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Abstract

In compressed sensing, the Toeplitz sensing matrices are generated by randomly
drawn entries and further optimizes them with suitable optimization methods.
However, during an optimization process, state-of-the-art optimization methods tend
to lose control over the structure of measurement matrices. In this paper, we
proposed the novel approach for optimization of Toeplitz sensing matrices based on
evolutionary algorithms such as Genetic Algorithm (GA), Simulated Annealing (SA),
and Particle Swarm Optimization (PSO) for compression of an image signal.
Furthermore, we investigated the performance of Basis Pursuit (BP) and Orthogonal
Matching Pursuit (OMP) algorithms for the reconstruction of the images. The
proposed optimized Toeplitz sensing matrices based on evolutionary algorithms
such as GA, SA, and PSO exhibit a significant reduction in the mutual coherence (μ)
and thus improved the recovery performance of 2D images compared to state-of-
the-art non-optimized Toeplitz sensing matrices. The result reveals that the
optimized Toeplitz sensing matrices with Basis Pursuit (BP) achieved more accurate
results with a robust and uniform reconstruction guarantee compared to the OMP
algorithm. However, BP shows the slow reconstruction performance of the image
signal. On the other hand, an optimized Toeplitz sensing matrix with OMP shows a
fast reconstruction guarantee, but at the cost of a reduction in the PSNR.
Furthermore, the proposed approach retains the structure of Toeplitz sensing
matrices and improves the image recovery performance of compressed sensing.
Finally, the experimental results validate the effectiveness of the proposed method
based on evolutionary algorithms for image compression.

Keywords: Compressed sensing, Genetic Algorithm (GA), Simulated Annealing (SA),
Particle Swarm Optimization (PSO), Optimization, Basis Pursuit (BP), Orthogonal
Matching Pursuit (OMP)

1 Introduction
The conventional Nyquist sampling depends on the highest amount of rate of alter-

ation of a signal. In this sampling scheme, samples of the signal are captured at double

the highest frequency in the signal. However, this method restricts the efficient com-

pression of a signal. Since this scheme places an enormous burden on an encoder side
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which acquires a vast number of samples of the signal and keeps only a few significant

samples that are required to characterize the signal. Furthermore, these methods in-

clude complicated multiplications, an exhaustive coefficient search, and sorting proced-

ure along with the arithmetic encoding of the significant coefficients with their

locations. Consequently, it results in a vast storage requirement and power

consumption.

On the contrary, compressed sensing is emerging as the most recent sampling

scheme, which allows compression and signal reconstruction from the minimum

number of measurements. In this scheme, the signal acquisition and compression

are performed simultaneously at the encoder end. The signal is recovered back

with a higher probability of success by using different optimization algorithms.

Thus, CS results in a significant reduction in storage requirement and further re-

duces power consumption.

Compressed sensing has been implemented in diverse fields, including medical im-

aging, radar imaging, cameras, coding theory, geophysics, and astronomy.

CS-based biomedical imaging has been shown enormous interest and growth in re-

cent times. Recently, researchers Wang, Bresler, and Vasilis [1] had reported an in-

depth survey and success on the application of CS in MRI, CT, PET, SPECT, optical

imaging, and ultrasound imaging. The researchers Lustig et al. [2] had been successfully

used CS to MRI. Thus, CS-based MRI could speed up the data acquisition process by

reducing the scan time, and this allows us to examine a higher number of patients.

The dictionary learning-based reconstruction of MR images is one of the recent de-

velopments and shows great potential in medical applications. The researchers

Ravishankar and Bresler [3] reconstructed MR images based on the dictionary learning

approach. Furthermore, they [4] had successfully proposed learning of doubly sparse

transform for the images.

Further, the application of CS in radar imaging has been an additional growing field

of interest. Yang et al. [5] had successfully designed the segmented recovery scheme for

CS-based SAR (Synthetic Aperture Radar) imaging. Bu et al. [6] had developed a CS al-

gorithm for SAR imaging. They had reconstructed the data of good quality with limited

observations and thus results in the reduction of storage requirement. Deng et al. [7]

had successfully proposed CS-based image coding. They had been achieved a robust

performance against the lossy channel compared to conventional coding methods.

Li and Qi [8] proposed a nonlocal Douglas-Rachford (NLDR) algorithm, based on

Douglas-Rachford splitting to solve low-rank optimization problems constrained by the

CS measurements. Shen et al. [9] sparse Bayesian dictionary learning based compressed

sensing-based inpainting of aqua moderate resolution imaging.

Furthermore, some researchers had been implemented and successfully tested the

real-time hardware for CS-based applications. For example, the single-pixel camera

based on compressed sensing had developed by Duarte et al. [10]. Further, Nagesh and

Li [11] had developed color imaging architecture based on the combination of single-

pixel CS camera and Bayer color filter. Similarly, single-pixel CS was applied for remote

sensing by researcher Ma Jianwei [12], which results in the reduction of storage re-

quirement and the computational cost of imaging.

