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Abstract

Standard compressive sensing (CS) scenario assumes a single sparsifying basis used
to reconstruct the signals from a small set of incoherent measurements. However, in
many cases, the signal cannot be sparsely represented using a single transformation.
Particularly, in ECG signal analysis, each signal segment is specific in nature and
reflects different physical phenomena. Hence, using the same transformation for all
segments may be inappropriate for efficient analysis and reconstruction. Moreover, in
the CS scenario, it would be necessary to combine different transforms to achieve
compact signal support and to provide successful reconstruction from randomly
under-sampled data. This work proposes a hybrid CS reconstruction algorithm that
combines different transform basis, based on the concept of orthogonal matching
pursuit. The performance of the proposed approach is verified experimentally using
the combination of the Fourier and the Hermite transform on the real ECG signals.

Keywords:Compressive sensing, ECG signals, Fourier transform, Hermite transform,
hybrid or multi-base domain, Sparsity

1 Introduction
Compressive sensing (CS) has recently appeared as a new concept that has been used
in different applications to collect, store, transmit and reconstruct large amount of data

using much fewer measurements [1]. Generally, the CS paradigm has been introduced
with the aim to reduce the number of measurements in signal analysis and reduce the

memory requirements, as well as the energy consumption and recording time. In cer-

tain situations, CS solutions can be also used to recover parts of signals that are dis-
carded due to disturbances and noise [2, 3]. The measurements are usually represented

as a small subset of original data samples acquired through a random selection process
[4–8]. In order to provide a successful and unique signal recovery, CS reconstruction

algorithms require a certain basis in which the considered signal is sparse [8]. Namely,
the assumption is that a signals is sparse when represented using linear transform�

such that the transform vectorx has just a few significant components. However, the

problem appears when the signal of interest is not sparse when represented in a single
transform domain. Namely, we observe a problem when a signal is composed of
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different segments and each segment could be sparse in different transform domains,
but the signal as a whole is not sparse in any particular domain when observed indi-

vidually. Particularly, this is the case with the ECG signals composed of several different
waves that correspond to electrical and mechanical heart activities. Concerning the bio-

medical ECG signal representation and compressive sensing, the part of the ECG signal

that has been commonly treated so far is the QRS complex [9, 10]. Nevertheless, pro-
viding a compact representation for the entire ECG signal is still a challenge, and it is

the main motivation of this work. To be more specific, there are other parts of ECG
signal such as P and T waves, which are very important in medical diagnosis (e.g. long

QT syndrome, coronary ischemia), but the optimal transform domain analysis of these
segments have not been treated so far. Being able to represent the entire ECG signal

with very few transform coefficients would allow efficient compression, CS and classifi-

cation based on the low number of features.
Exploring the CS theory can be done only if a compact (sparse) support over different

ECG signal segments is provided, which cannot be accomplished using a single trans-
formation basis. In that sense, we introduce a combined sparsity model that is suitable

for ECG signals represented as a sparse set of combined basis functions (hybrid or

multi-base representation). The concept of applying the hybrid approach in CS applica-
tions has been used in the literature for speech signals, where the hybrid dictionary is

applied for the construction of the basis matrix in CS (linear prediction coding (LPC)
and discrete Fourier transform (DFT) basis) [11]. Also, the hybrid transform/prediction

sparsity model has been employed for exploiting correlation in different directions for

efficient CS and reconstruction of multidimensional signals [12]. It is important to note
that most of the work that has been done in this field is related to a particular applica-

tion or a particular type of signal, due to the fact that the hybrid approaches emerge to
deal with challenging signal structures.

