that they satisfy the
NP criterion in the subgroup of detectors, i.e., all invariant and unbiased detectors, recep-
tively. Similarly, our proposed classifier is optimal in the sense that it has the minimum
error probability (uniformly over different values of the unknown parameters) in a “sub-
group” of classifiers that all have a predefined error floor value in high SNR regimes. The
novelties of this paper can be stated as:

- A new criterion for finding the optimal/suboptimal classifier is proposed based on
which the well-studied optimal/suboptimal solution for hypothesis testing problems
can now be applied for blind receiver applications. This approach has a deep analogy
to the taken approach in finding UMPI and UMPU for hypothesis testing problems
for which the UMP detector does not exist.

- The proposed classifier is CFAR and invariant with respect to the group of
transformations under which the studied classification problem remains invariant.

- The effect of the error floor values on the overall classifier performance is
investigated. Interestingly, it is proved that under some mild circumstances, the
higher error floor in the high SNR regimes leads to a better performance in low SNR
regimes. Therefore, selecting the error floor value is a trade-off between high and low
SNR regime performances.

- The proposed approach is applied to binary classification problems. However, an
example of the multiclass problem is also included.

This paper is organized as follows: Sec. 3 introduces the system model. In Sec. 4, the
conditionally optimal classifier is investigated. The effect of error floor on the overall per-
formance of the classifier is elaborated in Sec. 5. The simulation results for themodulation
classification application are presented in Sec. 6. Section 7 concludes the paper.

2 Notations
Throughout this paper, bold-face upper case letters (e.g. X) denote matrices, bold-face
lowercase letters (e.g. x) represent vectors, light-face upper case letters (e.g. Gm) denote
sets or groups, and light-face lower case letters (e.g. x and gm) represent scalars or trans-
formations (deterministic or random). The pdf of a random vector x is denoted by f (x; ρ)

in which ρ denotes its unknown parameter. The statistic (whether a classifier or a detec-
tor) is represented by T(.). Both (.)T and tr(.) denote transpose operator, (.)H is the
hermitian operator, E{.} the expectation operator, I represents identity matrix and Iλ and
Iθ represent Fisher Information Matrix(FIM) with respect to λ or θ , receptively.[ x]n rep-
resents the nth element of the x vector and [X]m,n represents the (m, n)th element of the
X matrix. The derivative of a vector function with respect to a scalar is a vector where[

∂μ
∂θm

]
n

= ∂μn
∂θm

and μm is the nth element of μ. Similarly, the derivative of a vector with

1A classifier is called UMEP if it has uniformly the minimum error probability over the unknown parameter space [38].
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respect to a vector is a matrix where
[

∂�
θ

]
m,n = ∂[�]m,n

∂[θ ]m,n
. The error probability, the missed

detection probability, the detection probability, and the false alarm probability at a given
point in the parameter space like ρ are dented by Pe(ρ), PMD(ρ), PD(ρ), and PFA(ρ),
receptively. The normal distribution is denoted by N(μ, σ 2) in which μ and σ 2 repre-
sents its mean and variance, respectively. Furthermore, the L2 norm of (.) is represented
by ||(.)||, and |.| represents the determinant operator.

3 Systemmodel
Consider the multivariate complex normal distribution as:

f (X;μ,�) =
exp

(
− ∑M

i=1 (xi − μ)H �−1 (xi − μ)
)

(2π)
MN
2 |�|M2

(1)

where X =[ x1, · · · , xM], in which xi ∈ C
N s are i.i.d. observations for the following binary

classification problem:

{
C0 : μ = 0,�
C1 : μ �= 0,�

(2)

Furthermore, μ is the mean vector, and the covariance matrix � = LLH (L is lower trian-
gular) is assumed to be unknown. Moreover, we define ρ � L−1μ ∈ � ∈ C

