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Abstract

Frequency modulated (FM) signals sampled below the Nyquist rate or with missing
samples (nowadays part of wider compressive sensing (CS) framework) are considered.
Recently proposed matching pursuit and greedy techniques are inefficient for signals
with several phase parameters since they require a search over multidimensional space.
An alternative is proposed here based on the random samples consensus algorithm
(RANSAC) applied to the instantaneous frequency (IF) estimates obtained from the
time-frequency (TF) representation of recordings (undersampled or signal with missing
samples). The O’Shea refinement strategy is employed to refine results. The proposed
technique is tested against third- and fifth-order polynomial phase signals (PPS) and
also for signals corrupted by noise.

Keywords: Compressive sensing, FM signals, Time-frequency analysis, Instantaneous
frequency, RANSAC, Refinement

1 Introduction
There is growing interest in processing undersampled signals, signals with missing

samples, randomly or nonuniformly sampled signals with an overall sampling rate far

below the Nyquist rate. We use the term undersampled in the sequel for brevity rea-

sons covering all mentioned scenarios. For treating such signals, we are witnessing a

powerful novel paradigm called compressive sensing (CS) [1, 2]. In the time-frequency

(TF) signal analysis, it shed new light since TF representations are designed to be

sparse, i.e., to be concentrated in the TF plane as much as possible with a large portion

of the TF plane without information on a signal of interest [3–9]. Similar holds for

parametric estimation where signals can be described with a significantly smaller num-

ber of parameters than the number of samples required by sampling theorem [10, 11].

However, numerous parametric estimators for polynomial phase signals (PPS) and in

general for frequency modulated (FM) signals are developed in the frequency domain

using classical tools such are Fourier transform (FT) or its extensions. Therefore, these

techniques can be applied only to signals sampled according to the Nyquist criterion.
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Recently several techniques emerge in the spectral analysis of undersampled FM sig-

nals [12–16]. More or less, they are based on the matching pursuit or greedy algo-

rithms performing a search over certain parametric space. Some of these strategies

exhibit excellent results but they are difficult for generalization and efficient implemen-

tation for signals with more parameters due to the requirement to search over multidi-

mensional space [17–19]. Therefore, in this paper, we are considering a strategy called

RANSAC—random samples consensus algorithm—to reduce the required search space

for parameters. The RANSAC is a popular tool developed mainly for video and image

analysis, object tracking, etc. It has gained popularity in parametric and nonparametric

signal estimation. The QML-RANSAC algorithm is proposed for the IF and PPS par-

ameter estimation in high-noise environments [20–22]. In [20], the RANSAC has been

applied to the Wigner distribution-based IF estimates. Better results in parametric esti-

mation are achieved when the RANSAC is applied to the STFT and QML in [21]. The

QML-RANSAC reduces the SNR threshold for 1–3dB to the QML results for high-

noise environments. Finally, the QML is used for multicomponent signals in [22].

However, the framework considered in this research is different. Here, we are dealing

with undersampled signals and all the crucial QML and QML-RANSAC steps require

modification. The RANSAC algorithm is applied to IF estimates calculated from the TF

representations of undersampled signals. TF representations are evaluated within the

robust TF analysis framework [23]. The IF estimates are obtained maximizing the TF

representation [24]. Then, multiple trials with a random sampling of the IF are gener-

ated, and for each trial, a reconstructed signal (or IF) is obtained. For precise signal re-

construction, the O’Shea refinement strategy has been adopted [25]. Based on the

appropriate criterion (maximum likelihood - ML function), the best trial is selected as

the algorithm output. The number of trials in the RANSAC procedure can be substan-

tial. It means that if we have a parametric model of signal with a small number of pa-

rameters (for example quadratic phase signal or other signals with one or two

parameters), it can be more efficiently processed with matching pursuit or greedy algo-

rithm strategies. However, for signals with more parameters, for example, PPS of order

three or higher, it would be better to employ the RANSAC algorithm. As will be dem-

onstrated, an increase in the number of trials in the RANSAC algorithm is not as dras-

tic as in the case of matching pursuit and related strategies. In general, the RANSAC

algorithm complexity is not so dependent on the number of signal parameters and it

represents an excellent alternative to existing strategies in the field. The proposed strat-

egy advantage over matching pursuit techniques concerning the number of trials is ana-

lyzed and demonstrated for higher-order PPSs.

In Section 2, we have reviewed basic information about TF representation evaluation

for undersampled signals followed by an introduction of the RANSAC algorithm in

Section 3. The main design factor of the RANSAC-based technique is the required

number of trials. It is discussed in Section 4. The simulation study is presented in Sec-

tion 5. Extension for the multicomponent signal is done in Section 6 with concluding

remarks and directions for further research given in Section 7.

2 Signal model and TF representation
Assume that an FM signal x(n) is sampled according to the Nyquist criterion in equally

spaced instants with total N samples

Djurović EURASIP Journal on Advances in Signal Processing         (2021) 2021:19 Page 2 of 23



x nð Þ ¼ A exp jϕ nð Þð Þ; ð1Þ

where A is signal amplitude, ϕ(n) is signal phase while particularly important signal fea-

ture, and the instantaneous frequency (IF) is defined as the phase derivative:

ω nð Þ ¼ ϕ0 nð Þ:

In our research, the phase is modeled as a polynomial function (PPS—polynomial

phase signal):

ϕ nð Þ ¼ a0 þ
XM
m¼1

am
nm

m
;

where M is polynomial order. The IF of this signal is:

ω nð Þ ¼
XM
m¼1

amn
m−1: ð2Þ

The simplest TF representation is the short-time Fourier transform (STFT) [3] re-

emerging recently in parametric estimation mainly due to robustness to the noise influ-

ence that cannot be achieved with nonlinear TF representations [11, 26–28]. The STFT

can be written as

STFTh n;ωð Þ ¼ Tfx nþ kð Þwh kð Þ exp −jωkð Þ j k∈½−N=2;N=2Þg;

where T{} is an operator applied to modulated signal samples x(n+k)wh(k)exp(-jωn).

Window width is denoted as h, wh(k)≠0 for k∈[-h/2,h/2), and wh(k)=0 elsewhere. For

simplicity reasons and due to noise rejection capabilities, we use rectangular windows.