An interesting approach that allows to exploit multiple structural features in the re-
construction of biomedical signals has been considered in [13]. This multi-structural

signal recovery framework assumes additional a priori information which is included by

imposing additional minimization constraints into the optimization model for signal re-
covery. This approach results in multi-criterion optimization and new convex program-

ming problem. The considered structural properties are signal-dependent such as
sparsity, piecewise smoothness and low-rank property, but generally the approach can

be applied in its specific form to different types of biomedical data such as MRI, EMG,

EEG and ECG signals. Particularly, in the case of ECG signals, the multi-structure
optimization problem is defined as a linear combination of TV1, TV2 and L1 norms

[13], exploiting piecewise smoothness and sparsity in the wavelet domain. However, as
we have mentioned earlier, due to the different nature of ECG signal segments, the

wavelet transform could be suitable for transient signal parts while the smooth or

quasi-periodic parts could be better suited by other methods. Furthermore, it has been
shown in [9] that discrete Hermite transform (DHT) provides much better compression

performance and more compact support than the wavelet transform, DFT or DCT, par-
ticularly in the case of QRS complexes.

Therefore, in a similar context but without imposing additional optimization con-

straints, we propose an efficient combined multi-base sparsity model which can be used
with the classical optimization methods to provide computationally simple solutions
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amenable for practical implementations. It is based on the orthogonal matching pursuit
(OMP) algorithm applied over different waves of ECG signal using the combination of

the two transforms. It is shown that the combined sparsity model produces the most
compact representation of ECG signal parts with a highly reduced number of non-zero

hybrid coefficients (relevant features). Having an optimal signal representation allows

us to apply the CS concept and to recover the signal from a small per cent of randomly
acquired samples. The proposed computing method is based on the modified OMP ap-

proach [14], which allows low calculation complexity, fast processing time and thus be-
ing well-suited for real-time implementations in different mobile devices and server

applications [ref]. The proposed approach is also compared with several commonly
used classical approaches such as iterative soft-thresholding algorithm based on the

Least Absolute Shrinkage and Selection Operator (LASSO) minimization and convex

optimization methods [15–17], showing that the proposed method represents the most
convenient solution when combined with the sparsest multi-base representation. Note

that we have observed the single-channel ECG data. In the case of multiple channels
that need to be processed simultaneously, the large-scale problem in place requires

high processing time, and in these circumstances, some computationally efficient

multi-channel modifications of greedy algorithms could be considered, such as Simul-
taneous Greedy Analysis Pursuit algorithm [18].

The paper is organized as follows. A theory behind CS is given in Section 2. A com-
bined signal sparsity model is introduced in Section 3. The hybrid CS using the com-

bined sparsity model is proposed in Section 4. The application to the ECG signals and

the experimental evaluation are provided in Section 5. The concluding remarks are
given in Section 6.

2 Method
The aim of this study is to prove that the combined sparsity model can provide a com-

pact transform domain representation of ECG signal parts which is used for an efficient
compressive sensing scenario with a large amount of missing data. Namely, the ECG

signals are not sparse when observed in a single transform domain and therefore it is
important to provide a comprehensive approach for dealing with this type of data.

Moreover, the achieved compact support representation can be important for classifica-
tion, feature description and compression of ECG signals which is highly important in

biomedical applications. The paper presents the general combined theoretical model

for sparse signal representation, which in the case of ECG signals combines the Her-
mite transform and discrete Fourier transform, as well as the adapted, simple and com-

putationally efficient compressive sensing scenario based on the combined sparsity
model.

The theoretical developments are supported by the experimental evaluation on the

real ECG signals from the MIT-BIH ECG Compression Test Database, while the simu-
lations have been carried out with Matlab R2015b.