N in which
� represents the parameter space of the problem, gm ∈ Gm �

{
gm|gm(X) = KX,K ∈ L

}
where L is the set of all N × N positive definite lower triangular matrices and there-
fore K denotes all lower triangular N × N transformations on the observation vector. In
this problem, we want to find the classifier which has the minimum error probability, i.e.,
Pe = P(C0)P(C1|C0)+P(C1)P(C0|C1) in which P(Ci) represents the prior probability of ith
class and P(Ci|Cj) denotes the probability that the decision of the classifier is i when the
true class is j.
For the sake of completeness and clarity for the rest of the paper, we define the fol-

lowing hypothesis testing problem and name it as the “corresponding” hypothesis testing
problem for the classification problem under the study in (2) :

{
H0 : ρ = 0
H1 : ρ �= 0

(3)

The observation vectors are assumed to be distributed as the multivariate normal distri-
bution in (1). By hypothesis testing problem, we mean the optimality criterion is based
on NP.

4 Proposedmethod for deriving a conditionally optimal classifier
In this section, a new type of conditionally optimal classifier for (2) is presented. It is
stated as “conditionally optimal” because it is optimal in a subgroup of classifiers having
a specific property. We name this subgroup as Cα and is fully elaborated in the following
sections.
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4.1 The Cα group

Definition 1 We call the set of all unbiased invariant2 classifiers for (2) the Cα group if
their error floor is α

2 ; i.e:

Cα �
{
T(x)|T (

gm(x)
) = T(x),Pe(||ρ|| → ∞) = α

2

}
(4)

All the detectors in the Cα group have two properties in common: First, they are all
invariant concerning the group of transformations, i.e., Gm. Furthermore, they all have
error floor value even if ||ρ|| → ∞. As an example, it means that as far as � is kept con-
stant and ||μ|| → ∞ the error probability would have a floor value. Although it forces
some loss of information likewise in the hypothesis testing problems, it makes finding the
optimal solution possible. On the other hand, as it will be proved in the following, the
detectors in Cα have the CFAR property. Furthermore, as it will be shown in the subse-
quent sections, the group is rich enough to include the well-known tests like GLRT and
Generalized Wald Detector (GWT)[44].

4.2 Deriving the optimal classifier in Cα group

Theorem 1 The optimal UMEP classifier for (2) in the Cα group is the UMP(U) detec-
tor for (3) (which is the corresponding hypothesis testing problem for (2)) when its PFA
is set to α. Furthermore, if T1(.) and T2(.) be two different detectors for (3) for which
∀PFA,∀ρ : Pd1 > Pd2; then T1(.) has uniformly less error probability for (2) over the
parameter space than T2(.) in every Cα group.

Proof Refer to Appendix A

Remark 1 Theorem 1 states a new perspective toward binary classification for (2). It
provides a new optimal classifier based on a new optimality criterion, i.e., error floor con-
cept and the optimal UMP(U) detector used in hypothesis testing problem. We will show
in the subsequent sections that the UMPU detector for (3) exists under some special
cases. However, unfortunately, the UMP(U) detector does not exist in many other cir-
cumstances or at least is not known to exist. Theorem 1 also states that selecting a better
detector for (3) leads to a better classifier for (2) in terms of the new optimality criterion.
In these cases, we can choose the classic suboptimal detectors like GLRT, Wald, and Rao
for (3). However, deriving the aforementioned suboptimal detectors which are based on
the pdf of (3) may not be straightforward as the transformation group is applied to the
main problem. Recently, a new family of detectors named Separating Function Estimation
Test (SFET) is proposed in [45].3 Based on this scheme, we can find the appropriate sub-
optimal detector (approximately optimal) based on the FIM directly without needing the
closed form expression of the pdf which is named GWT [44]. The systematic approach
for deriving the GWT, i.e., deriving the FIM of (3) and solving the differential equation
for finding the separating function is conducted in the following section.