In the standard STFT, operator T{} is the sum or mean. However, in the case of signals

corrupted by an impulsive noise, the operator should alleviate the impulsive noise im-

pact [23]. An overview of possible operators could be found in [23, 29, 30]. The

marginal-median and L-filter forms are the most popular robust DFT/STFT variants

due to simplicity and good results achieved for various impulsive, heavy-tailed, mixed

Gaussian, and impulsive noise environments with operators defined respectively as:

Tfy kð Þ j k∈½−N=2;N=2Þg ¼ medianfreal y kð Þf g j k∈½−N=2;N=2Þg
þ jmedianfimag y kð Þf g j k∈½−N=2;N=2Þg

Tfy kð Þ j k∈½−N=2;N=2Þg ¼
XN−1

i¼0

αi ri þ jii½ �;

where ri, ii are sorted elements ri ≤ ri + 1, ii ≤ ii + 1 from sets:

ri∈freal y kð Þf g j k∈½−N=2;N=2Þg
ii∈fimag y kð Þf g j k∈½−N=2;N=2Þg:

Discussion about weights selection can be found in [23], but the α-trimmed mean

variant is the most common choice

αi ¼ 1=αN i∈ N 1−αð Þ=2;N 1þ αð Þ=2½ Þ
0 elsewhere;

�
where α is the trimming parameter. For α=1/N, it gives the marginal-median filter

STFT, while for α=1, it produces the standard STFT.
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The IF as a crucial feature of the FM signals can be estimated maximizing STFT:

ωh nð Þ ¼ arg max
ω

j STFTh n;ωð Þ j : ð3Þ

This IF estimator is biased with the bias increasing as window width does. However,

the estimator variance decreases with increasing of the window width, meaning there is

a trade-off in the window width selection. Determination of the optimal window width

is a difficult task since bias is signal-dependent. Strategies for achieving the trade-off

are reviewed in [24]. However, almost all of them are developed for favorable condi-

tions: signal recorded according to the sampling theorem and moderate amount of

noise. Parametric estimators face harsh conditions, i.e., signal-to-noise ratio (SNR) even

below 0dB and in the considered case dealing with undersampled signals.

The bias was the reason preventing usage of the STFT-based techniques in the para-

metric estimation for a long time. A recently proposed technique called the quasi max-

imum likelihood (QML) estimates parameters of the PPS by the polynomial regression

of the IF estimate [11, 26–28]. Residual errors caused by the bias and variance of the IF

estimator are reduced with the O’Shea refinement technique [25]. The final estimate is

selected by simple criterion function, i.e., matching correlator or ML penalty function,

giving robust technique to determine optimal window width in the STFT and final al-

gorithm output.

The main challenge in the considered research is that the Nyquist criterion is not satis-

fied for the considered undersampled signals. Samples are here randomly or non-

uniformly distributed or with a large percentage of missing recordings. In the robust spec-

tral and TF analysis framework, these missing samples can be treated as outliers with po-

sitions of outliers known in advance. However, an additional challenge of the CS

framework is the fact that the percentage of available to samples required by the Nyquist

criterion can be extremely low (even 5–10%) while the percentage of impulses considered

within robust spectral analysis rarely surpassed 50% and often it is below 25%.

Denote instants with available samples as ni, i=1,…, K where K≪N. For simplicity,

reasons assume ordered samples ni≤ni+1. Our goal is a precise estimation of phase pa-

rameters of signal {a0, a1, …, aM} and consequently signal reconstruction based on

available signal samples x(ni), i=1,…, K.

In the next section, we present the RANSAC-based procedure for the estimation of

the parameters of undersampled PPSs.

3 RANSAC for signal reconstruction
First of all, it is important to discuss how to evaluate the TF representation for under-

sampled signals. For considered instant n, we are looking for available samples from set

Q={ni,i=1,…, K} that are within the window:

ni j ni∈ n−h=2; nþ h=2½ Þ

Then, the STFT output can be calculated as:

STFTh n;ωð Þ ¼ Tfx nið Þ exp −jω ni−nð Þð Þ j ni∈½n−h=2; nþ h=2Þg h∈H:

Operator T{} is selected here to average available modulated samples within the con-

sidered window. It can be treated as the L-filter STFT version. The STFTs are evalu-

ated for various window lengths due to the different behavior of the corresponding IF
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estimators related to bias and variance for the applied window width. We intend to

have a set of STFTs with diverse elements (wide windows - robust to the noise influ-

ence but can experience emphatic bias, narrow windows - small bias, and emphatic

noise influence and all cases between) to be able to achieve reachable performance

under various circumstances.

The IF estimation is performed by maximizing STFT (3). For a small ratio available

to samples required by Nyquist criterion (K/N) and narrow windows, there can be no

available samples in the neighborhood ni ∈ [n − h/2, n + h/2). It is adopted that the IF

estimate is zero in this region but in practice, it could be applied an interpolation using

available IF estimates to further improve results. Several IF samples are selected in each

trial of the RANSAC. The IF (or signal) is reconstructed using these samples. However,

due to several reasons (missing samples, outliers in the IF estimate, etc.), the recon-

structed IF (or signal) can be inaccurate. Therefore, the random samples selection

should be repeated multiple times, and the most accurate among reconstructed signals/

IF estimates is selected based on an appropriate criterion. A window width from set H

and IF estimate samples ω̂hðnÞ are randomly selected in each trial of the proposed

RANSAC procedure. Polynomial parameters of the signal phase are obtained using

polynomial regression/interpolation. The STFT-based IF estimation of higher-order

PPSs exhibits bias even for signals sampled according to the Nyquist criterion [26].

Then, the O’Shea refinement is applied to improve the accuracy of the PPS coefficients

estimation toward the Cramer-Rao lower bound. In the case of undersampled signals,

refinement is even more important since it can improve relatively inaccurate estimates

without outliers what cannot be done for IF estimate samples with outliers.

Now, we can summarize the proposed RANSAC algorithm in the subsequent subsec-

tions. Firstly, a pseudo-code of the proposed technique is given followed by a detailed

explanation of the crucial algorithm steps.

3.1 Pseudocode

3.1.1 RANSAC algorithm with the O’Shea refinement for parameter estimation of

undersampled signals

Input: PPS signal x(ni) i=1,…, K of order M where samples are given in increasing

order ni≤ni+1.

Step I Evaluation of the STFTs with various window widths and obtaining correspond-

ing IF estimates.

For h∈H

STFTh n;ωð Þ ¼ Tfx nið Þ exp −jω ni−nð Þð Þ j ni∈½n−h=2; nþ h=2Þg h∈H

ω̂h nð Þ ¼ arg max
ω

j STFTh n;ωð Þ j :

EndFor

Step II Initialization of criterion functions:

Jmax ¼ 0 J
0
max ¼ 0:

Step III Trials with random window length and random IF samples (Λ trials in total).