3 Compressive sensing theory—brief overview
The CS theory has gained significant attention of the research community, providing

an alternative way to acquire signals in various signal processing applications. The con-
ventional approach assumes that the signal should be sampled at rates that are at least
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twice the maximal signal frequency. In practice, it means that we are faced with a large
amount of data to be sensed, stored and transmitted. Alternatively, the CS allows ac-

quiring fewer samples while still being able to reconstruct the entire signal afterwards
[1]. Thereby, the assumption is that the signal samples (called observations or measure-

ments) are chosen randomly, and there exists a certain domain in which the signal of

interest exhibits sparse representation. It is important to mention that biomedical im-
aging such as MRI was among the first and widely used applications of CS concept

based on the advantages of using 2D DFT domain. Still, the applications on other types
of biomedical signals are much less frequent in the literature, due to their specific na-

ture [19–21].
Let us observe a signals(n), with a full dataset of lengthN, that can be represented in

basis� using basis vectorsψi:

s nð Þ ¼
XN

i¼1
xiψi nð Þ ð1Þ

or in the matrix form s =� x.If most of the transform coefficients in vectorx are zero
(or close to zero), then we can say thatx is a sparse representation ofs [8]. Some of

the frequently used transformation domains for CS applications are DFT, Hermite

transform (HT) [22, 23], discrete cosine transform (DCT), etc. The process of acquiring
random signal measurements is often modelled by a certain observation matrix� of

order M×N , whereM < <N is a small number of random measurements selected out
of N using � :

y¼� s; ð2Þ

while y is the vector of measurements of lengthM. Following (1) and (2), we have:

y¼� s¼�� x¼Ax; ð3Þ

where A = �� . Under the assumption that the sparsity, i.e., the number of non-zero

elements inx is K (where K <M < <N), the linear system of equationsy=Ax can be
solved using different mathematical algorithms leading to the reconstructed signal. The

problem is then reduced to finding the sparsest transform vector corresponding to the
measurementsy:

x̂ ¼ min xk k0 subject toy¼Ax: ð4Þ

where � ∗� 0 is the � 0-norm. The � 0-norm is non-convex and which, in terms of com-

putation, makes (4) difficult to solve. The problem of finding the sparsest solution is

commonly solved by using the greedy approaches such as the OMP. Firstly, a convex
relaxation of the problem is applied using the� 1-norm instead of the� 0-norm. Hence,

under certain conditions, one can use the corresponding convex� 1-norm optimization
problem as a suitable convex approximation of (4), i.e.,

x̂ ¼ min xk k1 subject toy¼Ax: ð5Þ

The problem defined in (5) can be recast as a linear program [24], and it is known as

the basis pursuit problem. Another commonly used approach that was introduced in

the statistics literature is based on the LASSO using the� 1-penalty to promote sparsity
[25]:
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min y−Axk k2
2 subject to xk k1 < t ; ð6Þ

wheret is a nonnegative real parameter, while (6) represents a quadratic program.

If x is not sparse enough meaning thatK>M or evenK close toN, then the observed
system of equations is underdetermined. Therefore, it is of high importance to identify

the sparsity domain for the signal to be reconstructed. Obviously, for certain signals
such as the ECG signal, this condition may be a severe limitation, since it is not appro-

priately sparse in any of the mentioned domains.

4 Combined sparsity model
Sparse signal reconstruction in CS assumes that a signal has a compact (or compress-
ible) representation in certain transform domain. In other words, the under-sampled

signal can be reconstructed from its incoherent measurements only if it can be repre-

sented by using a small number of significant coefficients in an appropriate transform
basis. When exploring the sparsity property, signals are usually observed in a single

transformation domain. Here, we will observe the case when a signal is not sparse in
any known transform basis, but can be represented as a sparse set of combined basis

functions.
Let us firstly observe the additive signal model which is common in practice:

s nð Þ ¼ s1 nð Þ þ s2 nð Þ þ ƒ þ sP nð Þ ¼
XiK1

i¼i1

xi1ψi1 nð Þ þ
XjK2

j¼ j1

x j2ψ j2 nð Þ þ ƒ

þ
XlKP

l¼l1

xlPψlP nð Þ; ð7Þ

where s1(n), s2(n),ƒ , sP(n) are of the same lengthN, and s1(n) is sparse in� 1, s2(n) is

sparse in� 2, etc. The signal is represented usingP different transform basis� pdefined
by the basis vectors:fψ1p; ψ2p; ƒ ; ψNpg, p=1,ƒ , P. The signal of lengthN containsK=

K1+K2+ƒ +KP components (Kp<<N andK<N), such that:
- K1 components belong to the basis� 1,

- K2 components belong to the basis� 2,
- while KP components belong to the basis� P.

