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Abstract
Vehicle re-identification is a challenging task that matches vehicle images captured by
different cameras. Recent vehicle re-identification approaches exploit complex deep
networks to learn viewpoint robust features for obtaining accurate re-identification
results, which causes large computations in their testing phases to restrict the vehicle
re-identification speed. In this paper, we propose a viewpoint robust knowledge
distillation (VRKD) method for accelerating vehicle re-identification. The VRKD method
consists of a complex teacher network and a simple student network. Specifically, the
teacher network uses quadruple directional deep networks to learn viewpoint robust
features. The student network only contains a shallow backbone sub-network and a
global average pooling layer. The student network distills viewpoint robust knowledge
from the teacher network via minimizing the Kullback-Leibler divergence between the
posterior probability distributions resulted from the student and teacher networks. As a
result, the vehicle re-identification speed is significantly accelerated since only the
student network of small testing computations is demanded. Experiments on VeRi776
and VehicleID datasets show that the proposed VRKD method outperforms many
state-of-the-art vehicle re-identification approaches with better accurate and speed
performance.

Keywords: Knowledge distillation, Vehicle re-identification

1 Introduction
Taking a vehicle image as a query, vehicle re-identification [1, 2] aiming to retrieve a
vehicle of the same identity from a large scale image gallery plays a vital role in video
surveillance for public security. As shown in Fig. 1, vehicle images captured by different
cameras usually contain large viewpoint variations, resulting in vehicle re-identification
as a challenging task.
Although recent vehicle re-identification methods [3–13] achieve significant progress

via carefully dealing with viewpoint variations, large testing computations are required.
Because those methods apply either multiple deep networks or an ultra-deep network
in their testing phases. For multi-deep network based methods, both the adversarial
bi-directional long short-term memory (LSTM) network (ABLN) [3] and the spatially
concatenated convolutional network (SCCN) [4] additionally apply long short-term
memory (LSTM)modules to learn transformations acrossing different viewpoints of vehi-
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Fig. 1 Vehicle samples from the VeRi776 [1] dataset. Each row denotes vehicles of the same identity

cles. The viewpoint-aware attentive multi-view inference (VAMI) [5] method requires a
CNN and a multi-layer perceptron (MLP)-based viewpoint-aware attention model. The
cross-view generative adversarial network (XVGAN) [7] uses three sub-networks (i.e.,
classification, generative, and discriminative sub-networks), and each one is a CNN. The
quadruple directional deep network [8] and the joint quadruple directional deep network
[9] approaches demand four directional sub-networks embedded with the same back-
bone network (i.e., shortly and densely connected CNN (SDC-CNN) [14] and different
directional pooling layers. For ultra-deep network based methods, the dual-path adaptive
attention model for vehicle re-identification (AAVER) [10] applies a residual network (i.e.,
ResNet-101) [15] to construct the backbone sub-network. The pose-aware multi-task re-
identification (PAMTRI) method uses a dense convolutional network (i.e., DenseNet121)
[16] to realize the backbone sub-network. The embedding adversarial learning network
(EALN) [12], the part-regularized (PartReg) discriminative feature preservation [13] and
VehicleNet [17] methods adopt ResNet-50 [15] to built backbone sub-networks. As a neg-
ative result of requiring large testing computations, the vehicle re-identification speed is
limited, which hinders practical applications of vehicle re-identification.
Recently, knowledge distillation (KD) algorithms [18–26] have attracted much atten-

tion, which can compress deep networks efficiently. Hinton et al. [18] firstly proposed
the KD method, which adopts the output logit values of a complex teacher network as
soft labels to supervise a simple student network. Surprisingly, with the help of KD, the
simple student can obtain notable performance improvements and keep low model com-
plexities. In addition to using the teacher network’s output logit values, some methods
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[19–21] encourage the output values of a student network’s hidden layers are similar to
those of a teacher’s hint layers. Different from [18–21] that distill knowledge from a com-
plex teacher network to a student network, multi-teacher distillation approaches [23, 24]
utilize multiple teacher networks to guide a student network, and the self distillation
method [22] distills knowledge within one network itself. Besides, Cho et al. [25] show
that a small student cannot mimic a large teacher and find that the consequence can be
mitigated by stopping the teacher’s training early. Therefore, in this work, we apply KD
algorithms to accelerate vehicle re-identification.
In this paper, a viewpoint robust knowledge distillation (VRKD) method is proposed