2We call T(.) an invariant classifier with respect to gm if T(gm(.)) = T(.)
3

Definition 2 (SF [45]) Let �0 and �1 be two disjoint subsets in R
M. Then, function g : RM → R is called an SF if it

continuously maps the parameter sets �0 and �1 into two separated intervals i.e., �0 ⊆ g−1((−∞, 0] ) and
�1 ⊆ g−1((0,∞)).
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4.3 Deriving GWT classifier

1- Finding the FIM: For driving the GWT classifier, we should find the FIM of the
corresponding hypothesis testing problem, i.e (3).

Proposition 1 The FIM of (3) equals the identity matrix, I.

Proof The FIM of (2) (before applying the group of transformation) in terms of
θ = [

μT , vec(�)T
]T can be written as

Iθm,n = ∂μT

∂θm
�−1 ∂μ

∂θn
+ 1

2 tr
(
�−1 ∂�

∂θm
�−1 ∂�

∂θn

)
[46]. If λ = g(θ), then the FIM with

respect to λ can be written as Iθ = JλIλJTλ in which J = ∂g
∂θ

is the Jacobian matrix
[46] . We make an auxiliary variable λ �

[
ρT , vec(�)T

]T . The Jacobian matrix can
be written as:

Jλ =
[
L−1 0
Z I

]

in which Z = ∂ρ
∂vec(�)

. Assume:

Iλ =
[
Iρ U1

U2 U3

]

By substituting Iλ and Jλ in Iθ , Iρ = I is concluded.

2- Deriving SF:According to [44], when the induced FIM of the problem is I, the GWT
detector coincides with the well-knownWald detector, and its statistic; can be
written as

TGWT = ||ρ̂||2 = ̂μH�−1μ ≷H1
H0

η (5)

Interestingly, the GWT also coincides with the GLRT derived in [3].

Proposition 2 TheGWTbased classifier for (2) is UMEP in theCα group for the special
case of � = σ 2I.

Proof It can be proved that the GLR detector for (2) in the case of � = σ 2I is UMPU
detector [47]. As far as the GWT detector coincides with GLR detector (refer to (5))
according to Theorem 1, it is a UMEP classifier in the corresponding Cα

Based on the preceding reasoning, using the GWT classifier for (3) is the optimal classifier
in the Cα group at least for � = σ 2I. On the other hand, when � has a different structure,
the GWT can also be used as an asymptotically optimal classifier in the Cα group.

5 Error floor value evaluation
In this section, we want to evaluate the effect of the error floor on the classifier per-
formance. In other words, we want to discuss which Cα group should be taken. It will
be shown that under some circumstances, the Cα group is just a design parameter and
α-selection is a trade-off between high SNR regime and low SNR regime performances.
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Example 1 Assume a special case for (2) in which x obeys normal distribution, i.e.,
x ∼ N(ρ, 1) . Furthermore, theN-tuple observation vector x = [x0, x1, · · · , xN−1]T is also
available. Consider the following binary classification problem:

{
C0 : ρ = 0
C1 : ρ > 0

(6)

in which ρ is unknown. For this simple problem, it can be easily seen that the correspond-
ing hypothesis testing problem noted in Theorem 1 is itself. i.e.:

{
H0 : ρ = 0
H1 : ρ > 0

(7)

It is well-known that the UMP detector for (7) is TUMP(x) = 1
N

∑N−1
n=0 xn[17]. Therefore,

based on Theorem 1 using TUMP as a classifier for (6) is the UMEP classifier in the Cα

group. The error probability of the UMP-based classifier for (2) vs. ρ (which is a measure
of SNR) for different error floor values (different Cα groups) is depicted in Fig. 1. As it is
illustrated, increasing PFA results in a higher error floor in large SNR regimes. But on the
other hand, it results in a better error probability for lower values of SNR.We are going to
evaluate this property in detail. Specifically, we would propose some sufficient conditions
under which this property holds.