In that sense, we might observe that a signals(n) is not sparse in any of the

transform basis� p when observed individually, but some parts of the signal could
be observed as sparse in appropriate basis� p . This signal model corresponds to

the concatenation concept introduced in [26], with an example of a linear combin-
ation of spikes and sines that will be sparse when concatenating coordinate and

Fourier bases. However, the standard CS framework cannot be applied if there is a

certain correlation between columns of concatenated basis [26].
Nevertheless, in the case of the ECG signals, we are dealing with a slightly differ-

ent signal model obtained as a combination of different signal segments (combined
signal model):

s nð Þ ¼ s1 n1ð Þ; s2 n2ð Þ; ƒ ; sP nPð Þ½ �; ð8Þ
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where s1ðn1Þ ¼
PiK1

i¼i1

xi1ψi1ðn1Þ;ƒ , sPðnPÞ ¼
PlKP

l¼l1

xlPψlPðnPÞ; and each segment has its

own duration: s1(n1) is N1 samples long, whilesP(nP) is NP samples long. Namely, each

cardiac cycle within the ECG signal is composed of consecutive waves, where the most
prominent part is the QRS complex, while the other parts are known as P, T and U

waves.

In analogy with the additive model, we might assume that in the combined model de-
fined by (8), the signal is composed ofK1 components belonging to the basis� 1, K2

components belonging to the basis� 2, etc.

5 Multi-base compressive sensing using combined sparsity model
In the CS context, instead of a full-length signals(n), we are dealing with a random set
of M measurements, whereM < <N. The measurement process can be defined as:

y¼� s ¼

� 1s1

� 2s2

ƒ
� PsP

2

664

3

775; ð9Þ

where y denotes measurement vector, whiles1, s2,ƒ , sP are different parts of a signal

vector. Having in mind thatsp is sparse when represented in� p, for p=1,ƒ , P, then we
can writesp ¼ � pxp. Consequently, (9) becomes:

y¼�

� 1x1
� 2x2

ƒ
� PxP

2

664

3

775 ¼

A1x1
A2x2

ƒ
APxP

2

664

3

775; ð10Þ

with � p beingNP×NP transform matrix andxpis anNP × 1 vector of transform coef-

ficients andAp ¼ �� p. Alternatively, we may write it in the matrix form as follows:

yM�1 ¼

A1M1�N1 0 ƒ 0
0 A2M2�N2 ƒ 0
ƒ ƒ ƒ ƒ
0 ƒ ƒ APMP�NP

2

664

3

775

M�N

x1N1�1

x2N2�1

ƒ
xPNP�1

2

664

3

775

N�1

i.e.,y = AcsX. (11)

The combined transform domain representation is formed as:

X ¼

x1
x2
ƒ
xP

2

664

3

775: ð12Þ

Note that in the case of additive signal model the concatenated CS matrix would be

ACS ¼ ½A1 A2ƒ AP� , where each of the sub-matrices is of sizeN×N. The reconstruc-

tion problem can now be defined as follows:

min x1k k1 ∧ min x2k k1ƒ ∧ min xPk k1
subject to y ¼ ACSX

; ð13Þ

where the symbol∧ is used to denote conjunction, i.e., logical and operation. This
problem can be solved using the OMP algorithm as follows:
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The core of the algorithm is a standard OMP algorithm which is used in the context

of multi-base approach and reconstruction of different signal partsx1,x2,…,xP (ex-
tracted at line 11). Note that the problem defined by (13) can be solved by applying

other existing reconstruction algorithms, such as convex optimization algorithms or
thresholding methods. However, it will be shown that in the application with the ECG

signal reconstruction, the OMP provides more accurate results comparing to other

classical approaches. Furthermore, the OMP is more convenient due to its realization
simplicity and the execution time when used in engineering applications [27].