For λ=1:Λ

Step III.A Random selection
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Randomly select hη∈H and IF samples ω̂ηðnjÞ η∈H nj∈Q ; nj < njþ1; j∈½1;M�.
Step III.B Rough parameter estimation

Perform polynomial regression/interpolation of the IF estimation samples:

âλ1;…; âλM
� � ¼ ΓTΓ

� �−1
ΓT ω̂η n1

� �
ω̂η n2
� �

⋯ω̂η nM
� �� �T ð4Þ

where Γ is M×M matrix with elements γi,j=j(n
i)j-1 and i,j∈[1,M]. This is a rough esti-

mate in the QML-algorithm terminology.

Step III.C O'Shea refinement

Dechirping with parameters available from the rough stage:

x
0
nið Þ ¼ x nið Þ exp − j

XM
m¼1

âλm nið Þm
m

 !
:

Phase unwrapping:

ϕ̂ nið Þ ¼ unwrap phase x
0
nið Þ

n on o
: ð5Þ

Polynomial regression of the signal phase:

δâλ0; δâ
λ
1;…; δâλM

� � ¼ ΞTΞ
� �−1

Ξ ϕ̂ n1ð Þ ϕ̂ n2ð Þ ⋯ϕ̂ nKð Þ� �T
; ð6Þ

where matrix Ξ has (M+1)×K elements given as ξ i; j ¼ nj
i ; i∈½1;K �; j∈½0;M�:

Step III.D Fine estimate is obtained as:

â
0λ
m ¼ âλm þ δâλm m ¼ 1; 2;…;M

â
0λ
0 ¼ δâλ0:

Step III.E Evaluation of criterion function (for estimates with and without refinement)

[31, 32]:

J λð Þ ¼
XNc

i¼1

x nið Þ exp − j
XM
m¼1

âλm nið Þm
m

 !					
					

J
0
λð Þ ¼

XNc

i¼1

x nið Þ exp − j
XM
m¼1

â
0λ
m nið Þm
m

 !					
					:

If J(λ)>J, set J=J(λ), and update estimates as fâ1;…; âMg ¼ fâλ1;…; âλMg. EndIf
If J'(λ)>J'set J'=J'(λ) and update fâ0

0; â
0
1;…; â

0
Mg ¼ fâ0λ

0; â
0λ
1;…; â

0λ
Mg. EndIf.

EndFor

Output: The estimated set of phase coefficients fâ0
0; â

0
1;…; â

0
Mg or fâ1;…; âMg can

be used to reconstruct signal xðnÞ ¼ Â expð− j PM
m¼1

âmnm

m Þ where the amplitude is esti-

mated as

Â ¼ mean x nið Þ exp − j
XM
m¼1

âm nið Þm
m

 !					
					

( )
:
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3.2 Comments on the algorithm

Due to the large percentage of missing samples in recordings, it can be expected a sig-

nificant percentage of outliers in the IF estimate. Therefore, the RANSAC procedure is

employed to select, among numerous wrong estimates, accurate IF estimate samples.

Parameters of the signal phase are estimated allowing accurate signal reconstruction

[26, 27]. The STFT is used in the QML-RANSAC algorithm for the IF estimation in

the rough algorithm stage. Here, due to missing samples evaluation is performed with

the modified (robust) STFT form in Step I.

Two criterion functions are initialized in Step II. The first is evaluated without the

O’Shea refinement and used only for reference to demonstrate the refinement stage im-

pact on the algorithm accuracy. Both criterion functions evaluated in Step III.E corres-

pond to the ML optimization. Polynomial regression is applied in rough (4) and fine (6)

estimation stages. However, it should be noted that in the rough stage it is performed

only on M randomly selected samples of the IF estimate, while in the fine stage it is

performed on all available K signal phase samples. Weight coefficients in matrices Γ

and Ξ are different since evaluations in (4) and (6) are performed for different functions

(IF and phase).

There are also some issues in the O’Shea refinement algorithm worth to be discussed.

They are related to two important steps in the refinement procedure: filtering and

phase unwrapping. The signal filtering is commonly performed in the refinement stage

of the algorithm in both the QML and QML-RANSAC to reduce noise-like effects from

the estimate and from this point of view it could be useful:

bx0 nið Þ ¼ 1
2l þ 1

Xl
k¼−l

x
0
niþkð Þ: ð7Þ

However, it can introduce additional errors distorting dechirped signal x′(ni) used in

the further procedure. These errors can be emphatic when neighbor signals are far

from each other. In our experiments, filtering is not applied (set l=0 in (7)) but it re-

mains for further research on how it can be utilized especially for signals corrupted by

a significant amount of additive noise. A similar problem holds with the phase unwrap-

ping since it can be inaccurate for a low number of available samples (low K/N ratio).

However, the phase unwrapping is applied in our experiments as in [26, 28] with good

results but some enhancement of this procedure is probably possible remaining for fur-

ther research.

4 Number of trials in the RANSAC algorithm
There are two design parameters in the algorithm: the set of window lengths H and the

required number of trials Λ. Recommendation from [31] is adopted for window lengths

set H: up to 10 windows with widths growing according to the geometrical progression

from narrow (8 samples) toward the wide window (256 samples). Therefore, the issue

of selecting the number of trials Λ is discussed in this section. This is a crucial setup

parameter of the RANSAC algorithms, and it will be demonstrated that it is signifi-

cantly smaller than a search space in matching pursuit techniques for cubic-phase and

PPSs of a higher order. The required number of trials for the RANSAC algorithm exe-

cuted in time, spatial, or feature domains is a well-researched topic [33]. However, it is
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still of interest for the indirect estimation of parameters from phase or a signal IF. Note

that issue of how outliers (or missing samples) influence IF estimates is not well studied

in the robust TF framework even for signals sampled according to the Nyquist criter-

ion. There are some derivations but they are almost always related to asymptotic condi-

tions or specific noise environments with the notable exception [17]. A simple

experiment is employed here to study how missing samples influence the appearance of

outliers in the IF estimates.