for accelerating vehicle re-identification. To the best of our knowledge, it is the first
attempt to accelerate vehicle re-identification while maintains features’ viewpoint robust-
ness via a knowledge distillation way. The proposed VRKDmethod consists of a complex
teacher network and a simple student network. The teacher network applies quadru-
ple directional deep networks to learn viewpoint robust features of vehicle images. Each
directional deep network holds the same backbone network but different directional pool-
ing layers. On the contrary, the student network only contains one shallow backbone
sub-network and a global average pooling layer. Furthermore, the student network distills
viewpoint robust knowledge from the teacher network by minimizing the Kullback-
Leibler [18] divergence between the posterior probability distributions resulted from the
student and teacher networks. During the testing phase, testing computations can be
reduced significantly since only the student network is required. Therefore, the vehicle
re-identification speed is greatly accelerated. Experiments on VeRi776 [1] and VehicleID
[2] demonstrate that the proposed VRKD method is superior to many state-of-the-art
vehicle re-identification approaches in terms of accurate and speed performance.
The main novelty of this paper is summarized as follows. This paper makes the first

attempt to maintain features’ viewpoint robustness via knowledge distilling from quadru-
ple directional deep networks and acquires good results in terms of accuracy, running
time, and parameter consume, although it just uses a simple knowledge distillation
method to compress multiple vehicle re-identification models.

2 Methodology
As shown in Fig. 2, the proposed VRKD method’s framework is composed of a
teacher network and a student network. The teacher network is responsible for learn-
ing viewpoint robust features of vehicle images. The student network takes charge of
distilling viewpoint robust knowledge from the teacher network to accelerate vehicle
re-identification. More details are described as follows.

2.1 Teacher network: viewpoint robust feature learning

Quadruple directional deep networks (QDDNs) [8] are applied to construct the teacher
network in this paper. Different from initial QDDNs [8] that apply SDC-CNN [14], we
use ResNet [15] to build the backbone sub-network, because we find that recently re-
identification works [10, 12, 13, 27] apply ResNet as backbone sub-networks and obtain
good results. Due to this difference, QDDNs are re-designed in this paper, as follows.
(1) ResNet-18 [15] based backbone sub-networks. The powerful training trick [27],

namely, ‘last stride=1’, is applied to retain more spatial information in the learned fea-
ture maps, which sets the last stride of the fourth residual group of ResNet-18 to 1. (2)
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Fig. 2 The framework of the proposed viewpoint robust knowledge distillation method. FC represents a fully
connected layer. Dotted arrows denote those components only work in the teacher network’s training
process

Newly designed quadruple directional pooling layers. Taking the pooling processing on
a height × width = 16 × 16 sized feature map as an example, for both diagonal average
pooling (DAP) and anti-diagonal average pooling (AAP), the pooling kernel sizes are set
to 8 columns, and the strides are set to 8, according to diagonal and anti-diagonal direc-
tions, respectively. Besides, the main diagonal and anti-diagonal elements are repeatedly
used, i.e., they are simultaneously labeled by two colors, as shown in Fig. 3. For both hori-
zontal average pooling (HAP) and vertical average pooling (VAP), the pooling kernel sizes
are respectively set to 10×16 and 16×10, and the strides are set to 2. When processing a
height × width = 8 × 8 sized feature map, the kernels and strides are halved for all types
of pooling layers. Similarly, when processing a height × width = 32 × 32 sized feature
map, the kernels and strides are doubled for all types of pooling layers.
For each directional deep network (i.e., net), assume the input is a vehicle image x and

the output logit value (see Fig. 2) is z = net(x, θ) ∈ R1×C , where θ represents the param-
eter of net and C is the number of classes. Then, the cross-entropy (CE) loss function
[8, 28] for training each directional deep network of the teacher network.

2.2 Student network: viewpoint robust knowledge distillation for accelerating

As shown in Fig. 2, the student network is composed of a backbone sub-network and a
global average pooling (GAP) layer. The GAP layer approximates the teacher network’s
quadruple directional pooling layers by globally calculating the spatial averages of feature
maps resulted from the backbone network. Therefore, the student network’s architecture
is much simpler than that of the teacher network. Nevertheless, due to the student net-
work is much simpler, it should be enhanced by inheriting viewpoint robust knowledge
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Fig. 3 The diagrams of diagonal (a), and anti-diagonal (b) average poolings. Elements marked by the same
color are averaged

from the teacher network. To be more specific, the student network’s loss function is
designed as follows:

Loss(x, y, θs) = Lce(x, y, θs) + λLkld(zs, zt), (1)

where x is a training sample and y is the class label; θs is the parameter of the student net-
work; Lce is the cross-entropy (CE) loss function [8, 28], especially, the hyper-parameter
T working in the softmax function is also set to 1; Lkld is the Kullback-Leibler divergence
(KLD) loss [18]; λ ≥ 0 is a constant used to control the contribution of Lkld, and its default
value is set to 1.
The KLD loss Lkld is formulated as follows:

Lkld
(
zs, zt

) = −
∑C

c=1
p(zsc) log

(
p(zsc,T)

p(ztc,T)

)
, (2)

where zs and zt are the logit values of x produced by the student network and teacher
networks, respectively; p(zc,T) is the posterior probability that denotes x is belonging to
the c-th class, which is calculated by using the softmax function [28] as follows:

p(zc,T) = softmax(zc,T) = ezc/T
∑C

j=1 ezj/T
, (3)

where T ≥ 1 is a hyper-parameter used to soften the posterior probability distribution.
Besides, there are two important settings for Equation (2). (1) zt is equal to the MEAN
value of the logit values resulted from quadruple deep networks of the teacher network, as
shown in Fig. 2. (2)T is set to 2, which is the so-called distillation temperature in [18] used
to soften a posterior probability distribution generated by the softmax function, making
the teacher network additionally provides more information about which classes are more
similar to the predicted class (i.e., the class of the maximum posterior probability).
Combining Equations (1) and 2, it can be found that the teacher network’s parameter is

not involved in Equation (1), which means that during the student network’s training pro-
cess, the teacher network is responsible for providing the logit values zt , and its parameter
is frozen. Then, through optimizing the KLD loss function, the student network’s output
(i.e., a logit value z) is encouraged to be similar to the student network’s output. Conse-
quently, the student network can distill viewpoint robustness from the teacher network
and maintain small testing computations to obtain a fast testing speed.
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In order to evaluate performance under different model scales, three different backbone
sub-networks (i.e., CNN, SDC-CNN [14], and ResNet-18 [15]) are applied to construct
student networks. Quadruple directional networks of the teacher network uniformly use
ResNet-18 [15]. For the CNN and SDC-CNN, the resolution of input images is set to
128 × 128 for reducing computations. For the ResNet-18, the resolution of input images
is set to 256 × 256. In this paper, the applied CNN is shallow that only contains five
convolutional layers. Each convolutional layer is followed by batch normalization [29],
ReLU [30], and max-pooling layers. The channels of convolutional layers are 32, 64, 128,
192, and 256, respectively. The first two convolutional layers use 5 × 5 sized filters, and
the rest convolutional layers apply 3 × 3 sized filters. The strides for convolutional and
max-pooling layers are set to 1 and 2, respectively. All max-pooling layers apply 3 × 3
sized pooling windows.

3 Results and discussion
To validate the superiority of the proposed VRKD method, we compare with state-of-
the-art approaches on two large scale datasets. Those 256-dimensional features resulted
from the student network are used for vehicle re-identification, as shown in Fig. 2. The
Cosine distance is applied as the similarity metric. The rank-1 identification rate (R1)
[1, 2] andmean average precision (MAP) [8, 31, 32] are used to assess the accuracy perfor-
mance. Model parameters and floating-point of operations (FLOPs) are used to measure
the model size and the computational complexity, respectively. The feature extraction
time (FET) per image [33] is applied to evaluate the running time performance during the
testing phase.

3.1 Datasets

VeRi776 [1] is constructed by 20 cameras in the unconstrained traffic scenarios, and each
vehicle is captured by 2–18 cameras. Following the evaluation protocol of [1], VeRi776 is
divided into a training subset and a testing subset. The training subset contains 37,746
images of 576 subjects. The testing subset includes a probe subset of 1678 images of 200
subjects and a gallery subset of 11,579 images of the same 200 subjects. Besides, only
cross-camera vehicle pairs are evaluated, i.e., excluding results of images captured by the
same camera are excluded in the evaluation process.
VehicleID [2] includes 221,763 images of 26,267 subjects. The training subset consists of

110,178 images of 13,164 subjects. There are three testing subsets, i.e., Test800, Test1600,
and Test2400, for evaluating the performance at different data scales. Specifically, Test800
includes 800 gallery images and 6532 probe images of 800 subjects. Test1600 contains
1600 gallery images and 11,395 probe images of 1600 subjects. Test2400 is composed of
2400 gallery images and 17,638 probe images of 2400 subjects. For three testing subsets,
the division of probe and gallery subsets is implemented as follows: randomly selecting
one image of a subject to form the probe subset, and all the remaining images of this
subject are used to construct the gallery subset. This division is repeated and evaluated
ten times, and the average result is reported as the final performance.