The author Liquan Zhao et al. [13] has implemented compressed sensing for moni-

toring the images of the transmission line. These images are compressed and
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reconstructed using a compressed sensing technique which, reduces the overall oper-

ational cost of a system.

In a nutshell, the Nyquist sampling put an enormous burden on the encoder side due

to a massive number of samples of an acquired signal, particularly for audio/speech,

ECG, image, and video signals. This fact inspired the study of compressed sensing as a

potential solution for sampling, compression, and reconstruction of a signal. Intuitively,

sparsity represents a large amount of energy concentration in a few numbers of coeffi-

cients. Several real-world signals such as speech and image are sparse or compressible

in some transform domain. For example, images are compressible in basis algorithms

such as JPEG and JPEG2000. The compressed sensing uses this sparsity property to

compress and recover the signal effectively.

Traditionally, the random sensing matrices widely employed for signal compres-

sion in CS. The random Gaussian sensing matrices are entirely unstructured.

Therefore, these matrices resulted in an enhanced computational complexity and

increased memory storage requirement. Hence, the practical implementation of

random Gaussian sensing matrices is costly. Further, sensing technologies need

structured measurement matrices to accomplish different applications. Thus, the

Toeplitz measurement matrix is one of the structured class matrix and widely used

in a different field of applications, such as MRI [14], Synthetic Aperture Radar

(SAR) [15], and channel estimations [16]. The Toeplitz matrices possess some ex-

ceptional features, such as these matrices generated with a smaller number of en-

tries. Moreover, different techniques are available to speed up the matrix

multiplication, which further may result in fast signal reconstruction. So far, the

work carried out under the statement that the Toeplitz matrices generated using

randomly drawn entries. Recently, Dirksen et al. [17] proposed partial Gaussian cir-

culant matrices for 1-bit compressed sensing. Furthermore, Jie et al. [18] proposed

compressed sensing matrices using vector spaces for signal processing.

In the literature, so far, different methods are proposed for the optimization of ran-

dom Gaussian measurement matrices [19, 20]. However, these methods randomly draw

entries to generate random Toeplitz matrices and further optimize them with proper

optimization methods. Nevertheless, during an optimization process, these methods

lose control over the structure of measurement matrices. Also, researchers Abolgha-

semi, Jarchi, and Sanei [20] proposed the gradient-decent-based method to optimize

mutual coherence. In this method, the modified cost function is followed by the

gradient-descent minimization method to optimize the sensing matrices iteratively.

This method shows the robustness in handling complex values. The researcher Duarte-

Carvajalino and Sapiro [21] proposed the non-iterative way to calculate t-averaged mu-

tual coherence. This method intended to make a Gram matrix closer to the identity

matrix. However, this method ignores the negative eigenvalues and thus presents the

problem of complex values which, causes the algorithm to fail.

It had proved that if sensing matrices satisfy restricted isometry property (RIP)

[22], then there has been a high probability of superior quality signal reconstruc-

tion. On the contrary, the RIP is impractical to evaluate. Therefore, another way to

satisfy the RIP and guarantee the exact reconstruction of a signal is to compute

the mutual coherence (μ) between the sensing matrix (Φ) and the sparsifying

matrix (Ψ). The mutual coherence (μ) of a dictionaryDM ×N =ΦM × N ×ΨN ×N is
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defined as the biggest absolute and normalized inner product among different col-

umns of D [19] and given by the equation (1).

Minimizeμ Dð Þ ¼
ffiffiffiffiffiffi

N :
p

max1≤ i; j≤N ;i≠ j
dT
i d j

�

�

�

�

dik k: d j

�

�

�

�

ð1Þ

where N is the length of the input signal. From linear algebra, 1≤μðΦ;ΨÞ≤ ffiffiffiffi

N
p

.

Thus, the minimization of mutual coherence may be one of the effective ways to

boost the recovery performance of compressed sensing matrices [23].

This paper proposes the optimization of Toeplitz sensing matrices based on

evolutionary algorithms such as Genetic Algorithm (GA), Simulated Annealing

(SA), and Particle Swarm Optimization (PSO) algorithm for image compression.

The minimization of mutual coherence may be one of the effective ways to

boost the recovery performance of compressed sensing matrices. Thus, this

paper proposed the minimization of the mutual coherence (μ) between the sens-

ing matrix (Φ) and the sparsifying matrix (Ψ) using evolutionary algorithms. The

proposed optimization approach provides the best random Toeplitz vector,

which consequently minimizes the mutual coherence (μ) between the sensing

matrix (Φ) and the sparsifying matrix (Ψ). Further, the Toeplitz measurement

matrix generated using the best random Toeplitz vector and finally applied for

image compression. Furthermore, this proposed approach retains the structure

of the Toeplitz matrix and improves the image recovery performance of com-

pressed sensing.