Experiment: For simplicity a linear FM signal:

x(n) = exp(jπn2/211) withn ∈ [−29, 29] is considered with the IF

ω nð Þ ¼ πn=210n∈ −29; 29
� �

:

The STFT is evaluated with various window widths h and number of available sam-

ples K (or ratio K/N) in the considered domain of [-29,29] (in each trial K samples are

randomly selected from N=210+1=1025 samples). Our goal is to measure the number

of IF estimation outliers in the spectral domain for different K/N and h. The IF esti-

mates far from the true values:

j ωh nð Þ−ω nð Þ j> Δω ð8Þ

are classified as outliers. The threshold is set to Δω=0.08π. Results (percentage of cor-

rect IF estimated within Δω for various h and K/N) obtained with 100 trials are

depicted in Fig. 1. The main finding from the experiment is that the percentage of out-

liers in IF estimates is smaller than in the time domain, i.e., the percentage of correctly

estimated IF samples is larger than K/N ratio in almost all cases of interest. The pro-

cedure to calculate the STFT does not increase the percentage of outliers in the IF esti-

mate comparing to the percentage of missing samples. Then, the RANSAC algorithm

can be applied to this feature with at least the same performance as in the case of direct

application of the RANSAC algorithm to polynomial lines. Some loss of performance is

Fig. 1 Colormap depicting the percentage of non-outliers in the IF estimate as a function of ratio K/N and
window width h. Comparison of the percentage of non-outliers in the IF estimate with ratio K/N for three
window lengths is given in the remaining subplots
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expected in the case of the PPS of higher-order due to bias in the STFT-based IF esti-

mates but again, as it will be demonstrated within numerical examples, the developed

RANSAC-based procedure achieves satisfactory accuracy.

Figure 1, northwest, depicts the percentage of correct IF estimates vs. the ratio of

available and samples required by the Nyquist criterion K/N (y-axis) and window width

h in the STFT (x-axis). The corresponding colorbar is also given on the right-hand side

showing clearly that only for extremely narrow windows (with less than 20 samples),

the number of non-outliers cannot be above 50%. The hot (red, orange, and yellow)

area in this subplot depicts that it is possible to achieve less than 30% of outliers in the

IF estimate with window widths between h=20 and h=120 samples even for K/N=10–

15%. It is presented more clearly in the remaining subplots of Fig. 1 with this statistic

given for three typical window lengths (h=8 (very narrow window), h=16, and h=48

samples). The thin line represents ratio K/N (the same as the x-axis) while the thick

line is the percentage of correct IF estimate within limits (8) around exact IF. It can be

seen that only for extremely narrow window h=8 and/or for small ratio K/N bellow K/

N=10%, percentage of outliers in the IF estimate is larger than the number of missing

samples in the original signal. This simple experiment shows that it is safe to use IF es-

timate for the RANSAC algorithm application with at least the same performance as in

the case of polynomial functions fitting in the feature space. Note that the IF is a de-

rivative of the signal phase with a decremented number of parameters concerning

phase and the RANSAC application is further simplified in this domain requiring a

smaller number of trials. Constant phase parameter a0 and amplitude A can be esti-

mated by the trivial procedure when other phase parameters are known.

For further results clarification and showing something that is hidden behind given

statistics, we have shown STFTs for a single trial for K/N=7.8% (upper row) and K/N=

18.7% (bottom row) in Fig. 2. Columns represent various window widths: h=16, h=48,

Fig. 2 STFTs with various numbers of available samples (K/N=7.8%—upper row and K/N=18.7%—lower row)
and for three different window widths (left column h=16, middle column h=48, and right column h=128).
Middle line corresponds to the exact IF, two parallel lines are separated Δω from the exact IF (zone of correct
estimates (8)) and circles are the IF estimates. The white area on graphs corresponds to missing values of the
STFTs due to narrow windows and a small number of available samples.
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and h=128 samples, respectively. Straight-line in subplots is true IF with two parallel

lines representing a range of Δω around exact IF. The IF estimates are depicted with

circles. Large white space in STFTs in the first subplot corresponds to a zone without a

single available sample (narrow window and a small number of available samples). Per-

centages of IF estimates that are not outliers, i.e., within range Δω, as a function of ratio

K/N and window width for considered trials are:

P(N/K = 7.8%, h = 16) = 20.5% P(N/K = 7.8%, h = 48) = 57.1% P(N/K = 7.8%, h = 128) = 24.5%

P(N/K = 18.7%, h = 16) = 64.6% P(N/K = 18.7%, h = 48) = 96.5% P(N/K = 7.8%, h = 128) = 42.2 % .

A drop of performance for a wide window of h=128 is evident which is also clearly

observed from Fig. 1 (large blue array of a low percentage of correct IF estimates).

However, it is partially caused by adopted statistics and range of correct IF estimates

ω(n) ±Δω what is visible from Fig. 2, southwest. Therefore, it is probably not correct to

tell that there is a large number of outliers in the IF estimate for wide windows since

the significant percent of estimates is close to the non-outliers range. Such behavior is

known in the case of wide rectangular windows in the FT and STFT (Gibbs

phenomenon and related effects). Note that smooth windows are not used in the STFT

since they tend to increase the number of outliers so the rectangular window in the

STFT is adopted even with the described phenomena.

The RANSAC algorithms are usually designed in such a manner to produce correct

estimation with a probability that is above a selected threshold [32]. Commonly, this

probability is set above p>0.99. Assume that percentage of outliers in the IF estimate is

e. For polynomial interpolation, we need that all M randomly selected IF samples

correspond to the signal IF. Then, the number of trials Λ in the RANSAC procedure

should satisfy [32]:

1− 1−eð ÞM

 �Λ

¼ 1−p:

After simple derivations it follows:

Λ ¼ log 1−pð Þ= logð 1− 1−eð ÞM

 �

:: ð9Þ

For example, for p=0.99, e=0.5, and M=5, it is required Λ=146 trials in the RANSAC

to achieve the desired accuracy. However, more interesting cases are with a higher

percentage e of outliers in the IF estimation. The number of outliers can be increased

due to a smaller number of available samples or for higher-order PPSs due to the signal

spreading in the TF domain. For e=0.8, required number of trials increases to Λ=14390

while for e=0.9, it is going up Λ=46000. Table 1 summarizes results related to the

Table 1 Required number of trials Λ to achieve a probability of success in the RANSAC procedure
of p=0.99 as a function of the percentage of outliers e in the IF and order of polynomial M

Λ e=0.3 e=0.5 e=0.8 e=0.9

M=3 7 35 574 4603

M=5 12 146 14389 460515

M=6 20 588 359777 46051700

M=10 41 4714 44972363 46051698048
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number of trials in the case of various orders of polynomial M and the percentage of

outliers e in the IF estimate. Now, it is possible to assess the benefits of the application

of the RANSAC procedure to direct search techniques employed in the matching pur-

suit and greedy strategies.

