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Abstract

The monitoring of mechanical equipment systems contains an increasing number of
complex content, expanding from traditional time, and frequency information to
three-dimensional data of the time, space, and frequency information, and even
higher-dimensional data containing subjects, experimental conditions. For high-
dimensional data analysis, traditional decomposition methods such as Hilbert
transform, fast Fourier transformation, and Gabor transformation not only lose the
integrity of the data, but also increase the amount of calculation and introduce a lot
of redundant information. The phenomenon of feature coupling, aliasing, and
redundancy between the mechanical multi-source data signals will cause the
inaccuracy of the evaluation, diagnosis, and prediction of industrial production
operation status. The analysis of the three-way tensor composed of channel,
frequency, and time is called parallel factor analysis (PARAFAC). The properties
between the parallel factor analysis results and the input signals are studied through
simulation experiments. Parallel factor analysis is used to decompose the third-order
tensor composed of channel-time-frequency after continuous wavelet transformation
of vibration signal into channel, time, and frequency characteristics. Multi-scale
parallel factor analysis successfully extracted non-linear multi-dimensional dynamic
fault characteristics by generating the spatial, spectral, time-domain signal loading
value and three-dimensional fault characteristic expression. In order to verify the
effectiveness of the space, frequency, and time domain signal loading values of the
fault characteristic factors generated by the centrifugal pump system after parallel
factor analysis, the characteristic factors obtained after parallel factor analysis are used
as the SPRT test sequence for identification and verification. The results indicate that
the method proposed in this article improves the measurement accuracy and
intelligence of mechanical fault detection.
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1 Introduction
In recent years, equipment fault diagnosis, as a new technology that crosses various dis-

ciplines, has been developed rapidly and has produced huge economic benefits [1–6].

The centrifugal pump is an important energy conversion and liquid transmission device

in the process industry and its working state directly affects the production of the entire

operating equipment. A slight damage to the impeller will shorten the running time of

the centrifugal pump and disturb the operation of the equipment. When the impeller

fails, it will cause damage to the centrifugal pump components or personal injury acci-

dents, which will cause significant economic losses [7, 8]. The normal operation and

failure of the centrifugal pump will cause the equipment to vibrate. The vibration signal

contains rich information of the pump body running state and is easy to be collected,

which can be used to monitor and diagnose the running state of the centrifugal pump.

Fault diagnosis is generally divided into three steps: first, we collect the relevant vibra-

tion signal of the diagnostic object; then, the signal is analyzed and processed to acquire

the characteristics of the vibration signal; finally, pattern recognition and fault diagnosis

are performed through the corresponding extracted special diagnosis [9, 10]. The core

content is to obtain the effective characteristics of the vibration signal. Due to the com-

plex structure of the centrifugal pump, many excitation sources and mutual interfer-

ence, the vibration signal of the centrifugal pump is a non-linear and non-stationary

signal. Researchers have proposed various effective diagnostic methods to process the

collected raw vibration signals of the centrifugal pump, extract effective information,

and improve the accuracy of diagnosis. Wenjian Huang et al. [11] extracted the charac-

teristic parameters of the vibration signal through time-domain signal analysis, then the

PCA was used to reduce the amount of data, and finally the main component with the

largest contribution rate was used as the input signal of SPRT to evaluate the proposed

algorithm. Literature [12] proposed an improved deep convolutional neural network

(CNN) to identify defects in centrifugal pumps by using sound and image recognition.

A feature extraction method based on empirical mode decomposition (EMD) was devel-

oped to detect the gravity of cavitation in the centrifugal pump by Azizi et al. [1]. Liu

Yang et al. [13] proposed the new method for analysis of big data based on particle

swarm optimization wavelet neural network for diagnosis in the gearbox. Literature [8]

applies variational mode decomposition (VMD) with different input parameters to fault

diagnosis of multi-stage pumps. Signal processing combined with empirical mode de-

composition (EMD) and fuzzy c-means clustering is used for monitoring piston pump

defects in literature [14]. The traditional decomposition method of processing high-

dimensional data will not only lose the integrity of the data but also increase the

amount of calculation and introduce redundancy [15–18]. These methods of extracting

time-frequency characteristics from single-channel signals, such as Fourier transform,

cannot reflect the internal relationship of non-linear changes between multi-source

channel characteristic signals, nor can they eliminate information interference.

Mechanical non-linear multi-fault mode multi-source dynamic feature identification

is a technical bottleneck and difficult problem encountered in the application of fault

diagnosis in process industry production lines. It not only needs to extract the time-

frequency characteristics of multi-source fault signals, but also to ensure the corres-

pondence between non-linear variables and multi-fault modes and multi-source fault

features in time, frequency, and space after feature extraction. Parallel factor analysis
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proposed by Carroll, Chang [19], and Harshman [20] in 1970 is a three-dimensional or

multi-dimensional signal processing algorithm that uses iterative least squares to resolve

the decomposition and identification of multi-dimensional matrices. The general time-

frequency decomposition ignores the spatial information of the vibration signal and

cannot handle multi-channel data [21–23]. Data framing in the form of a three-way

array indexed by channel, frequency and time allows the application of a unique decom-

position called Parallel Factor Analysis (PARAFAC). The decomposition uniqueness of

PARAFAC model can obtain its model parameters without ambiguity so that the PARA

FAC model has important application value. As a data processing algorithm, PARAFAC

model has been successfully applied in fluorescence spectroscopy, psychology, signal

processing, food science, and other fields. Multi-channel electroencephalogram EEG

data can usually be expressed as an M×N×P three-way data set and the components of

the three-way data array correspond to the channel (electrodes at different positions),

time (data samples) and frequency components. Schmitz, S. applied PARAFAC to

analyze the temporal and spatial patterns of functional connections between neurons,

which were revealed in the sequence of peaks recorded in the cat’s main visual cortex

(area 18) [24]. This parallel factor analysis was applied for decomposing EEG data into

space-time-frequency components during the resting state and mental arithmetic by

Miwakeichi, Fumikazu et al. [25]. Rost'akova compares non-negative Tucker decompos-

ition with parallel factor analysis to identify and measure human brain electrical

rhythms [26]. In the literature [27], Choi, Ji Yeh proposed a new extension function

PARAFAC for processing response to three-dimensional data arranged along a two-

dimensional domain and one-dimensional parameters. Technically, this method com-

bines PARAFAC with basis function expansion approximation and is applied to EEG

data to prove its empirical usefulness. A parallel factor analysis study showed that the

frontal lobe area with higher frequency response is the main feature of laser evoked po-

tential in rats with chronic inflammatory pain [28].