Since the novel approach of the proposed optimization method is based on an evolu-

tionary algorithm, and hence, it is entirely different from the state-of-the-art

optimization methods. Until now, all the state-of-the-art optimization methods use

non-evolutionary approaches for optimization of sensing matrices and thus tend to lose

the structure of sensing matrices. Therefore, it is not practicable to compare proposed

evolutionary approaches directly with non-evolutionary approaches of state-of-the-art

methods. Thus, rather than, we have compared the performance of the proposed opti-

mized Toeplitz sensing matrices based on evolutionary algorithms with non-optimized

Toeplitz sensing matrices.

The main contributions of the proposed work are as follows:

1. We proposed a novel approach for the optimization of Toeplitz sensing matrices

based on Evolutionary algorithms.

2. We proposed the first approach for the optimization of Toeplitz sensing matrices

based on the Genetic Algorithm.

3. We proposed the second approach for the optimization of Toeplitz sensing

matrices based on the Simulated Annealing (SA) Algorithm.

4. We proposed the third approach for the optimization of Toeplitz sensing matrices

based on the Particle Swarm Optimization (PSO) Algorithm.

5. We investigated the signal reconstruction performance using Basis Pursuit (BP)

and Orthogonal Matching Pursuit (OMP) algorithm for GA, SA, and PSO-based

optimization approaches.
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6. Finally, GA, SA, PSO-based optimization approaches exhibit a significant reduction

in the mutual coherence (μ) and thus improved the recovery performance of 2D

images compared to non-optimized Toeplitz sensing matrices.

The organization of the paper is as follows: Section 1 presents the formulation of an

optimization problem. Section 2 elaborates on the proposed optimization method based

on evolutionary algorithms. Section 4 presents results and discussion. Finally, Section 5

presents the conclusions.

2 Method
Let the problem needs to optimize in terms of the minimization problem. Therefore,

objective/fitness function is required to minimize. This problem consists of two matri-

ces, namely the measurement/sensing matrix (ΦM ×N, where M<N) and the sparsifying

transform matrix (ΨN×N). The Toeplitz matrix is used as a sensing matrix to compress

the given signal, whereas the Discrete Cosine Transform (DCT) is used as a sparsifying

transform matrix. The problem description is as follows:

The dictionary matrix (D) given as: DM ×N =ΦM ×N ×ΨN ×N.

Now, the dictionary matrix D must be optimized, such that the mutual coherence

(inner product) of matrix D is as small as possible as given by the equation (1).

Thus, the objective function is to optimize (minimize) the mutual coherence (μ) of

the dictionary matrix (D) using an evolutionary algorithm such as Genetic Algorithm

(GA), Simulated Annealing (SA), and Particle Swarm Optimization.

The minimization of the mutual coherence (μ) of the dictionary matrix (D) will sat-

isfy the RIP condition and further results in improving the recovery performance of a

sparse signal.

The statement of the optimization problem is as follows:

The objective function is defined by equation (2) as follows. Here, N is the length of

the input signal.

Minimizeμ Dð Þ ¼
ffiffiffiffiffiffi

N :
p

max1≤ i; j≤N ;i≠ j
dT
i d j

�

�

�

�

dik k: d j

�

�

�

�

ð2Þ

2.1 Proposed optimization of Toeplitz sensing matrices using Genetic Algorithm (GA)

This section presents the optimization of Toeplitz sensing matrices based on the Gen-

etic Algorithm (GA). The initial population was generated by using different random

Toeplitz vectors. Then the fitness function f(x) is evaluated for all the random Toeplitz

vectors. The new population made using three steps: selection, crossover, and mutation.

The Roulette wheel selection technique was used to select the best parents to create

new offspring. In this technique, the best parents have chosen to depend on the fitness

of the population. Higher fitness indicates a greater chance to get selected. Then the bit

sequence of the two parents is swapped to create the new offspring. The diversity in

the new population is achieved with a mutation. Next, the old population was replaced

by the new population [24]. Then the algorithm is tested for the convergence criterion

such as the maximum number of iterations. Finally, when an algorithm is converged, it
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will return the best Toeplitz vector, which results in minimum mutual coherence (μ).

Thus, this best solution vector is used to generate the Toeplitz matrix.

The algorithmic steps for optimization of Toeplitz sensing matrices using Genetic Al-

gorithm (GA) [25] are given as follows:

(i) Generate an initial population of n chromosomes using random Toeplitz vectors:

Here, each Toeplitz vector is considered as one of the candidate solutions for the

given problem. Each Toeplitz vector corresponding to the Toeplitz matrix is

generated.