Assume that for the direct search techniques the smallest number of parameters

required for search along a single dimension is of order NS=100. Then, the required

search space for estimation of parameters of a signal of order M is:

100M−1 ¼ 102M−2

Note that in the matching pursuit strategies, it is required to search over (M-1)-

dimensional parametric space since a1 parameter can be estimated using (robust) FT

forms after estimating higher-order parameters.

From Table 1, it follows that for M=3, it is better to employ the RANSAC for e≤0.9

since direct search requires at least 104=10000 trials. For e=0.9227, the required

number of trials in the RANSAC procedure is equal to a search space of 100×100

different parameters a2 and a3 (this is not enough in numerous applications and often

additional iterative procedures are applied for results refinement). In the case of M=5,

it is required 1004=108 search space in the matching pursuit techniques what is almost

three orders of magnitude more than required by the RANSAC for e=0.9 and the

RANSAC becomes less efficient only for e>0.9659 (extremely high percentage of

outliers). Therefore, it can be concluded that the RANSAC is a useful tool to reduce

the calculation complexity of the direct search in the considered case. Also, for a

known percentage of IF estimate outliers (as demonstrated previously it can be

approximated or at least overestimated with the number of missing samples), Λ can be

significantly reduced, i.e., the number of trials can be selected in dependence on the

percentage of IF estimate outliers (or percentage of missing samples) while in the

matching pursuit techniques it is constant. The RANSAC algorithm accuracy is

considered in the next section with numerical examples.

5 Results and discussion
Now, we can proceed with numerical analysis of the proposed technique on several

case studies.

Example 1.

Consider a cubic phase signal:

x nð Þ ¼ exp j4π −n3=2048þ 128n
� �

=2048
� �

n∈ −512; 512½ �

with the IF:

ω nð Þ ¼ 4π −3n2=2048þ 128
� �

=2048:

Figure 3 presents IF estimation for 100 independent realizations of the RANSAC

algorithm for four K/N values from 7.8% (K=80 samples) to 15.6% (K=160 samples).

The right column shows results achieved without refinement while the left column

gives results for the proposed approach with the O’Shea refinement. The RANSAC is

applied with 104 trials. It can be seen a relatively large number of outliers for K/N=

7.8% without refinement while in the case of the O’Shea refinement percentage of

outliers is moderate (quantified below). However, for K/N=9.4% there are no outliers in
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the case of the O’Shea refinement while there are still some in the case when the

O’Shea refinement is not applied. For K/N=12.5% (third row), there are no outliers in

both procedures.

Besides, two measures are adopted for statistical study:

Mean absolute error – MAE

10 log10
1
NT

XNt

i¼1

1
N

XN
n¼1

jω̂ nð Þ−ω nð Þj
( )

dB½ �

Mean maximal error – MME

10 log10
1
NT

maxfjω̂ nð Þ−ω nð Þj; n∈½1;N �g
� �

dB½ �;

where NT is the number of independent signal realization (selection of K random

samples among N available). IF estimate is calculated for signal phase coefficients

obtained in the proposed procedure and denoted as ω̂ðnÞ: Both of these measures are

calculated and depicted in Fig. 4 as a function of K/N. The significant improvement

achieved with the O’Shea refinement application is obvious.

At about K/N=7%, both procedures achieve significant improvement while the

refinement gives a huge enhancement in the logarithmic scale. It should be noted that for

example for K/N≥8%, the MME for the proposed technique with the O’Shea refinement is

almost perfect MME=5.4×10-16, i.e., on the level close to the machine precision.

Fig. 3 Cubic phase signal—100 trials of the RANSAC procedure without (left column) and with refinement
(right column) for cubic various K/N: first row—7.8%; second row—9.4%; third row—12.5%; fourth row—15.6%.
Blue line exact IF value; black lines—estimates
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Also, the proposed technique is tested and compared with the case when the

refinement is not applied by the percentage of IF estimation outliers. We adopted that

an IF estimation outlier has the MAE above Δω=0.08π. Figure 5 depicts the percentage

of outliers. It can be noted that there are no outliers in both procedures for K/N≥13%

when performance can be evaluated using measures like in Fig. 4. However, for K/N<

13%, the refinement brings significant improvement. For example, for K/N=8%, there

are no outliers in the IF estimation in the case of application of the refinement but

there is 7% of outliers when the refinement is not applied. For K/N=6.6%, the

percentage of outliers in the case of application of the refinement is only 4% while in

the case without refinement it is 21%, for K/N=5.3% the proposed technique with

refinement has only 11% outliers while without refinement it has almost 4 times more,

i.e., 43%. It demonstrates the usefulness of the refinement procedure even in this

unfavorable scenario with missing samples.

Example 2.

Example 1 considers the cubic phase (third-order PPS) signal. The QML is proposed

for higher-order PPSs since it can avoid multidimensional search over parameter space.

In the case of signals with missing samples, the importance of avoidance of the multidi-

mensional search is even more important to control the complexity of the search pro-

cedure as demonstrated in the previous section. The effectiveness of the proposed

technique is tested on a fifth-order PPS (M=5) with the IF:

Fig. 4 Statistics (MAE—dashed lines, MME—solid lines; thin lines—without refinement; thick—with refinement) for
the RANSAC application to the cubic phase signal
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ω nð Þ ¼ 2π 9:7 n=Nð Þ4−2:25 n=Nð Þ2−1=8� �
n∈ −512; 512½ �:

For the PPS with M=5, it is required to have more trials in both matching pursuit and

the RANSAC procedures. For matching pursuit, it is conservative to tell that it is needed

NS
M-1=1004=108 search space, where is NS is the size of search space for each phase

parameter here with a relatively small value of NS=100. For the RANSAC procedure, we

can estimate the required number of trials (9) where p is the percentage of correct

estimates, and e is the percentage of outliers in the IF estimate. In the RANSAC

procedure, it is common to take p=0.99 and we are willing that our procedure works for

example in the case of e=0.9 IF estimate outliers. Then, the required number of trials is

about Λ=4.6×105. This is several orders of magnitude less than in the case of matching

pursuit. However, we limited Λ to 105 in this case. It should be recalled two effects that

additionally influence the RANSAC accuracy: the first effect is positive, as already

discussed within the previous section, the percentage of outliers in the STFT-based IF es-

timate is smaller than in the input signal; the second is negative, with an increase of the

polynomial order in the signal phase the bias in the IF estimate is increased and the STFT

is blurred what can introduce additional outliers in the estimate. Limiting the number of

trials below the calculated value of Λ=4.6×105 demonstrates that positive effects prevail.