Parallel decomposition has attracted great attention, because parallel factorization can

process the constructed high-dimensional data as a whole, which not only retains the

overall structure information of the data, but also makes the structure more compact

and easy to understand. In the literature [29], parallel factor analysis was used as the

diagnostic tool through decomposing centrifugal pump diagnostic signal into time-

frequency-space modes. Considering the difficulty of extracting fault features from roll-

ing bearings under strong background noise, Yang Cheng [30] proposed a new method

based on variable mode decomposition (VMD) and phase space parallel factor analysis

to detect weak fault signals of rolling bearings. In order to overcome the inability to ex-

tract sparse and interpretable latent variables from batch data, literature [31] proposed

a batch three-way data array sparse model based on sparse parallel factor (SPARAFAC)

decomposition. Sparse factor matrices have the potential advantage of being easy to in-

terpret because they eliminate redundant data information and show significant variable

correlation. In chemistry, medicine, and food science commonly used fluorescence exci-

tation and emission data typically contain several chemical components at different con-

centrations. Fluorescence spectroscopy can generate a three-way data set with the mode

“sample × excitation × emission.” The main purpose of the analysis of this data type is

to determine which chemicals are present in each sample and their relative concentra-

tions. Reference [32] conducted a comparison between parallel factor analysis (PARA
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FAC) and support vector machine (SVM) to identify and distinguish the fluorescence

spectrum of coconut water brands. The above results indicate that fluorescence spec-

troscopy combined with PARAFAC and SVM method has been proved to be a simple

and rapid detection method for coconut water and other beverages. This study [33]

aims to determine whether the composition or distribution of humus in lake sediments

can be characterized by chemometric spectral data. This method determines the three-

dimensional excitation emission matrix in the extracted humus and performs spectral

analysis of the data by using parallel factor analysis (PARAFAC) with classification tree

and regression tree (CART).

The theory of sequential probability ratio test (SPRT) that is a branch of mathematical

statistics was proposed by Abraham Wald in 1947 in order to solve the problem of sam-

pling and acceptance of valuable military products. This method provides an approxi-

mate formula for the critical value of accepting the null hypothesis H0 or accepting the

alternative hypothesis H1 based on the sample values obtained from each observation,

and also provides the average sampling times and power function of this test method.

In 1948, Abraham Wald and American statistician Wolfowitz proved that the above-

mentioned sequential probability is the smallest number of sampling times required for

the test in all the two types of tests whose error probability does not exceed α and β, re-

spectively. The sequential probability ratio test is the most fundamental sequential test

in sequential analysis proposed by Abraham Wald, and it has subsequently been widely

developed in various fields. Almost all the hypothesis testing problems of SPRT in

mechanical fault diagnosis, such as signal detection, model variable point detection, life

data analysis of centrifugal pump, and crack detection of gearbox, can be well applied.

This research [34] were performed on actual faults in a laboratory-scale distillation plan

based on artificial neural network-multi-layer perceptron (ANN-MLP) and the Wald se-

quential probability ratio test (SPRT). In the literature [35], Guo Peng proposed

Gaussian process and SPRT wind turbine power curve modeling and monitoring.

The modeling and monitoring method proposed in this paper successfully identified

two wind anemometer failures and pitch system failures. Literature [36] proposed a

fault detection algorithm based on the sequential probability ratio test (SPRT) and

chi-square test for redundant multi-sensor navigation systems for supersonic cruise

ships (HCV).

The rest of this paper is organized as follows. In Section 2, the parallel

factorization model and simulation is described. The multi-scale parallel

factorization optimization algorithm for non-linear multi-source fault characteristic

signal extraction is established. The characteristic factor signal is successfully ob-

tained from the matrix factor, and the “loading” factor and “component” factor are

defined. In Section 3, we studied the multi-channel data decision theory based on

SPRT, and established an adaptive optimization diagnosis method for tracking and

identifying the non-linear multi-dimensional dynamic optimal characteristic signal.

To research the validity of the multi-scale parallel factor analysis and SPRT for

multi-channel signal in actual complex industrial production, the centrifugal pump

fault diagnosis experimental system was designed and implemented in Section 4.

Following that, multi-source dynamic feature extraction based on parallel

factorization and SPRT for the multi-source condition monitoring of centrifugal

pump are presented in Section 5. Finally, the conclusions are drawn in Section 6.
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2 The model and simulation
2.1 Parallel factorization model

In a two-dimensional matrix, xi, j is generally used to represent the elements in the two-

dimensional matrix (i represents any row, j represents any column). Similarly, in the

three-dimensional matrix, we use xi, j, kto represent any element in the three-

dimensional matrix. At present, there is no definite name naming subscript k, let us call

it “page” [37]. The subscript of the three-dimensional matrix consists of three index

value row, column, and page composition. The left picture in Fig. 1 shows the three-

dimensional matrix and the right picture shows its sub-matrix. When a certain dimen-

sion in a three-dimensional matrix is fixed, it constitutes a sub-matrix of the three-

dimensional matrix that is called a slice of the three-dimensional matrix along a certain

dimension.

The expansion of the three-dimensional matrix is actually to rearrange the slices of

the three-dimensional matrix to constitute the new two-dimensional matrix. For ex-

ample, we fixed the rows and columns of a three-dimensional matrix and rearranged its

pages to formulate the new two-dimensional matrix. At this time, the number of rows

is equivalent to the number of rows I of the original matrix and the number of columns

changes from the original J to J × K, denoted asXI × JK. It is expressed as shown in Eq.

(1).

XI�JK ¼ Xk¼1;Xk¼2⋯Xk¼K½ � ð1Þ

Of course, it can also be expanded by column, such as XIK × J, which is defined as for-

mula (2).

XIK� J ¼
Xk¼1

Xk¼2

⋮
Xk¼K

2
664

3
775 ð2Þ

After expanding by columns, we acknowledge that I × K is displayed as the number

of rows of the new matrix and parameter “J” is the number of columns.

The symbol xi; j;k ¼
PF
f¼1

ai; f b j; f ck; f can be used to express any element in a three-

dimensional or larger than three-dimensional matrix, the variables i, j, and k in the

Fig. 1 Three-dimensional matrix and its sub-matrix
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formula can be any natural numbers. The elements in the i-th row, j-th column, and k-

th page of the matrix X can be represented by xi, j, k. According to the definition, the

low-rank decomposition of a two-dimensional matrix can be popularized to the low-

rank decomposition of a three-dimensional matrix. Let the element X ∈ CI × J × Kof the

three-dimensional matrix be defined as xijk, the variables i, j, and k in the formula can

be any natural numbers. Similarly, it can be seen that the three-dimensional matrix can

be indicated as the modality of the vector outer product of the following formula (3).

X ¼ a1∘b1∘c1þ;…;þaR∘bR∘cR ¼
XR
r¼1

ar∘br∘cr ð3Þ

It gives the process of a three-dimensional matrix low rank decomposition in formula

(3) and the symbol R of the formula is indicated as the rank of the three-dimensional

matrix X, where cr ∈C
K, br ∈C

J,ar ∈C
I, r = 1,...,R. Harshman names the low-rank decom-

position model of three-dimensional matrix given by formula (3) as the general model

of parallel factor. The general forms of the parallel factorization model are interpreted

in Fig. 2, in which X can be displayed by the popular geometric cube.

TheseC = [c1,…, cR];B = [b1,…, bR];A = [a1,…, aR] are any given three two-dimensional

matrix definitions. We define A, B, and C as the three loading matrices of the parallel

factorization model of the general form. Equation (4) is shown as the scalar form of the

general parallel factorization model. They are labeled as ckr = [C]k, r, bjr = [B]j, r,air = [A]i,

r, and xijk ¼ ½X �i; j;k .

xijk ¼
XR
r¼1

airbjrckr ð4Þ

The general form of the parallel factorization model can be viewed as the low-rank

decomposition of a two-dimensional matrix extending to a three-dimensional matrix.

The formula (4) indicates that these subitems xijkof the three-dimensional matrix X can

also be denoted as the sum of the products of R elements a, b, and c. Compared with

the matrix elements xij in PCA, xijk has three independently changing dimensions called

“mode A,” “mode B,” and “mode C.”