(ii) Then evaluate the fitness function f(x) of each chromosome in the population:

(iii)Further, evaluate the mutual coherence (i.e., fitness function) (μ) between the

generated Toeplitz matrix (Φ) and the sparsifying matrix (Ψ). Thus, we had

evaluated the fitness function for the generated Toeplitz matrix. Similarly, evaluate

the fitness function for all the generated Toeplitz vectors.

(a) Selection: Select two candidate solutions as a parent chromosome depending on

their fitness value. Here, the best parents are selected by using the Roulette

wheel selection technique. It works on the principle of the higher the fitness

value of a chromosome better is the chance to get selected.

(b) Crossover: Swap the bit sequence of the chosen parent chromosomes to create

a new population. We can select one-point/two-point/three-point crossover for

this purpose.

(c) Mutation: It provides the variety in a new population and thus protects the

algorithm to trap at the local optimum solution. However, this results in slow

convergence of the algorithm.

(iv)Now, create a new population using the following steps:

(v) Replace the old population with a new population.

(vi) Finally, test for the convergence criterion of the Genetic Algorithm such as the

number of iterations, etc.

When an algorithm is converged, it returns the best candidate solution, i.e., it returns

the Toeplitz vector, which resulted in minimum mutual coherence (μ). Otherwise, go

to step (2) and repeat the procedure still end criterion meets.

The simulation shows excellent results with the following specifications:

� Algorithm: Binary GA Algorithm

� Population Size = 100

� Selection technique: Roulette wheel selection technique

� Selection rate of parents for generating offspring = 0.5 or 50% of the initial

population

� Number of encoding bits = 16

� Mutation method: Single point crossover

� Mutation rate = 0.15

� The maximum iterations (stopping criteria) = 100

Figure 1 shows the convergence characteristics of GA. It is observed from Fig. 1 that

the value of the fitness function reduces with an increase in the number of iterations.
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Moreover, the cost of the fitness function remains constant from the 10th iteration to

the 100th iteration. Thus, GA shows good and stable convergence characteristics up to

the 100th iteration.

2.2 Proposed optimization of Toeplitz sensing matrices using Simulated Annealing (SA)

algorithm

This section presents the optimization of Toeplitz sensing matrices using Simulated

Annealing (SA). Primarily, the temperature parameter (T0) is set to some high value,

and then it is gradually reduced using the temperature reduction factor (α). The initial

solution vector (s) and the new solution vector (s0) are randomly generated using a ran-

dom generator and then evaluate the fitness function for both the solution vectors.

If a new solution has better fitness than the current solution, it is selected as the next

solution. On the contrary, if the new solution has a worse fitness compared to the

current solution, the algorithm still considers it as the next solution. The acceptance or

rejection of the new solution vector as the future solution vector depends on the

Metropolis-Hasting criterion [26]. The Metropolis-Hasting principle given as follows:

p rð Þ ¼ e
−δf
kT

where δ f = f(s)–f (s0) is the fitness difference between the new solution vector and the

old solution vector, T = temperature parameter, P(r) = probability of acceptance or re-

jection of the new solution vector as a next solution vector and r∈ (0, 1), and k = 1

(Boltzmann’s constant).

A random number (r) is generated such that r∈ (0, 1). If a random number (r) < exp

[(-δf)/(T)], then a new solution is selected as the next solution (s0= s); otherwise, a new

solution is discarded. Then the temperature parameter is reduced gradually to narrow

search the optimum solution. The algorithm repeated until it meets the stopping criter-

ion, such as minimum temperature value or a number of iterations. Finally, when an al-

gorithm is converged, it will return, the best Toeplitz vector which, results in a

minimum mutual coherence (μ). Thus, this best solution vector is used to generate the

Toeplitz matrix.

Fig. 1 Convergence characteristics of GA
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The algorithmic steps for the optimization of Toeplitz sensing matrices using Simu-

lated Annealing (SA) [27] are given as follows:

The simulations are conducted with the following specifications:

� The maximum numbers of iterations = 500

� Initial Temperature=1

� Temperature reduction factor=0.8

� Stopping Temperature value= 1e-8

Figure 2 shows the convergence characteristics of the SA. It is observed from Fig. 2

that the value of the fitness function reduces with an increase in the number of itera-

tions. Moreover, the value of the fitness function remains relatively constant from the

200th iteration to the 500th iteration. Thus, SA exhibited good and stable convergence

characteristics up to the 500th iteration.