However, as it can be seen from Fig. 6 where 100 realizations of the RANSAC

procedure are shown, without (left) and with refinement (right column) obtained

accuracy is good. It can be seen that for K/N=12.5%, the proposed RANSAC procedure

with implemented refinement achieves almost perfect results with minor errors at

interval borders. Without refinement, it is not possible to achieve estimation without

Fig. 5 Percentage of outliers in the IF estimation for the cubic phase signal: dashed line—without refinement;
dotted line—with refinement
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outliers for K/N<16%, and also, it can be seen emphatic border effects caused by errors

in polynomial regression (interpolation). As can be seen, this inaccuracy is almost

completely removed by the refinement procedure.

The MAE and MME are given for the fifth-order PPS in Fig. 7. It can be seen similar

behavior as in the case of the third-order PPS but with more samples required to

achieve “perfect” accuracy than for the third-order signal what can be expected.

The percentage of outliers for K/N=8% is 8% while for K/N≥11%, there are no

outliers in the IF estimation (Fig. 8). However, for an algorithm without refinement,

there are always some outliers due to errors in the IF estimation obtained by

polynomial regression on borders of the considered interval.

We have compared obtained results with those that can be achieved by maximizing

response over a dictionary of following elements a2∈[−π/1024,π/1024], a3∈[−0.01π/

1024,0.01π/1024], a4∈[−10
-5π/1024, 10-5π/1024], and a5∈[−10

-8π/1024,10-8π/1024].

Estimation of a1 is performed in the FT domain after dechirping signal x(n) with expð

− j
PM
m¼2

âmnm=mÞ. In the first experiment, there are NS=21 elements in each of four sets

meaning that search is performed over 214≈1.95×105 elements what is almost twice the

number of trials for the RANSAC algorithm. In the second experiment, we have

Fig. 6 Fifth-order PPS—100 trials of the RANSAC procedure without (left) and with refinement (right column)
for various K/N: first row—7.8%; second row—9.4%; third row—12.5%; fourth row—15.6%. Blue line—exact IF
values; black lines—estimates
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Fig. 7 Statistics (MAE—dashed lines, MME—solid lines) for the RANSAC application to the fifth-order phase
PPS: thin lines—without refinement; thick lines—with refinement)

Fig. 8 Percentage of outliers in the IF estimation for the fifth-order PPS: dashed line—without refinement;
dashed line—with refinement
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increased all sets to NS=41 elements, i.e., search space to 414≈2.83×106 elements. It is

almost 30 times the number of trials in the RANSAC. The obtained results are

summarized in Table 2 with a comparison in terms of the MAE and MME. It can be

seen that the direct search strategy with an increase of the search space improves

results, but they are not even close enough that the O’Shea refinement can improve

accuracy. As we already explained it is required search space of at least NS=100

elements for each parameter (three orders of magnitude of the RANSAC number of

trials) that the ML, matching pursuit, and other similar strategies produce acceptable

results in a majority of problems.

Example 3:

This study is related to a noisy environment. It is a rare case that signals are not

subject to some amount of noise, so we have tested the proposed technique for the

cubic-phase signal for various amounts of the Gaussian noise. We have performed 100

trials with K/N=12% for different variances of the Gaussian noise, Fig. 9. It can be seen

that for high noise with SNR=-2dB (Fig. 9, top row) both techniques with and without

refinement achieve a significant number of outliers. For SNR=2dB, the number of out-

liers in the case of the application of the refinement is small, while for SNR=6dB and

SNR=10dB, there are no outliers in the case of the refinement procedure application.

Statistical study for 1000 trials is given in Fig. 10. It can be seen that for SNR≈1dB,

there is a significant drop in the percentage of outliers in the case of the proposed tech-

nique with refinement with excellent results in the IF estimation proving that the pro-

posed technique keeps accuracy even in the case of the additive Gaussian noise

environment. The obtained results could be further improved by filtering in the O’Shea

refinement.

6 Multicomponent signals
The proposed technique can be generalized for multicomponent signals with a known

parametric components model. The simplest technique is to estimate parameters

component-by-component. The strongest component can be estimated firstly and

peeled-off from the mixture followed by estimation of subsequent components’ param-

eters. Consider a multicomponent signal with Q FM components:

x nð Þ ¼
XQ
q¼1

xq nð Þ ¼
XQ
q¼1

Aq exp j aq;0 þ
XM
m¼1

aq;m
nm

m

 !" #
:

The goal is to estimate signal parameters of all components for an undersampled

signal. The procedure is relatively simple: we are estimating the strongest component

firstly by the previously described procedure and after estimation of its parameters the

Table 2 MAE and MME for the RANSAC without and with refinement, direct search technique
over spaces of 214 and 414 elements

MAE MME MAE[dB] MME[dB]

RANSAC 0.185 1.254 −7.22 0.99

RANSAC+refinement 1.64×10-16 1.29-15 −157.85 −148.89

Direct search NS=21 1.831 12.739 2.63 11.05

Direct search NS=41 1.157 1.550 0.63 1.90
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component is removed from the mixture and estimation is performed for weaker

components.

Initialization: y(n) = x(n).

For q=1:Q

âq;1; âq;2;…; âq;M
� � ¼ QML‐RANSAC y nð Þð Þ;

where QML-RANSAC is the procedure previously described in Section III.1.

The qth component is peeled-off from the mixture, firstly by dechirping:

Y ωð Þ ¼ FT y nð Þ exp − j
XM
m¼1

âq;m
nm

m

" #( )
:

followed by setting Y(0)=0 (in our experiments, the sample in the origin is removed but

a narrow region around can also be neglected) and calculating signal for the next

iteration:

y nð Þ ¼ IFT Y ωð Þf g exp j
XM
m¼1

âq;m
nm

m

" #

where IFT is the inverse FT operator.

EndFor

Fig. 9 Cubic phase signal with K/N=12%—100 trials of the RANSAC procedure without (left) and with
refinement (right column) for various SNRs: first row—−2dB; second row—2dB; third row—6dB; fourth
row—10dB. Blue line—exact IF value; black lines—estimates
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The technique proposed in [34] can be utilized for improving accuracy in the

multicomponent signal parameters’ estimation. It is not used in our experiments.