Lemma 1 Suppose an arbitrary detector for (3) as T(.) for which we have : ∀ρ ∈

,∀PFA ∈ R, ∂2PD

∂PFA2 < 0. Furthermore, suppose ∀PFA, ∃ρ∗ ∈ 
 : ∂PD(ρ∗)
∂PFA > 1. Then for

PFA2 < PFA1, there exist ρ∗ ∈ 
 : Pe1(ρ∗) < Pe2(ρ∗).

Proof Refer to Appendix B

Fig. 1 Performance of the proposed classifier in Ex. 1 for different error floor values
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Remark 2 This lemma establishes some sufficient conditions guaranteeing that
increasing the error floor value would lead to lower error probability for some SNR values.
In the following, we are going to exploit the conditions stated in Lemma 1 to establish suf-
ficient conditions in more general signal processing examples, i.e when the distribution
of T(.) is an element of exponential family.

Definition 3 (Exponential Family[16]) Every pdf in the form of:

f (x|ρ) = h(x) exp {B(ρ)K(x) − A(ρ)} (8)

in which h(x), B(ρ), K(x), and A(ρ) are known functions is called the exponential family.

Theorem 2 Assume that in (3), the pdf of T(.) is distributed according to the exponen-
tial family. Then ∀PFA2 < PFA1, there exists ρ∗ ∈ � for which we have Pe1(ρ∗) < Pe2(ρ∗) if
the two following conditions are held

1- ∀ρ ∈ 
 : B(ρ) > B(ρ0)

2- ∀η ∈ R, ∃ρ∗ for which we have :

K(η) >
A(ρ∗) − A(ρ0)

B(ρ∗) − B(ρ0)
(9)

Proof Refer to Appendix 7

Example 2 Suppose Ex. 1 again. It can be easily seen that TUMP(x) is distributed
as N(ρ, 1). The normal distribution is an element of the exponential family with the
following parameters:

h(x) = 1√
2π exp

{
− x2

2

}

K(x) = x
A(ρ) = ρ2

2
B(ρ) = ρ

σ

(10)

For this example, B(ρ) > B(ρ0) leads to ρ > 0. On the other hand applying (9) leads to:

2η > ρ (11)

For every η > 0 any ρ ∈ (0, η) satisfies (11). Therefore, for this examples as it was
illustrated in Fig. 1 this property holds.

Corollary 1 Suppose g(ρ) is an SF for (3). Then in the asymptotic regime , i.e., when the
number of samples for ˆg(ρ)ML approaches infinity, for any arbitrary PFA2 < PFA1 there
exist a ρ∗ for which for any ρ̃ ∈ (0, ρ∗) we have Pe1(ρ̃) < Pe2(ρ̃) assuming g(ρ0) = 0,

Proof In asymptomatic regime the distribution of ĝ(ρ)ML can be modeled by
N(g(ρ),V (ρ)) in which V (ρ) � ∂g(ρ)

∂ρ

T
I−1
ρ

∂g(ρ)

∂ρ
and Iρ is the FIM of f (m; ρ)[46]. Any

normal distribution is an element of family distribution with the following parameter:

K(η) = η√
V (ρ)

A(ρ) = g2(ρ
2V (ρ)

B(ρ) = g(ρ)√
V (ρ)

(12)
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Applying conditions of Theorem 2

2η > g(ρ) (13)

Because g(.) is continuous, for every PFA we can find a ρ which satisfies (13).

Remark 3 Corollary 1 states that in asymptotic regimes, increasing error floor will
result in a higher correct probability for lower SNR values for any SFET detector strat-
ifying g(ρ0) = 0. According to (5), g(ρ) = 0 and therefore asymptotically speaking,
increasing the error floor for the GWT based classifier for (2), results in a lower error
probability for some lower SNR values.