2.2 Matrix essential equalization

There is a matrix A ∈ CI × J. If the matrix satisfies A ¼ AΠΔ, it is said that A and A

are matrix essential equalization, denoted as A≅A . Among them, ∏ is the column

exchange matrix and △ is the diagonal scale matrix. There is one and only one

non-zero element “1” in each row and each column of the column exchange matrix

Fig. 2 The general form of the parallel factorization model

Yang et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:37 Page 6 of 33



∏. The function of the column exchange matrix is to rearrange the column vector

of A in the order of ∏ without changing the value of the elements in the vector.

The diagonal scale matrix △ is a J×J diagonal matrix with non-zero diagonal ele-

ments. The function of △ is to multiply each column of matrix A by a non-zero

amplitude.

According to the concept of matrix essential equalization, we take a two-dimensional

matrixX = ABTas an example, where A ∈ CM × F,B ∈CN × F. For any matrix A∈CM�F ;B∈

CN�F , if X ¼ ABT ¼ AB
T
is satisfied, then we can get to formula (5).

A ¼ A
Y

1
Δ1;B ¼ B

Y
2
Δ2 ð5Þ

∏2 and ∏2 in the formula are column exchange matrices, which means to rearrange

the columns of the A and B matrices. △1 and △2 are diagonal scale matrices, which

means that each column of matrix A and B is multiplied by the non-zero coefficient. At

this time, the matrix decomposition is said to be unique.

When the matrix factorization is unique, the matrix A;B obtained by the matrix

factorization is not completely equal to the original matrices A and B, they are only the

essential equality relationship of the matrix. The essential equal relationship of matrix A

and B is shown in the following formula (6) (7).

A ¼ A
Y

A
ΔA≅A ð6Þ

B ¼ B
Y

B
ΔB≅B ð7Þ

Due to the existence of column exchange matrices ∏A, ∏B and diagonal scale matrices

△A, △B, the order and magnitude of the column vectors in matrix A;B can be different

from those of A and B. In matrix theory, they are used to be called column blur and

scale blur, which are represented by column exchange matrix ∏ and diagonal scale

matrix △, respectively. In the process of matrix decomposition, if there is no structural

constraint on the matrices A and B, column blur and scale blur are unavoidable. The

above problem can be explained in the vector form of matrix decomposition, which is

denotedA = [a1,⋯, aF], B = [b1,⋯, bF], whereaf ∈C
I × 1、 bf ∈C

J × 1 (f=1,...,F) is the col-

umn vector of A and B, respectively. The above formula can be expressed as the follow-

ing vector form.

X ¼ ABT ¼ a1b
T
1 þ a2b

T
2 þ⋯þ aFb

T
F ð8Þ

In formula (8), a1b
T
1 ;⋯; aFb

T
F are F matrices with rank 1. At this time, if the order of

a1b
T
1 ,...,aFb

T
F is changed arbitrarily, the value of matrix X is unchanged. Similarly, if the

vector af is multiplied by the non-zero coefficient λf and the corresponding bf is multi-

plied by a non-zero coefficient 1/λf, the value of X will not change either. Assuming that

the order of a1b
T
1 and a2b

T
2 in formula (8) is exchanged, it can be rewritten into the fol-

lowing form:
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X ¼ ABT ¼ a1b
T
1 þ a2b

T
2 þ⋯þ aFb

T
F ¼ λ2a2

1
λ2

bT2 þ λ1a1
1
λ1

bT1 þ⋯þ λFaF
1
λF

bTF

¼ A
Y

A
ΔA B

Y
B
ΔB

� �T
¼ AB

T

ð9Þ

The result X ¼ ABT ¼ AB
T

can be obtained, the code in the equation is specifically

expressed as follows A ¼ A
Q

AΔA,B ¼ B
Q

BΔB.

It can be seen that there are always A and B to achieve matrix decomposition, but

they are only essentially equal to A and B. Therefore, column ambiguity and scale ambi-

guity are inherent ambiguities in the matrix decomposition process. Without additional

constraints, the order and magnitude of loading matrix columns cannot be determined

through matrix decomposition. Therefore, the uniqueness of matrix factorization given

by the definition can also be called “essential uniqueness.” In the actual application

process, some methods can be used to eliminate column blur and proportion blur

caused by matrix decomposition.

2.3 Recognizability and uniqueness of parallel factorization

The essential feature of the parallel factorization model is the uniqueness of the model.

When there is no array blur, the matrices A, B, and C can be identified. The following

conclusions can be obtained. When Xi = BDi(A)C
T,i=1,2,...,I, A ∈ CI × F,B ∈CJ × F,C ∈CK × F

is given, if kA + kB + kC ≥ 2F + 2, then these matrices A, B, and C are uniqueness for col-

umn exchange and plurality transformation or scale transformation.

The matrix composed of relatively independent columns taken from the absolute con-

tinuous distribution has full k-rank. If all three matrices meet this condition, the suffi-

cient condition for recognizability is shown in formula (10).

min I; Fð Þ þ min J ; Fð Þ þ min K ; Fð Þ≥2F þ 2 ð10Þ

If the matrices A, B, and C have other structural constraints, better identifiable results

may be obtained. PARAFAC uniqueness theorem can be used to obtain the ith subma-

trix of the X-axis of PARAFAC model:

X J�K
i ¼ BDi Að ÞCT ; i ¼ 1;…; I ð11Þ

The matrix in formula (11) satisfies the following A ∈ RI × R, B ∈ RJ × R, C ∈ RK × R. If the

following conditions are met in Eq. (12).

kA þ kB þ kC ≥2 Rþ 1ð Þ ð12Þ

Even if there is column blur and scale blur, the matrix A, B, and C are unique. In

mathematical language, when formula (13) is satisfied

X J�K
i ¼ B̂Di Â

� �
Ĉ

T
; i ¼ 1;…; I ð13Þ

The relation shown in formula (14) can be obtained.

Â ¼ A
Y

Δ1; B̂ ¼ B
Y

Δ2; Ĉ ¼ C
Y

Δ3 ð14Þ

Equation (14) shows that ∏ is a column fuzzy matrix, Δ1Δ2 and Δ3 are the scale fuzzy

matrix and the equation of Δ1Δ2Δ3 = I needs to be satisfied.
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2.4 Trilinear alternating least square for parallel factor analysis

There are many methods to achieve the decomposition of PARAFAC, and the trilinear

alternate least squares (TALS) algorithm is the most widely adopted methodology for

data detection of parallel factor trilinear models. The fundamental principle of the

TALS is to update the matrix in each step. First of all, TALS is updated by employing

least squares (LS) to renovate the residual matrix based on the results of the previous

estimate; then, it continues to update other matrices; finally, stop running until the re-

sult converges or reaches the set number of iterations after repeating the above steps.

The trilinear model of three-dimensional data set X has the configuration shown in for-

mula (15) below.

xi; j;k ¼
XF
f¼1

ai; f b j; f ck; f þ eijk ; i ¼ 1…I; j ¼ 1… J ; k ¼ 1…K ð15Þ

Where F is the number of factors, ai,f is the i-th element in vector af, bj,f is the j-th

element in vector bf, and ck,f is the k-th element in vector cf. The data set X of third-

order tensor I × J × K is indicated as “xi,j,k.” The “eijk” represents the error set E of the

third-order tensor I × J × K. Equation A = [a1, a2,⋯, aI] is defined as the I × F matrix;

the B = [b1, b2,⋯, bJ], and C = [c1, c2,⋯, cK] are defined as the J × F matrix and the K ×

F matrix.