2.3 Proposed optimization of Toeplitz sensing matrices using Particle Swarm

Optimization (PSO) algorithm

This section presents the optimization of Toeplitz sensing matrices using Particle

Swarm Optimization (PSO). Here, each particle in the population is equivalent to the
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candidate solution in the solution space. This solution space is generated using a ran-

dom number generator. Then the fitness function is evaluated for each solution in the

population. If the current particle fitness is higher than the previous local best particle

fitness, then we have to update the local best particle position (PBest). Similarly, if the

current particle fitness is higher than the previous global best particle fitness, then we

have to update the global best particle position (GBest). Then update the position and

velocity of each particle using equation (position update equation) and equation (vel-

ocity update equation). Finally, when an algorithm is converged, it will return the best

Toeplitz vector, which results in minimum mutual coherence (μ). Thus, this best solu-

tion vector is used to generate the Toeplitz matrix.

The algorithmic steps for the optimization of Toeplitz sensing matrices using Particle

Swarm Optimization (PSO) [28] are given as follows.

(i) Randomly generate the initial population.

(ii) Randomly initialize the positions and velocities of particles in the population.

(iii)Evaluate the fitness function for each particle in the population.

(iv) If the current particle fitness is higher than the previous local best particle fitness,

then update the local best particle position (PBest).

(v) Similarly, if the current particle fitness is higher than the previous global best

particle fitness, then update the global best particle position (GBest).

(vi)Then update the position and velocity of each particle.

� The velocity update equation is given by the equation number (3), and (4):

vi k þ 1ð Þ ¼ Inertia þ cognitiveþ social; ð3Þ
vi k þ 1ð Þ ¼ ω� vi kð Þ þ c1 � random1ðÞ�
PBesti−xi kð Þð Þ þ c

2
ñrandom2ðÞ�

GBest−xi kð Þð Þ;
ð4Þ

where vi (k) is the initial velocity, and vi (k+1) is the updated velocity of the ith particle,

w: inertia weight, c1, c2: Positive constant c1 and c2 are personal (cognitive) and social

Fig. 2 Convergence characteristics of SA
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learning factors; PBest: personal past best position of the ith particle; GBest: Global best

position of the swarm; random1 (); random2 (): random function in the range [0, 1];

and k denotes the iteration counter.

� The position update equation (5) given as:

xi k þ 1ð Þ ¼ xi kð Þ þ vi k þ 1ð Þ; ð5Þ

where xi(k) is the initial position of the particle, and xi(k+ 1) is the updated position of

the ith particle.

(vii)Go to step (iii), and repeat until stopping condition meets.

The simulations conducted with the following specifications:

� Population size = 100

� Inertia weight (maximum) = 0.9

� Inertia weight (minimum) = 0.4

� Personal/cognitive factor (c1) = 2

� Social learning factor (c2) = 2

� The maximum numbers of iterations =100

Figure 3 shows the convergence characteristics of the PSO. It is observed from Fig. 3

that the value of the fitness function reduces with an increase in the number of itera-

tions. Moreover, the value of the fitness function remains constant from the 50th iter-

ation to the 100th iteration. Thus, PSO showed good and stable convergence

characteristics up to the 100th iteration.

Fig. 3 Convergence characteristics of PSO
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3 Results and discussion
The proposed work is evaluated on 256 × 256 test images namely: “Boat.bmp,” “Barbar-

a.bmp,” and “Mandrill.jpg” [29]. The 8 × 8 DCT block image processing is used on 256

× 256 test images. The optimized random Toeplitz sensing matrices are used to com-

press the image signal.

The Discrete Cosine Transform (DCT) is used as the sparsifying basis for an image

signal because of its higher sparseness. The test images recovered using Basis Pursuit

(BP) [30] and Orthogonal Matching Pursuit (OMP) algorithm [31]. The experimental

work performed using MATLAB 9.0 software with Intel (R) Core (TM) i3-4130 CPU @

3.40 GHz, 8 GB RAM system specifications. The reconstruction performance of test im-

ages evaluated using metrics such as mutual coherence (μ), number of measurements,

mean square error (MSE), peak signal-to-noise ratio (PSNR), signal reconstruction

time, and a sensing matrix construction time.

3.1 Performance analysis of GA-optimized Toeplitz sensing matrices with BP and OMP

This section presents the performance analysis of the proposed genetic

algorithm-based optimized Toeplitz sensing matrices with Basis Pursuit (BP) and

Orthogonal Basis Pursuit (OMP) as a reconstruction algorithm. The reconstruc-

tion performance of test images evaluated using error metrics such as mutual co-

herence (μ), number of measurements (m), mean square (MSE), peak signal-to-

noise ratio (PSNR), signal reconstruction time, and sensing matrix construction

time.

Figure 4a–c compared the mutual coherence (μ) of proposed GA-optimized Toe-

plitz sensing matrices with non-optimized Toeplitz sensing matrices for different

values of measurements (m). The result shows that the proposed GA-optimized

Toeplitz sensing matrices exhibit a significant reduction in the mutual coherence

(μ) compared to non-optimized Toeplitz sensing matrices for “Boat.bmp,” “Barbar-

a.bmp,” and “Mandrill.jpg” images. The reduction in mutual coherence indicates

the improvement in the reconstruction performance of the test images and vice

versa.