6 Results and discussion
Example 3 Consider the modulation classification problem in a multipath fading chan-

nel as yi = ∑L−1
l=0 hlxi−l + ni in which hi is the channel impulse response, xis are the

transmitted symbols, ni represents the white Gaussian noise and L denotes the number of
channel paths. Suppose that the classification is to be done from two different dictionar-
ies D1={BPSK, QPSK} and D2={QPSK, 8PSK}. Based on [1] we can use f1 � E{yiyi+q} and
f2 � E{y2i y2i+q} features for discriminating between D1 and D2 dictionaries. It is straight-
forward to see that for QPSK, E{x2i } is zero but for BPSK it is not. Furthermore, E{x4i } is
zero for 8PSK and non-zero for QPSK. For estimating f1 and f2 we can use the sample
mean estimator zf1(q) � 1

K
∑K−1

k=0 ykyk+q, 0 ≤ q < Q and zf2(q) � 1
K

∑K−1
k=0 y2ky

2
k+q, 0 ≤

q < Q.
MC for the considered channel model based on f 1 and f 2 features can be modeled by

the following binary classification problem (as the number of observations approaches
infinity according to the central limit theorem)[1] C0 : zfi ∼ CN(0, σ 2I) vs. C1 : zfi ∼
CN(β , σ 2I) in which β is unknown which models the uncertainty due to fading channel
and σ 2 is unknown representing the ambiguity of noise power and accuracy of the sam-
ple mean estimator. This problem is a special case of (2). Therefore, we can use the GWT
classifier proposed for this problem. Assuming that N observation vectors are already

available in the receiver and yi =
[
yi0, y

i
1, · · · , yiQ−1

]T
is the ith received observation

vector, we have β̂ = 1
N

∑
i yi and σ̂ 2 = 1

Qtr
{

1
N

∑N−1
i=0 (yi − μ̂)(yi − μ̂)H

}
.

For the simulation results, PFA is taken as 0.01, Q = 9 and K = 1000 otherwise
noted. Furthermore, the Power Delay Profile (PDP) of the channel for different number of
paths is taken as follows: L = 4 : P =[ 0.4615, 0.3077, 0.1538, 0.0769] ,D =[ 0, 20, 30, 32],
L = 3 : P =[ 0.5, 0.3333, 0.1667] ,D =[ 0, 20, 30] and L = 2 : P =[ 0.6, 0.4]D =[ 0, 20] in
which D and P vectors represent path gains and delays (in number of samples) , respec-
tively. The simulation results for D = {BPSK, QPSK} dictionary are illustrated in Figs. 2, 3,
and 4. The simulation is conducted for different channel conditions and number of obser-
vation vectors. As it can be implied by the results, as the number of channel taps in a
frequency selective fading channel increases, the error probability also increases. This is
because the estimation error of parameters gets worse as the dimension of the observation
vectors increases. On the other hand, increasing the number of observation vectors helps
to increase the correct classification probability. In Fig. 3, the PFA is depicted over differ-
ent SNR values (noise power). As far as a CFAR detector is used for classification, it is
expected that by changing the noise power, the PFA remains constant. This phenomenon
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Fig. 2 Error probability of the GWT classifier for different channel conditions and the number of observation
vectors for D={BPSK,QPSK} dictionary

is verified through Monte Carlo simulation in Fig. 3. Furthermore, the effect of error
floor on the classifier performance is depicted in Fig. 4 for C0.01, C0.05 and C0.1 groups.
As it is expected, taking a larger error floor leads to the lower SNR values performance
improvement. On the other hand, the simulation results for D = {8PSK, QPSK} dictio-
nary is depicted in Figs. 5 and 6. The classifier behaves as in the previous case. Increasing
the number of channel taps results in the decrease of the correct probability of the clas-
sifier. Furthermore, as the number of observation vectors increases, the error probability

Fig. 3 False alarm probability of the GWT classifier for different number of channel taps, N = 2 and
D = {BPSK,QPSK}
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Fig. 4 Effect of error floor value on the classifier performance for C0.01, C0.05 and C0.1 for D1={BPSK,QPSK}.
Higher error floor values gain us in low-SNR value performance improvements

decreases. The effect of error floor on the overall classifier performance is depicted in
Fig. 6 for C0.1, C0.05, and C0.01. In this case, also increasing the error floor results in a
better performance in lower SNR regions.
On the other hand, in order to better evaluate our proposed classifier against state of art

solutions, the performance is compared against two Convolution Neural Network (CNN)
classifiers. Adopting CNNs for modulation classification application is already proposed
in the literature in [48–51]. The first selected CNN layout structure is given in Table 1.