3.2 Setup

The training configuration is summarized as follows. (1) The ResNet-18 [15] is pre-
trained on ImageNet [34]. (2) The z-score normalization, random erasing [35], and
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Table 2 The accuracy performance (%) of three backbone networks on the VeRi776 [1] dataset and
the VehicleID [2] dataset

Backbone Networks Using VRKD Training Tricks VeRi776 VehicleID

Test800 Test1600 Test2400

LS=1 LSR MAP R1 MAP R1 MAP R1 MAP R1

DenseNet121 [16] No No Yes 54.26 85.64 78.84 72.22 75.84 69.70 73.01 66.98

ResNet-18 [15] No No Yes 68.03 92.37 84.04 77.51 79.93 73.39 77.40 70.74

ResNet-50 [15] No No Yes 73.98 95.05 87.36 81.31 83.50 77.27 80.94 74.35

random horizontal flip operations are implemented for the data augmentation. The prob-
abilities of horizontal flip and random erasing operations are both set to 0.5. (3) The
mini-batch stochastic gradient descent method [34] is applied to optimize parameters,
and the mini-batch size is set to 256. (4) The label smooth regularization for the cross-
entropy (CE) loss is applied, and the label smooth constant is set to 0.1, as done in [36].
(5) The weight decays are set to 5 × 10−4, and the momentums are set to 0.9. (6) The
learning rates are initialized to 2×10−3, and they are linearly warmed up [27] to 2×10−2

in the first 5 epochs. After warming up, the learning rates are maintained at 2 × 10−2

from 6th to 60th epochs. Then, the learning rates are reduced to 2 × 10−3 between 61st
to 90th epochs, and further dropped to 2 × 10−4 between 91st to 110th epochs. Finally,
the learning rates between 111st to 120th epochs are retained at 2 × 10−5.
The hardware device is a workstation configured with an Intel Xeon E3-1505 M v5

CPU @2.80 GHz, 4 NVIDIA Titan X GPU and 512 GB DDR3 Memory. During the test-
ing phase, only a single NVIDIA Tian X GPU is applied. The deep learning platform is
PyTorch [37].

3.3 Comparison with state-of-the-art methods

Table 1 shows the performance comparison of the proposed VRKD and state-of-the-art
methods on VeRi776 [1] and VehicleID [2]. For a fair comparison, we list out training
tricks of all methods, including setting last convolution layer’s stride (LS) to 1 [27], using
the label-smoothing regularization (LSR) [36], and adding a triplet (TRI) loss [38].

3.3.1 Comparison on VeRi776

The performance comparison of the proposed VRKD andmultiple state-of-the-art meth-
ods on the VeRi776 [1] database is shown in Table 1. It can be found that the proposed
VRKD using ResNet-18 acquires good MAP (i.e., 76.12%), R1 (i.e., 95.65%), lower FLOPs
and few model parameters. More details are analyzed as follows.
Firstly, compared with those multiple network based vehicle re-identification methods

(i.e., XGAN [7], SCCN+CLBL-8 [4], ABLN-32 [3], VAMI [5], JQD3Ns [9], and QD-DLF
[8]), it can be found that even discarding three training tricks during the student network’s
training phase, our VRKDmethod still outperformsmost of those approaches (i.e., XGAN
[7], SCCN+CLBL-8 [4], ABLN-32 [3], and VAMI [5]) using comparable model scales.
For example, the best VAMI [5] only obtains a 77.03% R1, which is 6.16% lower than
our VRKD method’s R1. Besides, compared to JQD3Ns [9] that applies four SDC-CNNs,
VRKD outperforms JQD3Ns [9] by an 8.29% higher MAP, a 75.0% fewer FLOPs, and a
75.5% fewer parameters.
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Table 3 The role (%) of viewpoint robust knowledge distillation on the VeRi776 [1] dataset and the
VehicleID [2] dataset

Student networks Using VRKD Training tricks VeRi776 VehicleID

Test800 Test1600 Test2400

LS=1 LSR MAP R1 MAP R1 MAP R1 MAP R1

CNN No No Yes 42.16 78.78 67.67 61.35 65.83 60.09 62.66 56.68
Yes No Yes 52.20 83.02 77.17 69.69 73.98 67.51 70.59 63.86

SDC-CNN [14] No No Yes 58.50 89.81 78.28 71.22 75.34 69.23 72.41 66.37
Yes No Yes 69.87 93.62 83.44 76.37 79.62 72.87 76.39 69.56