Figure 5 shows that the proposed GA-Optimized Toeplitz sensing matrices with BP

achieve excellent results with higher PSNR compared to OMP-based GA-optimized

Toeplitz sensing matrices.

Here, the higher values of PSNR indicate the better quality of the reconstructed

images. Figure 6 shows the comparison of mean square error (MSE) between the

proposed GA-Optimized Toeplitz sensing matrices with BP and OMP algorithms.

The proposed GA-optimized Toeplitz sensing matrices with BP achieve more

(See figure on previous page.)
Fig. 4 a The mutual coherence (μ) of the proposed GA-optimized Toeplitz sensing matrix for different
values of measurements (m), for “Boat.bmp” image. b The mutual coherence (μ) of proposed GA-optimized
Toeplitz sensing matrix for different values of measurements (m), for “Barbara.bmp” image. c The mutual
coherence (μ) of the proposed GA-optimized Toeplitz sensing matrix for different values of measurements
(m), for “Mandrill.jpg” image
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accurate results (i.e., reduction in MSE) compared to the GA-optimized Toeplitz

sensing matrices with OMP, as shown in Fig. 6. Here, smaller values of MSE indi-

cate a more accurate result and thus gives better quality of the reconstructed

images.

Furthermore, Figure 7a–c compared the image reconstruction time required for

the GA-optimized Toeplitz sensing matrices with Basis Pursuit (BP) and OMP al-

gorithms for “Boat.bmp,” “Barbara.bmp,” and “Mandrill.jpg” images. The result

shows that the GA-optimized Toeplitz sensing matrices with the OMP algorithm

achieve fast image reconstruction compared to the Basis Pursuit (BP)-based image

reconstruction.

Table 1 shows the performance comparison of the proposed GA-optimized sens-

ing matrices with Basis Pursuit (BP) and OMP algorithms for compression ratio

CR (N/m) =0.5.

Fig. 6 Compares MSE of the proposed GA-optimized Toeplitz sensing matrix with BP and OMP algorithm,
for different values of measurements (m)

Fig. 5 Compares PSNR of the proposed GA-optimized Toeplitz sensing matrix with BP and OMP algorithm,
for different values of measurements (m)
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Fig. 7 a The image reconstruction performance of the proposed GA-optimized Toeplitz sensing matrix with BP and
OMP algorithm, for “Boat.bmp” image. b The image reconstruction performance of the proposed GA-optimized Toeplitz
sensing matrix with BP and OMP algorithm, for “Barbara.bmp” image. c The image reconstruction performance of the
proposed GA-optimized Toeplitz sensing matrix with BP and OMP algorithm, for “Mandrill.jpg” image
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From Table 1, it is observed that the proposed GA-optimized sensing matrices with BP

achieved higher PSNR for “Boat.bmp,” “Barbara.bmp,” and “Mandrill.jpg” test images.

Similarly, it is observed that the GA-optimized sensing matrices with BP showed lower

MSE compared to GA-optimized sensing matrices with OMP. On the contrary, GA-

optimized sensing matrices with OMP achieved considerably fast image reconstruction

compared to GA-optimized sensing matrices with BP. Additionally, GA-optimized

sensing matrices with OMP show the rapid construction of sensing matrices. (Please refer

to Figure 16 from Appendix 1 for reconstruction quality of test images using proposed

GA-Optimized sensing matrices with BP and OMP algorithm.)

3.2 Performance analysis of SA-optimized Toeplitz sensing matrices with BP and OMP

This section presents the comparative performance analysis between the SA-BP and

SA-OMP based optimized Toeplitz sensing matrices.

It is seen from Fig. 8a–c that the proposed SA-optimized Toeplitz sensing matrices

exhibited a significant reduction in the mutual coherence (μ) compared to non-optimized

Toeplitz sensing matrices, for “Boat.bmp” image, “Barbara.bmp,” and “Mandrill.jpg” images.

It is noted from Fig. 9 that the proposed SA-optimized Toeplitz sensing

matrices with BP achieved excellent results with higher PSNR compared to OMP

based image reconstruction for “Boat.bmp,” “Barbara.bmp,” and “Mandrill.jpg”

images.

It is observed from Fig. 10 that the proposed SA-optimized Toeplitz sensing matrices

with BP achieve more accurate results (i.e., reduction in MSE) compared to the SA-

optimized Toeplitz sensing matrices with OMP.