Fig. 5 Error probability of GWT classier for different channel conditions and number of observation vectors
for D = {8PSK,QPSK} dictionary
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Fig. 6 Effect of error floor value on the classifier performance for C0.01, C0.05 and C0.1 for D1 = {QPSK,8PSK}.
Higher error floor values gain us in low-SNR value performance improvements

This structure is proposed by [50] which is somehow a similar structure used in [48].
The adopted classifier uses a CNN that consists of six convolution layers and one fully
connected layer. Each convolution layer except the last is followed by a batch normaliza-
tion layer, rectified linear unit (ReLU) activation layer, and a max-pooling layer. In the
last convolution layer, the max-pooling layer is replaced with an average pooling layer.
The output layer has softmax activation. A stochastic gradient descent with Momentum
(SGDM) solver with a mini-batch size of 256 is used. The maximum number of epochs is
set to 12 since a larger number of epochs provides no further training advantage. Further-
more, the initial learning rate is set to 0.02. On the other hand, the second CNN structure
which is shown in Table 2 is adopted from [51] (very similar but not exactly identical).
This CNN consists of two convolution layers and four fully connected layers. Each con-
volution layer and fully connected layer (except the lest one) is followed by a rectified
linear unit (ReLU) activation layer and a max-pooling layer. The output layer has soft-
max activation. An SGDM solver is used and the maximum number of epochs is set to 8.
Furthermore, the initial learning rate is set to 0.01.
The simulation results of the trained networks for L = 4,D = {BPSK ,QPSK} are

depicted in Fig. 7. The sample per symbol parameter is set to 1 and the number of samples
fed to the CNN classifiers is taken in such a way that the observation elements available
for the adopted classifiers (CNNs and our proposed one) are almost the same. For high
SNR regimes (20 dB) the first CNN classifier performance reaches the probability of 98.2%
for L = 4 while the second CNN has an error floor in the high SNR regime around 0.15.
The first CNN has a better performance in the high SNR regime while the second CNN
network has better performance in the low SNR regime. Our proposed classifier has bet-
ter performance compared to the first CNN performance for L = 4,N = 2. (e.g., 99%
accuracy in SNR around 0 dB). However, in the low SNR regime, the second CNN has
better performance while it has much more error floor against our proposed classifier.
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Table 1 The first adopted CNN network layout

Layer Output dimensions

Input layer 2 ×1024 ×1

Conv. 2 ×1024 ×16

Batch normalization 2 ×1024 ×16

ReLU 2 ×1024 ×16

Max pool 2 ×512 ×16

Conv. 2 ×512 ×24

Batch normalization 2 ×512 ×24

ReLU 2 ×512 ×24

Max pool 2 ×256 ×24

Conv. 2 ×256 ×32

Batch normalization 2 ×256 ×32

ReLU 2 ×256 ×32

Max pool 2 ×128 ×32

Conv. 2 ×128 ×48

Batch normalization 2 ×128 ×48

ReLU 2 ×128 ×48

Max pool 2 ×64 ×48

Conv. 2 ×64 ×64

Batch normalization 2 ×64 ×64

ReLU 2 ×64 ×64

Max pool 2 ×32 ×64

Conv. 2 ×32 ×96

Batch normalization 2 ×32 ×96

ReLU 2 ×32 ×96

Average pooling 2 ×1 ×96

Fully connected 1 ×1 ×2

Soft Max 1 ×1 ×2

Furthermore, it should be noted that our proposed classifier has the optimal performance
in C0.05 group. Based on Theorem 1 proof, there may be a classifier outside C0.05 which
has better performance in some SNR points. However, it should be noted that selecting
the CNN number of layers and its structure needs optimization which is definitely out of
the scope of this paper. In other words, we may reach a better performance by changing
the network structure. On other hand, the CNN classifiers are much more complex than