(1) First, matrix A is calculated by formula (16).

XK1

XK2

M
XK K

2
664

3
775 ¼

BdiagC 1; :ð Þ
BdiagC 2; :ð Þ
M
BdiagC K ; :ð Þ

2
664

3
775AT þ EK ð16Þ

Formula (16) satisfies XK k = Bdiag(C(k,:))AT +EK k. The error is expressed in terms of

EK. The least squares (LS) estimate of AT is calculated by Eq. (17).

AT ¼
BdiagC 1; :ð Þ
BdiagC 2; :ð Þ

M
BdiagC 2; :ð Þ

2
664

3
775
þ XK1

XK2

M
XKK

2
664

3
775 ð17Þ

The generalized inverse in formula (17) is represented by []+.

(2) Secondly, matrix B is calculated by formula (18).

YK1

YK2

M
YK I

2
664

3
775 ¼

CdiagA 1; :ð Þ
CdiagA 2; :ð Þ

M
CdiagA I; :ð Þ

2
664

3
775BT þ EI ð18Þ

Formula (18) satisfies the following YK i = Cdiag(A(i,:))BT +EK i, The error is

expressed in terms ofEI. The least squares (LS) estimate of BT is calculated by Eq. (19).
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BT ¼
CdiagA 1; :ð Þ
CdiagA 2; :ð Þ

M
CdiagA I; :ð Þ

2
664

3
775
þ YK1

YK2

M
YKI

2
664

3
775 ð19Þ

(3) Thirdly, matrix C is calculated by formula (20).

ZK1

ZK2

M
ZK J

2
664

3
775 ¼

AdiagB 1; :ð Þ
AdiagB 2; :ð Þ
M
AdiagB J ; :ð Þ

2
664

3
775CT þ E J ð20Þ

Where ZKj = Adiag(B(j,:))CT + EKj, j = 1, 2, ⋯, J. The error is expressed in terms of

EJ. The least squares estimate of CT is calculated by Eq. (21).

CT ¼
AdiagB 1; :ð Þ
AdiagB 2; :ð Þ

⋮
AdiagB J ; :ð Þ

2
664

3
775
� Z…1

Z…2

⋮
Z… J

2
664

3
775 ð21Þ

(4) Finally, stop running until the result converges or reaches the set number of

iterations after repeating the above steps (1)–(3).

Multi-channel vibration signals are collected in this paper to research the fault state

of equipment, and a third-order tensor is constructed through continuous wavelet

transform. Figure 3 shows the basic structure of the parallel factor analysis decompos-

ition model for fault diagnosis.

The Nt, Nd, and Nf of the data matrix SðNd�Nf�NtÞ are the number of data points, the

number of channels, and the frequency step size, respectively.

Ŝdft ¼
XNk

k¼1

adkbfkcik þ edft ð22Þ

Fig. 3 The model of multi-scale parallel factor decomposition for fault diagnosis
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The key issue of this parallel factorization model is to obtain the matrices A, B, and

C. The adk, bfk, and ctk are their elements, in which component k represents an atom.

These spatial signals, spectral signals, and temporal signals for each atom are indicated

as the ak = {adk}, bk = {bfk} and ck = {ctk}. The “eijk” is the error, which forms error set E

of the third order tensor I × J × K. The uniqueness of the solution of parallel factor de-

composition for fault diagnosis is guaranteed through rank(A) + rank(B) + rank(C) ≥

2Nk + 2. The decomposition of formula (22) is achieved by solving min
adkbjk cik

kŜdft−
XNk

k¼1

adkbfkctkk . The main advantage of this method is that the spectrum decomposition of

time-varying vibration signal is unique and the best model can be obtained under the

principle of minimum square deviation.

The basic steps for implementing the multi-scale parallel factorization model of fault

diagnosis are as follows .

(1).After the vibration signal is collected, the third order tensor is constructed by

continuous wavelet transform.

(2).The number of factor F is determined by the principle of consistency in MATLAB.

(3). Initialization for load matrix B and C.

(4).After initializing and running the matrices B and C, the matrix A is estimated by

the least square regression algorithm. A = XZ'(ZZ')−1, Z = (b c).

(5). Similarly, the matrices B and C are estimated.

(6).Continue from step (3) until the result converges or reaches the set number of

iterations.

(7).Corresponding results obtained.

2.5 Numerical simulation based on parallel factor analysis

Simulation experiments can investigate the characteristic of the results of input signals

with different parameters after parallel factor analysis for fault diagnosis. Therefore, the

simulation signals are used to simulate the running state of the centrifugal pump to test

the method proposed in this article. The simulation signal is shown in the following for-

mula (23).

y tð Þ ¼ 0:01� cos 2�pi�400�t−5ð Þ� exp −0:5� t−0:03ð Þ=0:003ð Þ^2ð Þð Þ ð23Þ

Figure 4 shows the time-domain diagram of the simulated signal. An impact signal

appears in the graph at 0.03 μs, which simulates the signal generated when the system

fails. It is shown in Fig. 5 that the time-frequency diagram of the simulation signal is

obtained by the continuous wavelet transform. It can be seen from the time-frequency

diagram of the simulation signal that the dominant frequency of the signal is 400 Hz

and the impact signal in the simulation signal appears in the frequency range of 180–

400 Hz. For the time-frequency diagram of the simulated signal in Fig. 5, it can also be

seen that the impact signal appears at 0.03 μs.

The simulation signal is constructed into a third-order tensor after continuous wave-

let transformation, and then the third-order tensor is decomposed by parallel factors to

obtain the result shown in Fig. 6. After parallel factor analysis, we can get the loading

value and residual error corresponding to frequency, time, and channel. Comparing the

loading value of frequency and time after parallel factor analysis with the time-
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frequency diagram, we can find their corresponding relationship. The hypothetical fre-

quency curve in the graph fluctuates in the range of 180–400 Hz, which is a contrast re-

lationship between the fluctuations of the simultaneous frequency graph. The time

curve fluctuates at 0.03 μs and has the maximum value of the third component and the

minimum value of the second component. It can be seen from the simulation signal

corresponding to the ground that the simulation signal also has an impact signal at 0.03

μs. This indicates that the parallel factor analysis for high-dimensional data of multi-

source feature factors can well detect the characteristics of the shock signal generated

by the simulated fault.

Fig. 4 Time-domain diagram of the original simulated signal

Fig. 5 Time-frequency diagram of original simulation signal
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The vibration signals collected in engineering are generally mixed with various noise

signals. In order to check on the effectiveness in complex conditions, we add the noise

signal to the original simulation signal and perform parallel factor analysis on it. Fig-

ures 7 and 8, respectively, show the time-domain diagram of the original simulation sig-

nal after adding noise to the signal and the time-frequency diagram obtained through

continuous wavelet transform. After adding the noise signal to the original simulation

signal, it can be seen that the waveform of the noisy simulation signal is similar to the

original simulation signal in Fig. 4 and the impact signal is almost covered by the noise

signal. The waveform of the noisy simulation signal in Fig. 8 is steeper and more rapid,

and there is a larger blurred signal at 10–20 Hz.