Before presenting some of the simulation results, we have to discuss the possibility to

conduct this procedure accurately. As we have already claimed, it can work for signals

of different amplitudes where the STFT maximization can be used to estimate

parameters of the strongest component. The proposed technique can be also applied

for the estimation of separable components in the TF plane. It is possible to estimate

intersecting components in the TF plane with the same amplitude but with more trials

in the RANSAC procedure than in the case of monocomponent signals. Assume that

the percentage of outliers in the IF estimation is e. In the worst-case scenario, the

remaining 1-e percentage of correct estimates is uniformly distributed on Q signal com-

ponents (1-e)/Q. The RANSAC requires that all M samples belong to the same compo-

nent number. The required number of trials should satisfy:

Q 1− 1−eð Þ=Qð ÞM

 �Λ

¼ 1−p

Λ ¼ log 1−pð Þ=Qð Þ= logð 1− 1−eð Þ=Qð ÞM

 �

::

For example, for p=0.99, e=0.5, and Q=2, it is required Λ=5423 trials (only 146 for

Q=1) and more than 44000 for Q=3. Conditions significantly vary with changes in M,

Q, p, and e.

Fig. 10 Statistics (MAE—dashed lines, MME—solid lines; thin lines—without refinement; thick line—with
refinement) for the RANSAC application to the noisy cubic phase signal with K/N=12% in the Gaussian
noise environment vs. the SNR.
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Example 4.

We are considering four various mixtures for Q=2-component cubic phase signals

(M=3): components separated in TF plane with different amplitudes A1=1, A2=0.5;

intersecting components and different amplitudes; components of the same amplitudes

A1=A2=1 but well separated in the TF plane; components with the same amplitude

intersecting in the TF plane. Figure 11 demonstrates the STFTs with a window length

of 160 samples and IF estimates obtained in the proposed algorithm for K/N=25% of

available samples for previously described cases. For components of different

magnitudes (Fig. 11a–d), firstly the strongest component is estimated and peeled-off

following the same procedure on the weaker one. For separable components of the

same magnitude (Fig. 11e, f), the first component is estimated by maximizing STFT for

ω>0. In the final case of intersecting components of the same magnitude, we have per-

formed IF estimation looking for the STFT maxima position and estimating parameters

of the first component. In this case, we do not know which component will be selected

in the first QML-RANSAC run but as it can be seen the IF estimation is accurate (Fig.

11g, h). In all four cases, it is impossible to visually distinguish between estimates and

true IF values. The same holds for K/N=12% of available samples with results given in

Fig. 12. It can be observed significant deterioration in the STFT representations, but

anyway, the IF estimation results are excellent. Finally, for K/N=6% of available sam-

ples, outliers in the IF estimation can be observed (Fig. 13).

7 Conclusion
The QML-RANSAC technique is applied to the parameter estimation of undersampled

FM signals. The proposed technique overcomes the main problem in the matching pur-

suit and greedy strategies generalization to signals with more parameters by employing

the RANSAC algorithm. The RANSAC has the advantage of significantly reduced

search space comparing direct search techniques. It is shown that without employing

Fig. 11 Two-component cubic phase signal, STFTs (window with 160 samples) and IF estimates (thick
line—estimates, dashed lines—true IFs) for K/N=25% of available samples: a, b Components with different
amplitudes and separable in the TF plane; c, d Components with different amplitudes with IFs intersecting
in the TF plane; e, f Components with same amplitudes and separable in the TF plane; g, h Components
with same amplitudes with IFs intersecting in the TF plane
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refinement of the phase coefficients mediocre results are obtained while with the

O’Shea refinement results are significantly improved reducing the number of outliers in

the final estimation for several orders of magnitude. There are potential directions for

further development of this technique. Firstly, the O’Shea refinement procedure is de-

veloped for signals sampled according to the Nyquist criterion, but here, it is demon-

strated that it behaves satisfactorily even for signals with missing samples. It can be

expected that the phase estimates interpolation can improve the phase unwrapping

procedure. Also, there is room for the employment of downsampled data filtering in

Fig. 12 Two-component cubic phase signal, STFTs (window with 160 samples), and IF estimates (thick line—estimates,
dashed lines—true IFs) for K/N=12% of available samples: a, b Components with different amplitudes and separable in
the TF plane; c, d Components with different amplitudes with IFs intersecting in the TF plane; e, f Components with
same amplitudes and separable in the TF plane; g, h Components with same amplitudes with IFs intersecting in the
TF plane

Fig. 13 Two-component cubic phase signal, STFTs (window with 160 samples), and IF estimates (thick
line—estimates, dashed lines—true IFs) for K/N=6% of available samples: a, b Components with different
amplitudes and separable in the TF plane; c, d Components with different amplitudes with IFs intersecting
in the TF plane; e, f Components with same amplitudes and separable in the TF plane; g, h Components
with same amplitudes with IFs intersecting in the TF plane
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the refinement procedure that is avoided in the present algorithm. Probably, some sort

of weighted filtering with weights determined based on the distance to available sam-

ples can be helpful. Both the QML and RANSAC are generalized to work for multi-

component signals. Improvement in the multicomponent undersampled signals

estimation and reconstruction will be also considered in our future research.

Abbreviations
FM: Frequency modulation; CS: Compressive sensing; RANSAC: Random samples consensus; IF: Instantaneous
frequency; TF: Time-frequency; PPS: Polynomial phase signal; QML: Quasi maximum likelihood; ML: Maximum
likelihood; STFT: Short-time Fourier transform; SNR: Signal-to-noise ratio; IFT: Inverse Fourier transform; MAE: Mean
absolute error; MME: Mean maximal absolute error

Acknowledgements
Not applicable

Author’s contributions
The author read and approved the final manuscript.

Funding
There is no research funding supporting this research.

Availability of data and materials
All experiments are described in detail within a reproducible signal processing framework. Programs are available on
request.