Table 2 The second adopted CNN network layout

Layer Output dimensions

Input layer 1 ×127 ×2

Conv. 1 ×127 ×128

ReLU 1 ×127 ×128

Max pool 1 ×63 ×128

Conv. 1 ×63 ×128

ReLU 1 ×63 ×192

Max pool 1 ×31 ×192

Fully connected 1 ×1 ×2

Fully connected 1 ×1 ×2

Fully connected 1 ×1 ×2

Fully connected 1 ×1 ×2

Soft max 1 ×1 ×2
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Fig. 7 Error probability of the GWT classfier and the CNN classifier for D={BPSK,QPSK} dictionary

our proposed classifier. Furthermore, our proposed classifier can control its error floor in
order to boost its performance in low SNR regimes by changing the Cα group.

Example 4 Consider Example 3 again. Now suppose that we want to classify in
D = {BPSK, QPSK, 8PSK} dictionary. In this approach we convert the M-case classifica-
tion problem into M binary classification problems. This procedure can be described by
a decision tree as in Fig. 8. In each stage one of the candidates is tested; accordingly, the
corresponding decision is taken until the final answer. At each node, a detector-based
classifiers introduced in the previous sections for each binary decision-making is used.
For classification, at first the discrimination is done betweenD1 = {BPSK, QPSK} and then
between D2 = {QPSK,8PSK}. All of the detector’s parameters, i.e., K, Q, and PFA are taken

Fig. 8 Decision Tree of Ex. 4
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Fig. 9 Error probability of the GWT classifier for different channel conditions and number of observation
vectors for D={8PSK, QPSK, BPSK} dictionary

as in Example 3. The Monte Carlo simulation results are depicted in Fig. 9. In this case,
also increasing the number of channel paths will result in a decrease in correct classifica-
tion probability. On the other hand, increasing the number of observation vectors helps to
increase the correct classification probability. Furthermore, it should be noted that for all
cases, the error floor value is Pe(∞) = 1 − (1−PFA0 )(1−PFA1 )+(1−PFA0 )+PD0 (∞)

3 which equals
0.01 for the simulation parameter considered.

7 Conclusion
In this paper, the conditionally optimal solution for the classification problem when the
observation vectors were from multivariate normal distribution was investigated. It was
shown that the optimal classifier in the Cα group for such a problem is possible under
some circumstances. Furthermore, when the optimal solution in the Cα group did not
exist either, it was proved that taking a better detector for the corresponding hypoth-
esis test problem leads to a better classifier. The GWT classifier was derived and was
shown that it is optimal in the Cα group when the covariance matrix is a scaled identity
matrix. The GWT classifier was applied to the AMC problem in the multipath channel.
The simulation results verified the analytical findings. Furthermore, the superiority of our
approach was evaluated against its alternative solution, i.e., CCN approach.

Appendix A: Proof of Theorem

Proof First of all it can easily proved that PMD(||ρ|| → ∞) approaches 0. Further-
more, as the tests are considered invariant they are all function of maximal invariant
and the parameter space is function of induced maximal invariant [16] (Theorem 1). We
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prove that the induced maximal invariant with repect to the considred group of trans-
formation, i.e., G is ρ because of the following two properties: 1- ρ

(
ḡm ((μ,�))