The simulation signal with noise is transformed into a third-order tensor after con-

tinuous wavelet transformation. The result of the parallel factor analysis of the third-

order tensor is shown in Fig. 9. After parallel factor analysis, we can get the loading

value and residual parameters corresponding to frequency, time, and channel. Compar-

ing the loading value of frequency and time after parallel factor analysis with the time-

frequency diagram, we can find the correspondence between them relationship. The

hypothetical frequency curve in the graph fluctuates in the range of 180–400 Hz, which
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Fig. 6 Parallel factor analysis of the original simulation signal
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is a contrast relationship between the fluctuations of the simultaneous frequency graph.

The time curve fluctuates at 0.03 μs and has a maximum value. We get the normal

probability plot and the residual variance corresponding to the data in mode 1, mode 2,

and mode 3. This shows that the parallel factor analysis proposed can well detect the

characteristics of the impact signal in this paper even when the collected signal contains

noise.

3 Proposed method
Likelihood function is a function of statistical model parameters, which plays a great

role in statistical inference. The general method of using likelihood ratio test statistics

was proposed by Neyman-Pearson in 1982 [38]. Its basic idea is similar to the

Fig. 8 Time-frequency diagram of noise-added simulation signal

Fig. 7 Time-domain diagram of noise-added simulation signal
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maximum likelihood method of parameter estimation theory, which is called likelihood

ratio test. For hypothesis H0 : θ = θ0, alternative hypothesis H1 : θ = θ1, x is a set of ran-

dom variables. When H0 is true, the probability density function of the random variable

x is expressed as f(x, θ0). When H1 is true, the probability density function of the ran-

dom variable x is expressed as f(x, θ1). The likelihood function of the sample is the fol-

lowing formula (24).

L θð Þ ¼
Yn
i¼1

f xi; θð Þ ð24Þ

Therefore, the likelihood ratio test is performed to obtain the statistic L in the follow-

ing formula (25).

L ¼ L θ1ð Þ
L θ0ð Þ ¼

Yn
i¼1

f xi; θ1ð Þ
Yn
i¼1

f xi; θ0ð Þ
ð25Þ
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Fig. 9 Parallel factor analysis of noise added simulation signal
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If the likelihood ratio L is larger, the parameter θ is more likely to be θ1; it shows that

the result may tend to negate H0. On the contrary, if the ratio is smaller, the parameter

θ is more likely to be θ0, which indicates that the result may be inclined to accept H0.

For a certain limit k, L is defined as shown in the following formula (26).

φ xð Þ ¼ 1 l > k
0 l≤k

�
ð26Þ

Test φ(x) is called the likelihood ratio test of the above test problem.

Neyman-Pearson proposes a principle to determine the optimal test method: param-

eter α satisfies formula (27).

β θð Þ≤α ∀θ∈Θ0 ð27Þ

In formula (27), β(θ) is the power function of the test, Θ0 is the parameter space of

the null hypothesis H0, and θ is the test parameter. Look for a test that satisfies the

above formula so that β(θ) is as large as possible when θ ∈Θ0.To ensure that the prob-

ability of making two types of errors is very small, the sample size must be increased.

For field testing, the smaller the sample size, the better when ensuring the reliability of

the conclusion. The sequential method proposed by A. Wald solves the problem of op-

timal selection of sample size and play an important milestone in the history of statis-

tical development.

The probability function f(x, θ) represents the distribution of the random variable x,

H0(θ = θ0) and H1(θ = θ1) are the null hypothesis and alternative hypothesis of the ran-

dom variable x, respectively. When accepting H1, the probability of the sample x1, …,

xm for any positive integer m is given by P1m = f(x1, θ1), …, f(xm, θ1), and the probability

is given by P0m = f(x1, θ0), …, f(xm, θ0) when accepting H0.The definition of the sequen-

tial probability ratio test is as follows: select two normal numbers A and B (B < A) and

calculate the probability ratio P1m/P0m at each stage of the test.

(a) If p1m/p0m ≥A, the sequential probability ratio test ends, H1is accepted and H0 is

discarded.

(b) If p1m/p0m ≤ B, the sequential probability ratio test ends, H0 is accepted and H1 is

discarded.

(c) If B < p1m/p0m <A, we continue to observe the sequential probability ratio test until

the requirement is met.

When SPRT is applied to target recognition, it is first assumed that one of the M al-

ternative hypotheses is the initial hypothesis. The signal propagation waveform is de-

noted as s(t). When a signal is transmitted, one of the possible waveforms is received

and recorded as follows:

y tð Þ ¼ s tð Þ�hi tð Þ þ n tð Þ i∈ 1; 2;K;Mf g ð28Þ

Where n(t) is additive white Gaussian noise; the impulse response of the target hypo-

thetical channel is expressed as hi(t) and “*” is the convolution factor.

The signal channel receiving data is defined in formula (29), where Qi represents the

target convolution matrix defined in the literature.
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y ¼ Qisþ n ð29Þ

The M target hypotheses are denoted as H1, H2, …, HM, respectively. The parameter

αi,j is the probability (i ≠ j) when the true hypothesis Hi is wrongly selected as Hi. After

obtaining k-th observations, suppose the likelihood ratio of i and j can be defined as

shown in formula (30)

Λk
i; j ¼

pi1 y1ð Þpi2 y2ð ÞΛ pik yk
� �

Pi

p j1 y1ð Þpj2 y2ð ÞΛ pj2 yk
� �

P j
ð30Þ

Where pik(yk) is the probability density function (PDF) with k-th data under the i-th

hypothesis and yk is the k-th observation data. When the likelihood ratio satisfies for-

mula (31), accept the assumption Hm.

Δk
i; j >

1−θi; j
θi; j

j≠i ð31Þ

When the likelihood ratio satisfies the formula (31), stop the loop. If the likelihood ra-

tio does not meet the stopping condition, continue to the next iteration. In fact, the

probability density function of the observed data is constant and satisfies pi1(y) = pi2(y)

=… = pik(y). The intensity waveform is updated with the number of iterations, so the

probability density function of the observation data under the condition of additive

white Gaussian noise can be defined as formula (32).

pik yk
� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
n

p� �Ly � exp −
1
2σ2n

yk−Qisk
� �T

yk−Qisk
� �� 	

ð32Þ

4 Experiments
4.1 Slurry pump fault test system and experimental design

The experimental system to be established in this project is required to operate the slurry

pump under controlled conditions of speed, flow rate, slurry density, and inlet pressure,

and to use and replace the impeller of the slurry pump of different grades and wear. Com-

mon failure parts of centrifugal pumps include rotor impeller, rolling bearing, seal, coup-

ling, etc., of which impeller and rolling bearing failure account for a large proportion. The

schematic diagram of the slurry pump fault diagnosis test system is shown in Fig. 10. The

figure shows the three-dimensional schematic diagram of the test circuit and identifies the

key components. It mainly includes motors, centrifugal pumps, data acquisition systems,

control instruments, glycol cooling tanks, pressure gauges, flow meters, conveyor belts,

sand tanks, pipelines, pressure control tanks, density meters, and sampling ports. First, the

normal impeller is used in the centrifugal pump to run the slurry pump fault test system

for collecting and testing the signal data of the slurry pump vibration, flow, slurry density,

motor speed, and pump inlet and outlet pressure. Then impeller perforation, impeller edge

damage and blade damage, and its impellers with different degrees of damage were se-

lected to replace the original centrifugal pump impeller. After running the slurry pump

fault diagnosis and test system, the data of the vibration, speed, and pump speed of the

slurry pump experiment system were collected.

Figure 11 shows the process flow chart of the slurry pump fault diagnosis test system.