Fig. 9 Compares PSNR of the proposed SA-optimized Toeplitz sensing matrix with BP and OMP algorithm,
for different values of measurements (m)

(See figure on previous page.)
Fig. 8 a The mutual coherence (μ) of proposed SA-optimized Toeplitz sensing matrix for different values of
measurements (m), for “Boat.bmp” image. b The mutual coherence (μ) of the proposed SA-optimized
Toeplitz sensing matrix for different values of measurements (m), for “Barbara.bmp” image. c The mutual
coherence (μ) of proposed SA-optimized Toeplitz sensing matrix for different values of measurements (m),
for “Mandrill.jpg” image
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It is noted from Fig. 11a–c that the SA-optimized Toeplitz sensing matrices with the

OMP algorithm achieved fast image reconstruction compared to the Basis Pursuit (BP)

based reconstruction of the test images.

It is noted from Table 2, that the proposed SA-optimized sensing matrices with BP

achieved higher PSNR for “Boat.bmp,” “Barbara.bmp,” and “Mandrill.jpg” test images.

Similarly, SA-optimized sensing matrices with BP show lower MSE compared to SA-

optimized sensing matrices with OMP. On the contrary, SA-optimized sensing matrices

with OMP achieve considerably fast image reconstruction compared to SA-optimized

sensing matrices with BP. Additionally, it also shows the rapid construction of sensing

matrices. (Please refer to Figure 17 from Appendix 2 for reconstruction quality of test

images using proposed SA-Optimized sensing matrix with BP and OMP algorithm.)

3.3 Performance analysis of PSO-optimized Toeplitz sensing matrices with BP and OMP

This section presents the comparative performance analysis between the PSO-BP and

PSO-OMP based optimized Toeplitz sensing matrices.

It is seen from Fig. 12a–c that the proposed PSO-optimized Toeplitz sensing matrices

achieve a significant reduction in the mutual coherence (μ) compared to non-optimized

Toeplitz sensing matrices, for “Boat.bmp” image, “Barbara.bmp,” and “Mandrill.jpg” images.

It is noted from Fig. 13 that the proposed PSO-optimized Toeplitz sensing matrices

with OMP attain marginally lower PSNR compared to non-optimized Toeplitz sensing

matrices with BP.

Similarly, it is observed from Fig. 14 that the proposed PSO-optimized Toeplitz sens-

ing matrices with OMP exhibit marginally higher MSE compared to the non-optimized

Toeplitz sensing matrices with BP. However, this is due to the fact that the reconstruc-

tion guarantees of OMP are weak and show non-uniform behavior.

It observed from Fig. 15a–c that the PSO-optimized Toeplitz sensing matrices with

OMP exhibit significantly faster image reconstruction performance as compared to the

non-optimized Toeplitz sensing matrices for “Boat.bmp,” “Barbara.bmp,” and

“Mandrill.jpg,” respectively.

Fig. 10 Compares MSE of the proposed SA-optimized Toeplitz sensing matrix with BP and OMP algorithm,
for different values of measurements (m)
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Fig. 11 a The image reconstruction performance of proposed SA-optimized Toeplitz sensing matrix with BP
and OMP algorithm, for “Boat.bmp.” b The image reconstruction performance of the SA-optimized Toeplitz
sensing matrix with BP and OMP algorithm, for “Barbara.bmp.” c The image reconstruction performance of
SA-optimized Toeplitz sensing matrix with BP and OMP algorithm, for “Mandrill.jpg”
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Fig. 12 a The mutual coherence (μ) of proposed PSO-optimized Toeplitz sensing matrix for different values
of measurements (m), for “Barbara.bmp” image. b The mutual coherence (μ) of proposed PSO-optimized
Toeplitz sensing matrix for different values of measurements (m), for “Barbara.bmp” image

Parkale and Nalbalwar EURASIP Journal on Advances in Signal Processing         (2021) 2021:70 Page 21 of 30



It is noted from Table 3 that the proposed PSO-optimized sensing matrices with BP

achieve higher PSNR for “Boat.bmp,” “Barbara.bmp,” and “Mandrill.jpg” test images.

Similarly, PSO-optimized sensing matrices with BP attain lower MSE compared to

OMP-Optimized sensing matrices with OMP.

On the contrary, PSO-optimized sensing matrices with OMP achieve considerably

fast image reconstruction compared to PSO-optimized sensing matrices with BP.

Additionally, it also shows the rapid construction of sensing matrices. (Please refer to

Figure 18 from Appendix 3 for reconstruction quality of test images using proposed

PSO-Optimized sensing matrix with BP and OMP algorithm.)

4 Conclusion
In this paper, a novel approach to optimize Toeplitz sensing matrices using evolu-

tionary algorithms such as Genetic Algorithm (GA), Simulated Annealing (SA), and

Particle Swarm Optimization (PSO) algorithms for compressed sensing is discussed.