) =
ρ

(
L1μ,L1�L1H

) = L−1L1−1L1μ = L−1μ = ρ ((μ,�)) ,∀L1 ∈ L. 2- If ρ(θ1) = ρ(θ2)

then μ1 = L1L−1
2 μ2, L1L−1

2 �2L−H
2 LH1 = �1 therefore ḡm = L1L−1

2 maps θ2 to θ1.
To cmplete the proof we show that all classifiers in the Cα group are CFAR. We should
show PFA(μ1 = 0,� = �1) = PFA(μ1 = 0,� = �2), ∀�1,�2. PFA(μ1 = 0,�1) =
P(μ1=0,�1) {T(x) ∈ A} = P(μ1=0,�1)

{
T

(
gm (x)

) ∈ A
} = P(μ1=0,�1)

{
gm(x) ∈ T−1(A)

} =
Pgm(μ1=0,�1)

{
x ∈ T−1(A)

} = P(μ1=0,�2) {T(x) ∈ A}. It should be noted that for every
�,�2, gm exists and equals L1L−1

2 . Therefore, every classifier in theCα group is CFAR and
as far as PMD(||ρ|| → ∞) approaches 0, Pe(||ρ|| → ∞) forces PFA to be α for all the clas-
sifiers in the Cα . Therefore, the UMP detector for (3) is the optimal classifier for (2) in the
Cα group as it has the minimummissed detection probability with respect to a fixed false
alarm probability. Furthermore, as all the classifiers in the Cα are unbiased, the UMPU
detector for (3) is also the optimal solution because it can be easily proved that the unbi-
ased detector for (3) is also an unbiased classifier for (2) (As far as the prior probability of
different classes are equal). On the other hand, if T1(.) has a better detection probability
with respect to a predefined false alarm rate, it would have a better error probability in
the corresponding Cα group because all the classifiers in the Cα has the same false alarm
probability.

Appendix B: Proof of Lemma 1

Proof We should find ρ∗ : Pe1(ρ∗) < Pe2(ρ∗). Therefore we can write:

1
2
PFA1 + 1

2
(
1 − PD1(ρ∗) <

1
2
PFA2 + 1

2
(
1 − PD2

(
ρ∗)) (14)

Then:

PD1(ρ∗) − PD2(ρ∗)
PFA1 − PFA2

> 1 (15)

In the next steps, we prove that based on assumptions, (15) is satisfied. We can find ρ∗ for
PFA2 in which we have ∂PD(ρ∗)

∂PFA > 1. Then based on mean value theorem [52], we can find
PFA3 in (PFA2,PFA1) interval for which we have:

∂PD(ρ∗)
∂PFA(PFA3)

= PD1(ρ∗) − PD2(ρ∗)
PFA1 − PFA2

(16)

On the other hand based on ∂2PD
∂PFA2 < 0, we can write ∂PD(ρ∗)

∂PFA(PFA3)
> 1. Therefore based on

(16), (15) holds.

Appendix C: Proof of Theorem 2

Proof For detection probability we have:

PD(ρ) =
∫ ∞

η

f (m; ρ)dm (17)
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and for PFA:

PFA =
∫ ∞

η

f (m; ρ0)dm (18)

Using the chain formula we can write:
∂PD
∂PFA

= ∂PD
∂η

∂η

∂PFA
(19)

Using 19 and the Leibniz formula we can write:
∂PD
∂PFA

= f (η; ρ)

f (η; ρ0)
(20)

in which η satisfies (18). Similarly, we can write:

∂2PD
∂PFA2 = − f ′(η; ρ)f (η; ρ0) − f ′(η; ρ0)f (η; ρ)

f 3(η; ρ0)
(21)

Forcing ∂2PD
∂PFA2 < 0 and remembering that f (m; ρ) > 0, we should have:

f ′(η, ρ)

f ′(η, ρ0)
>

f (η; ρ)

f (η; ρ0)
(22)

Applying (22) on exponential family leads to:

B(ρ) > B(ρ0) (23)

On the other hand we should have:
f (η, ρ∗)
f (η, ρ0)

> 1 (24)

taking the assumption the exponential family distribution and somemathematical manip-
ulation and based on monotone behavior of exponential function it leads to 9.
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