The arrow direction in the figure is the flow direction of the mud when the mud pump
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fault diagnosis experiment system is running. It is the basis for establishing and running

the centrifugal pump fault diagnosis experiment system in this article. The serial num-

ber and related schematic diagram in Figure 11 indicate the following meanings: 1—

centrifugal pump, 2—motor, 3—inverter, 4—power meter sensor, 5—accelerometer, 6—

pressure sensor, 7—flow meter, 8—hole plate, 9—heat exchanger, 10—cooler, 11—

temperature sensor, 12—sand, 13—suction pressure control tank, and 14—suction pres-

sure sensor. The fault diagnosis test system for slurry pump contains a Weir/Warman

3/2 CAH slurry pump (40 HP) with impeller C2147(8.4"). The process flow chart of

fault diagnosis test system for slurry pump covers the key issues mentioned in this art-

icle, but does not cover all aspects of the design of the experimental system. The key is-

sues include that the medium of the cooler in the pipeline is ethylene glycol, the

process water is municipal water, and the heat exchanger medium is steam. Microphone

means for sound collector.

In order for the experiment to run successfully, the designer first needs to design the sys-

tem after engineering calculation and determine the components. The main equipment re-

quired for the experiment includes the centrifugal pump, data acquisition system for

vibration data acquisition, sensors, and a laptop computer. Auxiliary equipment including

storage tanks, valves, instruments, and drive motors are used to control various functions.

The data collected by vibration accelerometers is used to analyze the centrifugal pump

Fig. 11 Process flow chart of fault diagnosis test system for slurry pump

Fig. 10 Schematic diagram of slurry pump fault diagnosis test system
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system in this experiment. The detailed explanation of the vibration sensor for the system

signal acquisition is shown below. In the experiment, three three-axis vibration accelerome-

ters are used. Two of the PCB three-axis ICP (Integrated Circuit Piezoelectric) accelerome-

ters have the sensitivity of 100 mV/g and the frequency range of 2–5 kHz. Another PCB

three-axis ICP accelerometer has the range of 0.5–3 kHz and the sensitivity of 1000 mV/g.

4.2 Slurry pump experimental equipment and signal acquisition system

To research the validity of the multi-scale parallel factor analysis and sequential prob-

ability ratio test proposed in this paper for multi-channel signal in actual complex in-

dustrial production, the centrifugal pump fault diagnosis experimental system was

designed. The general Fig. 12a shows the centrifugal pump fault diagnosis experimental

system. The data acquisition system is shown in Fig. 12b based on a combination of PC

measurement hardware and software, which can input electrical signals from sensors

and other instruments into a computer for processing. NI LabView 7.0 was chosen as

the measurement standard application software because it is easy to build a graphical

measurement interface with the help of a large number of tools and objects. The se-

lected hardware is provided by NI DAQ and is highly compatible with our software ap-

plications. In order to collect the vibration signals of the centrifugal pump in three

directions for each state, it is necessary to install a short-range but high-sensitivity sen-

sor at the key position. Figure 12d is a schematic diagram of the position of the acceler-

ometer. The standard accelerometer and the high-sensitivity accelerometer are installed

on the pump casing near the pump suction port, where they will be close to the parts

that are prone to failure. Another standard accelerometer is mounted on the shaft

Fig. 12 Experiment system of slurry pump. a Centrifugal pump experimental equipment. b Signal
acquisition system. c Sensor for flow rate. d Installation diagram of acceleration sensor
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bearing because this location is sensitive to vibrations transmitted from the stuffing

box. Real-time signals such as flow rate, pressure, speed, and vibration, can be collected

synchronously by the experimental data acquisition system. By commanding the pres-

sure and the flow of the equipment’s loop, we simulate the non-linear operating state of

the industrial process of the mechanical system to establish the non-linear multi-fault

mode, synchronously collect multi-channel signals, and obtain multi-source signals. The

internal interaction mechanism between fluid excitation and vibration response under

non-linear operation mechanism can be analyzed.

The liquid transported in this experiment is set as mud to better collect vibration sig-

nals. In this experiment, normal impeller, and three types of faulty impellers, including

impeller perforation, impeller edge damage and blade damage, were set to simulate fail-

ures in industrial production. Among them, these three failure modes have clear differ-

ences and the typical failures of centrifugal pump impellers can be represented well.

The impeller in the normal state is denoted as S1, and the three types of impellers with

impeller perforation, impeller edge damage, and blade damage are denoted as S2, S3,

and S4. In order to avoid aliasing, the sampling frequency in this experiment is 9009 Hz

according to the Nyquist sampling theorem and the data acquisition time is 20 s for

each group.

In the experiment, different impellers were replaced to collect the vibration signals of

the centrifugal pump under different operation conditions. The steps of the whole ex-

periment are summarized as follows:

(1) Establish the experimental device according to the schematic diagram of slurry

pump test system shown in Fig. 11. The normal impeller shown in Fig. 13 is used

as the impeller of the pump and sediment is added as the pumping medium. After

starting the motor, we adjust the motor speed to 1200 rpm, 1600 rpm, 1800 rpm,

2200 rpm, and 2600 rpm through the known voltage, motor power, motor

efficiency, and other coefficients and instructions. According to the sampling time

of 20 s and sampling frequency of 9009 Hz shown in the previous article, NI

LabView 7.0 application software and NI DAQ signal acquisition system were run

to collect the three sets of three-dimensional vibration signals of the corresponding

pump.

(2) The normal impeller in the original centrifugal pump is replaced by the impeller

perforation of the fault S2 in Fig. 13, and the other parts remain unchanged. Follow

the previous steps to start the centrifugal pump and collect data. When a set of

data is collected, the speed is set to 1400 rpm, 1600 rpm, and 2600 rpm and the

above steps are repeated to collect data.

(3) The S3 of impeller edge damage in Fig. 13c is selected to replace the impeller of S2

in the original centrifugal pump and other parts remain unchanged. Similarly,

follow the previous steps to start the centrifugal pump and collect data.

(4) The S4 of blade damage in Fig. 13d is selected to replace the impeller of S3 in the

original centrifugal pump and other parts remain unchanged. Similarly, follow the

previous steps to start the centrifugal pump and collect data.

(5) After the experiment, the outlet valve of the pump was closed. Close the inlet valve

after turning off the motor. Store experimental data to prepare for subsequent

vibration signal analysis.
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5 Results and discussion
5.1 Multi-source dynamic feature extraction based on parallel factorization

This multi-scale parallel factorization method for the extraction of characteristic signals

in non-linear multi-source and multi-fault modes is proposed in the article. Parallel

factorization can not only perform high-dimensional data processing, but also has the

uniqueness of the decomposition. This property makes the results of parallel

factorization more realistic and has specific physical meanings. The third-order tensor

constructed by multi-channel vibration signals through continuous wavelet transform is

decomposed into the series of different modes of channel/frequency/time by the multi-

scale parallel factor analysis algorithm. The spatial information is introduced into the

time-frequency analysis of signals to form the three-dimensional spatial/time/frequency

characteristic analysis of each factor. The simulation results show that the parallel factor

decomposition for the tensor built by multi-channel signal has the compatibility of de-

composition path and overall consistency. As a result, the topographic map, spectrum,

and time contour of the multi-source fault signal in the centrifugal pump experiment

are acquired. The multi-scale parallel decomposition method for extracting multi-

source feature signals of non-linear failure modes is applied in the fault diagnosis of

centrifugal pumps. It analyzes the internal connection between the optimal decompos-

ition paths of multi-source signal feature factors. The optimal non-linear correspond-

ence relationship between failure modes and characteristic signals in time, frequency,

and space are constructed. Based on the correspondence and overall consistency of

multi-source feature factor decomposition paths, we remodeled three-dimensional fault

Fig. 13 Four failure modes of the impeller in the experiment. a S1 normal impeller. b S2 impeller
perforation. c S3 impeller edge damage. d S4 blade damage
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feature models such as the frequency spectrum and time profile of the fault feature fac-

tors, successfully extracted non-linear multi-dimensional dynamic fault feature signals.