Furthermore, the performance of Basis Pursuit (BP) and Orthogonal Matching

Fig. 13 Compares PSNR of the proposed PSO-optimized Toeplitz sensing matrix with BP and OMP
algorithm, for different values of measurements (m)

Fig. 14 Compares MSE of the proposed PSO-optimized Toeplitz sensing matrix with BP and OMP
algorithm, for different values of measurements (m)
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Fig. 15 (See legend on next page.)
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Pursuit (OMP) algorithms are investigated for the reconstruction of the 2D image

signal.

The minimization of mutual coherence (μ) between the sensing matrix (Φ) and the

sparsifying matrix (Ψ) is one of the effective ways to boost the recovery performance of

compressed sensing matrices.

The following significant conclusions are drawn based on the investigations:

The proposed optimized Toeplitz sensing matrices based on evolutionary algorithms

exhibit a significant reduction in the mutual coherence (μ). Thus the proposed method

clearly outperforms the non-optimized Toeplitz sensing matrices for image compres-

sion application.

The proposed optimized Toeplitz sensing matrices based on Genetic Algorithm

(GA), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) algo-

rithms with Basis Pursuit (BP) as a reconstruction algorithm achieve more accurate

results (i.e., reduction in MSE) with higher PSNR compared to the non-optimized

Toeplitz sensing matrices with Basis Pursuit (BP). Furthermore, these matrices

achieve significantly faster image reconstruction as well as faster construction of

sensing matrices.

Further, it is noted that the proposed optimized Toeplitz sensing matrices based

on Genetic Algorithm (GA), Simulated Annealing (SA), and Particle Swarm

Optimization (PSO) algorithms with Orthogonal Matching Pursuit (OMP) as a re-

construction algorithm exhibits the lower values of PSNR and higher values of

MSE compared to the non-optimized Toeplitz sensing matrices with BP. Generally,

this behavior present due to the greedy approach of the OMP algorithm. Moreover,

this is due to the fact that the reconstruction guarantees of OMP are weak and

show non-uniform behavior.

On the contrary, the optimized Toeplitz sensing matrices with OMP achieved signifi-

cantly faster image reconstruction as well as rapid sensing matrix construction per-

formance as compared to the non-optimized Toeplitz sensing matrices.

Thus, in general, the optimized Toeplitz sensing matrices with Basis Pursuit (BP)

achieve more accurate results with a robust and uniform reconstruction guarantee.

However, they showed a slow signal reconstruction performance. On the other hand,

the optimized Toeplitz sensing matrices with OMP show a fast reconstruction guaran-

tee, but at the cost of the reduction in the PSNR.

Finally, the result shows the successful implementation of the proposed optimized

Toeplitz sensing matrices using evolutionary algorithms such as Genetic Algorithm

(GA), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) algorithms

for compressed sensing. Furthermore, Toeplitz sensing matrices are easy for hardware

realization because of its lower computational complexity compared to random Gauss-

ian sensing matrices.

(See figure on previous page.)
Fig. 15 a The image reconstruction performance of the proposed PSO-optimized Toeplitz sensing matrix
with BP and OMP algorithm, for “Boat.bmp.” b The image reconstruction performance of PSO-optimized
Toeplitz sensing matrix with BP and OMP algorithm, for “Barbara.bmp.” c The image reconstruction
performance of PSO-optimized Toeplitz sensing matrix with BP and OMP algorithm, for “Mandrill.jpg”
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5 Appendix 1
5.1 Reconstructed test images using proposed GA-Optimized sensing matrix with BP and

OMP algorithm

Fig. 16 Comparison between reconstructed test images using proposed GA-optimized sensing matrix with
BP and OMP algorithm, for CR=0.5. a Test Image-I “Boat.bmp.” b Test Image-II “Barbara.bmp.” c Test
Image-III “Mandrill.bmp”
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6 Appendix 2
6.1 Reconstructed test images using proposed SA-optimized sensing matrix with BP and

OMP algorithm

Fig. 17 Comparison between reconstructed test images using the proposed SA-optimized sensing matrix
with BP and OMP algorithm for CR=0.5. a Test Image-I “Boat.bmp.” b Test Image-II “Barbara.bmp.” c Test
Image-III “Mandrill.bmp”
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Pursuit; OMP: Orthogonal Matching Pursuit; RIP: Restricted isometry property; MRI: Magnetic resonance imaging;
CT: Computerized tomography; PET: Positron emission tomography; SPECT: Single-photon emission computed
tomography; SAR: Synthetic Aperture Radar; DCT: Discrete Cosine Transform; MSE: Mean square error; PSNR: Peak
signal-to-noise ratio

7 Appendix 3
7.1 Reconstructed test images using proposed PSO-optimized sensing matrix with BP

and OMP algorithm

Fig. 18 Comparison between reconstructed test images using proposed PSO-optimized sensing matrix with
BP and OMP algorithms, for CR=0.5. a Test Image-I “Boat.bmp.” b Test Image-II “Barbara.bmp.” c Test
Image-III “Mandrill.bmp”
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