In the application with ECG signals, the combination of two basis sets will be consid-
ered in the sequel, namely the set of discrete Hermite functions combined with the

discrete Fourier basis. It has been proven in [9, 10] that the discrete Hermite functions
provide the most compact representation of the most prominent ECG segments, i.e.,

QRS complexes having transient signal characteristics, because of the high similarity

between QRS complexes and Hermite functions. Moreover, for this purpose, the
discrete Hermite transform outperforms the DFT, DCT, but also the DWT [9]. The

remaining parts of ECG signal are much smoother and locally quasi-periodic in nature
as can be seen in Fig.1, and consequently, the DFT basis appears as the most suitable

choice for these signal parts.

Finally, we would like to remark that the proposed multi-base approach combined
with the multi-structural signal recovery [13], could be considered as an interesting fu-

ture topic and extension of this work. Namely, the reconstruction problem can be fur-
ther extended as a linear combination of L1 and TV-norm minimization [13], to

explore the advantages of additional structures (at the cost of higher algorithm com-

plexity). It could be also of particular importance in the sense of generalization for
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different types of biomedical signals. However, the scalars in the linear combination of
different constraints need to be determined optimally.

6 Application to ECG signals
In order to demonstrate the importance of using the proposed combined sparsity do-

main for ECG signal analysis, we observed the real-world signals obtained from the
database given in [28]. The signals are sampled with frequency 1/250 Hz. The ampli-

tudes are scaled by 1/400 in order to have vertical axes expressed in [mV], as specified

in [28]. Selected part of ECG signal is composed of different segments appearing con-
secutively within the signal: P, Q, R, S, T. Note that it is sufficient to observe only one

combination of segments to test the proposed method, since this combination repeats
over the signal (Fig.1a). Therefore, we have (1) the segment of ECG signal consisting

of T and P wave (Fig.1b), and (2) QRS complex/segment itself (Fig.1c). The QRS seg-

ments can be identified using some of the common algorithms [29]. In the simplified
form, after detecting R peaks as the local maxima, one can use an empirically

Fig. 1 Analysed parts of ECG signal and its suitable compact support representations
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determined number of samples on the left and right side of R peaks to identify the
QRS complex (e.g. 25 samples on each side for the set of considered signals). The

remaining parts consist of T and P waves.
Next, we apply the combined sparsity model to highlight the importance of the pro-

posed approach. For the simplicity, in this example, we used the a priori assumption

that the sparse representation of QRS complex can be achieved using the HT [9, 10],
while for the remaining parts the testing was performed using other standard basis

functions (DFT, DCT, etc.). Consequently, it is shown that the first segment has a com-
pact support in the DFT domain (Fig.1b), while the second segment is sparse in the

HT domain (Fig.1c).
This means that the analysed signal can be represented by a small set of combined

DFT and HT coefficients, while the remaining coefficients are zeros. In that sense, we

have concentrated the signal description into few coefficients that can be used as rele-
vant signal features in other applications. For the comparison of achieved results, we

can observe the selected part of the signal in separated domains (in DFT or HT, re-
spectively). Namely, the individual representations (Fig.2a, b) contain large number of

non-zero coefficients and cannot be considered sparse as it is the case with the pro-

posed hybrid (combined) representation (Fig.2c). Consequently, in order to provide
compact support representation (for compression or CS purpose), the hybrid combined

DFT-HT should be employed, as shown in Fig.2c. One can thus conclude that the

Fig. 2 a DFT of entire analysed ECG part.b HT of entire analysed ECG segment.c Hybrid combined
DFT-HT transform
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reconstruction is possible from only a small percent of acquired measurements. The fu-
ture work can be focus toward the design of improved machine learning and neural

networks based classification of ECG signals using a small set of features from the
achieved hybrid sparse representation.
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