Finally, the corresponding fluctuation regularities of the homologous non-linear failure

mode in the multi-source signals were displayed.

Figure 14 shows the time-frequency diagram obtained of the vibration signals col-

lected in the X-axis direction of the three vibration signal collection points by continu-

ous wavelet transformation when the slurry pump is in normal operation. Figure 15

shows the result of the parallel factor analysis of vibration signal of slurry pump after

continuous wavelet transform in normal state. In this experiment, three-dimensional vi-

bration sensors are set up at three measuring points. We analyze the vibration signals

of these three measuring points to explore the three-dimensional spatial distribution

and characteristic propagation path of dynamic characteristics on the mechanical struc-

ture of the slurry pump. Three groups of original vibration signals are transformed by

continuous wavelet to obtain three-dimensional time-frequency signals to construct a

third-order matrix. After multi-scale parallel factor analysis for the third-order tensor,

the loading values and residual variance of the aisle, time, and frequency factors are

obtained.

Figure 16 shows the time-frequency diagram of the vibration signals collected in the

X-axis direction of the three vibration signal collection points by continuous wavelet

transformation when the slurry pump is in S2 impeller perforation. In the S2 state, the

third-order tensor of 3 × 126 × 4096 is constructed by continuous wavelet transform.

Figure 17 indicates the result of the loading values and residual variance of the aisle,

time, and frequency modes by the parallel factor analysis for the third-order tensor of

slurry pump in state S2.

Figure 18 shows the time-frequency diagram of the vibration signals collected in the

X-axis direction of the three vibration signal collection points by continuous wavelet

transformation when the slurry pump is in S3 impeller edge damage. In the S3 state,

the third-order tensor of 3 × 126 × 4096 is constructed by continuous wavelet trans-

form. Figure 19 indicates the result of the loading values and residual variance of the

aisle, time, and frequency modes by the parallel factor analysis for the third-order tensor

of slurry pump in state S3.

Fig. 14 Time-frequency diagram of 3 vibration signals in normal state S1

Yang et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:37 Page 22 of 33



1 1.5 2 2.5 3
-500

0

500

1000

Aisle

gnidaoL

mode 1

1st component
2nd component
3rd component

1 2 3
0

0.2

0.4

Mode 1

ecnairav
laudise

R
0 50 100 150 200

-0.2

0

0.2

0.4

Frequency(Hz)

gnidaoL

mode 2

1st component
3rd component
2nd component

0 50 100 150
0

0.2

0.4

Mode 2

ecnairavlaudi se
R

0 0.1 0.2 0.3 0.4
-0.05

0

0.05

Time(s)

gnidaoL

mode 3

1st component
2nd component
3rd component

0 2000 4000
0

0.1

0.2

Mode 3

ecnairavlaudise
R

Fig. 15 Parallel factor analysis when the centrifugal pump in normal state S1

Fig. 16 Time-frequency diagrams of 3 vibration signals under fault state S2
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The operating state of the slurry pump system in our experimental device system has

normal operation and three failure states. The failure states include impeller holes, lead-

ing edge damage, and propeller blade damage. Similarly, Fig. 20 shows the time-

frequency diagram when the slurry pump is in S4 propeller blade damage. Figure 21 in-

dicates the result of the loading values and residual variance of the aisle, time and fre-

quency modes by the parallel factor analysis for state S4.

We analyze the vibration signals of these three measuring points to discuss the three-

dimensional spatial distribution and characteristic propagation path of dynamic charac-

teristics on the mechanical structure of the slurry pump. By comparing the decompos-

ition results of parallel factor analysis in the normal and fault state, there are obvious

difference in the time loading factor and frequency loading factor component. Due to

the phenomenon of characteristic coupling and aliasing of mechanical multi-source sig-

nals, the parallel factor analysis can optimize the independent characteristics of each

channel on the surface of the mechanical structure and eliminate the mutual interfer-

ence, overlap, and redundancy of the characteristic signals between the channels. There-

fore, the parallel factor analysis are effective in providing a basis for subsequent

diagnosis of SPRT and the fault identification can be successfully implemented.
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Fig. 17 Parallel factor analysis when the centrifugal pump fails state S2

Yang et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:37 Page 24 of 33



1 1.5 2 2.5 3
-500

0

500

1000

Aisle

gnidaoL

mode 1
1st component
2nd component
3rd component

1 2 3
0

0.2

0.4

Mode 1

ecnairavlaud is e
R

0 50 100 150 200
-0.4

-0.2

0

0.2

0.4

Frequency(Hz)

gnidaoL

mode 2

1st component
2nd component
3rd component

0 50 100 150
0

0.1

0.2

Mode 2

ecnairavlau dis e
R

0 0.1 0.2 0.3 0.4

-0.02

0

0.02

0.04

Time(s)

gnidaoL

mode 3

1st component
2nd component
3rd component

0 2000 4000
0

0.1

0.2

Mode 3

ecnairavla udis e
R

Fig. 19 Parallel factor analysis when the centrifugal pump fails state S3

Fig. 18 Time-frequency diagrams of 3 vibration signals under fault state S3
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Fig. 20 Time-frequency diagrams of 3 vibration signals under fault state S4
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Fig. 21 Parallel factor analysis when the centrifugal pump fails state S4
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5.2 SPRT for the multi-source condition monitoring of centrifugal pump

The proportions of the standard deviation “σ” and mean “μ” of the test signal sequences

have significant influence on the likelihood ratio in the sequential probabilistic ratio

test. Therefore, the mean value and standard deviation of the frequency loading value

after the parallel factor decomposition should be calculated first for the test signal se-

quence. Assuming the probability distribution of the frequency load value sequence of

one set of signals under the multi-source condition monitoring of the centrifugal pump

meets the null hypothesis Hi : μ = μi, and the probability distribution of the frequency

load value sequence of the other set of signals satisfies the alternative hypothesis Hj : μ

= μj [39]. Their corresponding standard deviation σ remains unchanged. When the ori-

ginal hypothesis and the alternative hypothesis are both true, the joint probability dens-

ity functions of these two sets of sequences are shown below.

pik yk
� � ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2σ2

yk−μi
� �2
 �

ð33Þ

pjk yk
� � ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2σ2

yk−μi
� �2
 �

ð34Þ

In formula (33), Pik(yk) is the probability density function null hypothesis. Pjk(yk) in

formula (34) is the probability density function under the alternative hypothesis. The

SPRT probability ratio is calculated in formula (35).