Declarations

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 30 October 2019 Accepted: 6 April 2021

References
1. R.G. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)
2. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
3. E. Sejdić, I. Djurović, J. Jiang, Time-frequency feature representation using energy concentration: An overview of recent

advances. Dig. Sign. Proc. 19(1), 153–183 (2009)
4. P. Flandrin, P. Borgnat, Time-frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6),

2974–2982 (2010)
5. E. Sjedić, I. Orović, S. Stanković, Compressive sensing meets time–frequency: An overview of recent advances in time–

frequency processing of sparse signals. Dig. Sign. Proc. 77, 22–35 (2018) https://www.sciencedirect.com/science/article/
pii/S1051200417301665

6. B. Jokanović, M. Amin, Reduced interference sparse time-frequency distributions for compressed observations. IEEE
Trans. Signal Process. 63(24), 6698–6709 (2015)

7. B. Boashash, G. Azemi, J.M. O’Toole, Time-frequency processing of nonstationary signals: Advanced TFD design to aid
diagnosis with highlights from medical applications. IEEE Signal Process. Mag. 30(6), 108–119 (2013)

8. M.G. Amin, B. Jokanović, Y.D. Zhang, F. Ahmad, A sparsity-perspective to quadratic time-frequency distributions. Dig.
Sign. Proc. 46, 175–190 (2015)

9. Y. Wang, J. Xiang, Q. Mo, S. He, Compressed sparse time-frequency feature representation via compressive sensing and
its applications in fault diagnosis. Measurement 68, 70–81 (2015)

10. S. Stanković, I. Orović, L.J. Stanković, Polynomial Fourier domain as a domain of signal sparsity. Signal Process. 130, 243–
253 (2017)

11. I. Djurović, M. Simeunović, Review of the quasi maximum likelihood estimator for polynomial phase signals. Dig. Sign.
Proc. 72, 59–74 (2018)

12. S. Stanković, I. Orović, M. Amin, L-statistics based modification of reconstruction algorithms for compressive sensing in
the presence of impulse noise. Signal Process. 93(11), 2927–2931 (2013)

13. I. Orović, S. Stanković, T. Thayaparan, Time-frequency based instantaneous frequency estimation of sparse signals from
an incomplete set of samples. IET Sign. Proc. 8(3), 239–245 (2014)

14. E. Sejdić, L.F. Chaparro, in Proc. of NEBEC. Recovering heart sounds from sparse samples (2012), pp. 107–108
15. J. Oh, S. Senay, L.F. Chaparro, Signal reconstruction from nonuniformly spaced samples using evolutionary Slepian

transform-based POCS. EURASIP J. Adv. Sign. Proc. 2010, 367317 (2010)
16. S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)
17. L. Stanković, S. Stanković, M. Amin, Missing samples analysis in signals for applications to l-estimation and compressive

sensing. Signal Process. 94, 401–408 (2014)

Djurović EURASIP Journal on Advances in Signal Processing         (2021) 2021:19 Page 22 of 23

https://www.sciencedirect.com/science/article/pii/S1051200417301665
https://www.sciencedirect.com/science/article/pii/S1051200417301665


18. S. Senay, L.F. Chaparro, L. Durak, Reconstruction of nonuniformly sampled time-limited signals using prolate spheroidal
wave functions. Signal Process. 89(12), 2585–2595 (2009)

19. D. Angelosante, G.B. Giannakis, N.D. Sidiropoulos, Sparse parametric models for robust nonstationary signal analysis:
Leveraging the power of sparse regression. IEEE Signal Process. Mag. 30(6), 64–73 (2013)

20. I. Djurović, A WD-RANSAC instantaneous frequency estimator. IEEE Sign. Proc. Lett. 23(5), 757–761 (2016)
21. I. Djurović, QML-RANSAC: PPS and FM signals estimation in heavy noise environments. Sign. Proc. 130, 142–151 (2017)
22. I. Djurović, QML-RANSAC IF estimator for overlapping multicomponent signals in the TF plane. IEEE Sign. Proc. Lett.

25(3), 447–451 (2018)
23. I. Djurović, L.J. Stanković, J.F. Böhme, Robust L-estimation based forms of signal transforms and time-frequency

representations. IEEE Trans. Sign. Proc. 51(7), 1753–1761 (2003)
24. L.J. Stanković, I. Djurović, S. Stanković, M. Simeunović, M. Daković, Instantaneous frequency in time-frequency analysis:

Enhanced concepts and performance of estimation algorithms. Dig. Sign. Proc. 35, 1–13 (2014)
25. P. O’Shea, On refining polynomial phase signal parameter estimates. IEEE Trans. Aerosp. Electron. Syst. 46(3), 978–987 (2010)
26. I. Djurović, L.J. Stanković, Quasi maximum likelihood estimator of polynomial phase signals. IET Sign. Proc. 13(4), 347–359

(2014)
27. I. Djurović, Quasi ML algorithm for 2-D PPS estimation. Multidimens. Sign. Syst. 28(2), 371–389 (2017)
28. N.R. Brnović, I. Djurović, V.N. Ivanović, M. Simeunović, Hardware implementation of the quasi maximum likelihood

estimator core for polynomial phase signals. IET Circuits Devices Syst. 13(2), 131–138 (2019)
29. V. Katkovnik, I. Djurović, L.J. Stanković, in Time-Frequency Signal Analysis and Applications, 2nd edn., ed. by B. Boashash

ISBN: 9780123984999. Robust Time-Frequency Distributions (Academic, 2015), pp. 539–546
30. A. Roenko, V. Lukin, I. Djurović, An overview of the adaptive robust DFT. Eurasip J. Adv. Sign. Proc.special issue "Robust

Processing of Nonstationary Signals", 595071 (2010) https://asp-eurasipjournals.springeropen.com/articles/10.1155/2010/
595071

31. I. Djurović, On parameters of the QML PPS estimator. Signal Process. 116, 1–6 (2015)
32. I. Djurović, M. Simeunović, B. Lutovac, Are genetic algorithms useful for the parameter estimation of FM signals. Dig.

Sign. Proc. 22(6), 1137–1144 (2012)
33. R. Beneš, M. Hasmanda, K. Říha, Non-linear RANSAC method and its utilization. ElectroRevue 2(4), 7–14 (2011)
34. D.S. Pham, A.M. Zoubir, Analysis of multicomponent polynomial phase signals. IEEE Trans. Sign. Proc. 55(1), 56–65 (2007)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Djurović EURASIP Journal on Advances in Signal Processing         (2021) 2021:19 Page 23 of 23

https://asp-eurasipjournals.springeropen.com/articles/10.1155/2010/595071
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2010/595071

	Abstract
	Introduction
	Signal model and TF representation
	RANSAC for signal reconstruction
	Pseudocode
	RANSAC algorithm with the O’Shea refinement for parameter estimation of undersampled signals

	Comments on the algorithm

	Number of trials in the RANSAC algorithm
	Results and discussion
	Multicomponent signals
	Conclusion
	Abbreviations
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Declarations
	Consent for publication
	Competing interests
	References
	Publisher’s Note