λi; j Y Smð Þ ¼

Yn
k¼1

Pjk

Yn
k¼1

Pik

¼ P j1 y1ð ÞP j2 y2ð ÞΛ Pjk yk
� �

Pi1 y1ð ÞPi2 y2ð ÞΛ Pik yk
� � � P j0

Pi0
ð35Þ

In order to make the calculation easier in practical applications, the likelihood ratio for-

mula is further derived and simplified to obtain the formula (36). Where YSi and YSj are

the to-be-checked sequences of vibration signals Si and Sj, respectively, Δi, j(YSi) and Δi, j

(YSj) are the likelihood ratios of the sequence to be tested YSi and YSj, respectively.

Δi; j Y Smð Þ ¼ 1nλi; j Y Smð Þ ¼ 1n

Yn
k¼1

Pjk

Yn
k¼1

Pik

¼
Xn
k¼1

1n
Pjk

Pik
m ¼ i; j ð36Þ

Referring to the sequential probability ratio test algorithm, we compare the likelihood

ratio with the thresholds A and B to identify different forms of failure of the centrifugal

pump. The size of A and B are closely related to the probability α of type I error and

the probability β of type II error. The variables α, β, A, and B are satisfied with the fol-

lowing relationship:

a ¼ lnA ¼ ln
1−β
α

ð37Þ

b ¼ lnB ¼ ln
β

1−α
ð38Þ
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For S1, S2, S3, and S4 four different impeller fault states of the centrifugal pump ex-

perimental system, Figure 22 shows the process of using the sequential probability ratio

test algorithm to identify the fault. Vibration signals at three different positions col-

lected under two different impeller fault conditions (sj) and (sj) are decomposed by par-

allel factors to obtain frequency loading values, which are calculated according to

formulas (33)–(36) to obtain the likelihood ratio Δi, j of the sequential probability ratio

test. The process of centrifugal pump fault identification is shown below. (1) If Δi, j =

ln (λi, j) ∈ (−∞, b], accept Hj, the centrifugal pump system is under the condition (sj). (2)

If Δi, j = ln (λi, j) ∈ [a,∞), accept Hi, the centrifugal pump is under the condition (si). (3)

If Δi, j ∈ [a, b], the likelihood ratio of sequential probabilistic ratio test continues to be

calculated by extracting the next data in the test sequence according to formulas (33)–

(36). The likelihood ratio will continue to be compared with the threshold value until

the condition (1) or (2) is met or the number of iterations is reached. After the test is

stopped and the probability parameters λ1, 2(YS1), λ1, 2(YS2), λ1, 3(YS1), λ1, 3(YS3), λ1, 4

(YS1) andλ1, 4(YS4) are obtained, the conditions of centrifugal pump will be

distinguished.

The means of the signal S1, S2, S3 and S4 under the four conditions parameters areμ1,

μ2, μ3, μ4. Then, the likelihood ratio is calculated and analyzed according to formulas

(33)~(36). SPRT probability ratios λi, j(YSi) and λi, j(YSj) are calculated by importing the

testing data (YSi, YSj) of the signal waveform for slurry pump Si and Sj conditions to Eq.

(35). Compare the likelihood ratios Δi, j(YSi) and Δi, j(YSj) with the threshold to deter-

mine the state Si and Sj of the centrifugal pump.

Fig. 22 Diagnostic process based on binary SPRT for centrifugal pump
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The difference in the variables λi, j(YSi) and λi, j(YSj) is used to distinguish different

condition (Si,Sj) of the centrifugal pump. When the iteration periods are determined,

the condition S1 is compared with S2, S3, S4 in the relation between SPRT probability

ratios. Figure 23a shows the fluctuation curve between the likelihood ratios Δ1, 2(YS1)

and Δ1, 2(YS2) of the signals S1 and S2 during the determined number of iteration. It

can be seen from the curve in Fig. 23a that Δ1, 2(YS1) < b displays that the centrifugal

pump is in the normal state of S1; Δ1, 2(YS2) > a indicates that the centrifugal pump is

in a fault state of the S2 impeller perforation. From the curve in Fig. 23b, it can be seen

that Δ1, 3(YS1) < b indexes that the centrifugal pump is in the normal state of S1; Δ1, 3

Fig. 23 Result of SPRT in variables λ1, 2, λ1, 3, λ1, 4 with calculation iteration
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(YS3) > a indicates that the centrifugal pump is in the fault state of S3 impeller edge

damage. In Fig. 23c, the inequality (Δ1, 4(YS1)) < b is satisfied, the condition is S1. The

inequality(Δ1, 4(YS4)) > a is satisfied, the condition of the centrifugal pump is S4 impeller

blade damage. The SPRT parameters Δ1, m, m = 2, 3, 4 in Fig. 22a–c are adopted to dis-

tinguish that the normal condition (S1) of the centrifugal pump from the conditions

(S2,S3,S4).

We found that the different fault states of the centrifugal pump in the experi-

ment can also be distinguished by this method of SPRT. Figure 24a indicates the

Fig. 24 Result of SPRT in variables λ2, 3, λ2, 4, λ3, 4 with calculation cycles
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SPRT parameters λ2, 3 in Eqs. (33–36) of the testing sequences YS2 and YS3. The

SPRT inequality (Δ2, 3(YS2)) < b is satisfied, then the condition of the centrifugal

pump is S2. The inequality (Δ2, 3(YS3)) > a is satisfied, then the condition of the

slurry pump is S3 (impeller edge damage). It can be seen from the curve in Fig. 24b

that when (Δ2, 4(YS2)) < b is satisfied, the centrifugal pump is fault S2 (impeller per-

foration); when (Δ2, 4(YS4)) > a is satisfied, the centrifugal pump is fault S4 (impeller

blade damage). When the inequality (Δ3, 4(YS3)) < b is satisfied in Fig. 24c, the con-

dition is S3 (impeller edge damage). When (Δ3, 4(YS4)) > a is satisfied, the condition

of the centrifugal pump is S4 (impeller blade damage). The parameters (λi, j(YSi), λi,

j(YSj)) are effective indicator to monitor the different conditions of the multi-fault

and multi-source centrifugal pump.

6 Conclusion
Parallel factorization can not only perform high-dimensional data processing, but also

has the uniqueness of the decomposition. This property makes the results of parallel

factorization more realistic and has specific physical meanings. Through numerical

simulation, the parallel factorization is used to explore the non-linear correspondence

relationship of multi-source signal characteristic factors in time, frequency, and space

under different simulation states. By adjusting the different frequency, time, phase, and

amplitude of the analog signal, the loading values of the three modes are captured after

parallel factorization to research the corresponding relationship between the analog sig-

nals. Then, the parallel factor analysis is applied to the centrifugal pump fault diagnosis

experimental system to analyze the state characteristics under multiple fault modes.

The non-linear multi-dimensional actional fault characteristic parameter of the impel-

lers with different faults of the centrifugal pump was triumphantly acquired, and the

corresponding fluctuation regularities of the homologous fault mode characteristics in

the multi-source signals were displayed.

The analysis of the comprehensive result graph shows that the centrifugal pump

fault diagnosis methodology based on parallel factor analysis of multiple scales and

sequential probability ratio test is effective and reliable. This method first analyzes

the collected vibration signals through parallel factor analysis and then conducts se-

quential probability ratio testing. It identifies different failure modes by comparing

likelihood ratios and thresholds. Not only normal conditions and fault conditions

can be identified, but also different fault conditions can be distinguished. Therefore,

the methodology proposed in these contents of article is very suitable for non-

linear multi-source and multi-fault signal analysis and processing. The PARAFAC

theory proposed in this paper can also be used in the blind separation of mechan-

ical multiple faults.
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