DenseNet121 [16] No No Yes 54.26 85.64 78.84 72.22 75.84 69.70 73.01 66.98
Yes No Yes 65.22 90.11 84.67 78.00 80.67 74.19 78.03 71.94

ResNet-18 [15] No No Yes 68.03 92.37 84.04 77.51 79.93 73.39 77.40 70.74
Yes No Yes 74.67 94.52 87.29 81.29 83.35 77.21 81.30 74.62

ResNet-50 [15] No No Yes 73.98 95.05 87.36 81.31 83.50 77.27 80.94 74.35
Yes No Yes 75.74 94.58 88.70 82.26 84.14 77.90 81.59 75.18

Secondly, compared with those ultra-deep network based approaches(i.e., AAVER [10],
PAMTRI [11], EALN [12], and PartReg [13]), our VRKD method uses a much shallower
backbone sub-network (i.e., ResNet-18 [15]) to obtain better results in terms of MAP,
R1, FLOPs, parameter consume. For example, compared with PartReg [13], our VRKD
acquires a 4.20% higher MAP, and our VRKD saves 60.32% parameters and 51.1% FLOPs.

3.3.2 Comparison on VehicleID

The performance comparison of the proposed VRKD and multiple state-of-art methods
on the VehicleID [2] database is shown in Table 1. It can be observed that the performance
of the proposed VRKD using lower FLOPs and model parameters still outperforms many
state-of-the-art methods under comparison, including XGAN [7], SCCN+CLBL-8 [4],
ABLN-32 [3], VAMI [5], JQD3Ns [9], QD-DLF [8], AAVER [10], PAMTRI [11], EALN
[12], and PartReg [13].

Fig. 4 Visualizations of features resulted from SDC-CNN-based student networks using a VRKD and not b
using VRKD, respectively
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3.4 Discussion

3.4.1 Role of VRKD

For a fair comparison, it is very necessary to observe SOTA methods’ performance using
ResNet-18 [15] in Table 1. However, many SOTA methods do not release their codes,
we could not directly replace their backbone by ResNet-18 [15] to evaluate their per-
formance. Therefore, we apply an indirect way to demonstrate that the positive role of
viewpoint robust knowledge distillation (VRKD) in our method.
Without using VRKD, we simply train DenseNet121 [16], ResNet-50 [15], and ResNet-

18 [15] for 256 sized images, and each one following a global average pooling layer
supervised the label-smoothing softmax loss function [28]. The results are shown in
Table 2. From Table 2, we can see that ResNet-50 [15] outperforms both DenseNet-121
[16] and ResNet-18 [15]. We think this may because DenseNet-121 [16] is too deep to
be well trained on VeRi776 [1]/VehicleID [2] dataset without sufficient images, while
ResNet-18 [15] is too shallow that has a weaker feature learning ability than ResNet-50
[15]. This comparison shows that ResNet-18 [15] is not the best choice for accuracy per-
formance alone. However, as shown in Table 3, the accuracy performance of our VRKD
using ResNet18 [15] is comparable to many state-of-the-art methods using ResNet-50
[15] that listed in Table 1. Therefore, VRKD has a positive role in improving the accuracy
performance.
Furthermore, as shown in Table 3, for five different student networks, the usage of

VRKD consistently improves MAP and R1 performance. For example, when the stu-
dent network is a CNN, the usage of VRKD can raise MAP by 10.04% and R1 by 4.24%
on VeRi776. When the student network is the DenseNet121 [16], using VRKD brings a
10.96% MAP improvement on VeRi776. These results demonstrate that knowledge dis-
tillations from the teacher network can effectively improve the accuracy performance of
student networks.
In addition to the quantitative comparison shown in Table 3, the visualized analysis

is implemented by using the t-distributed stochastic neighbor embedding (T-SNE) [39]
method, as shown in Fig. 4. It can be found that with the help of VRKD, the student net-
work pulls images of the same identity closer (see clusters 1©, 2©, 3©), which demonstrates

Fig. 5 The feature extraction time (FET) per image comparison
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the VRKD can help the student network inherit viewpoint robustness from the teacher
network.

3.4.2 Testing time analysis

Figure 5 further shows a testing time comparison. Many state-of-the-art methods have
specifically designed architectures and do not release codes, which causes a huge dif-
ficulty to re-implement them on the same deep learning platform. In this paper, sev-
eral commonly-used backbone sub-networks (i.e., ResNet50 [15], ResNet101 [15], and
DenseNet121 [16]) are evaluated to estimate the testing time performance of state-of-
the-art methods [10–13] since backbone sub-networks cost most computations during
testing phases.
From Fig. 5, one can see the proposed method using ResNet-18 (i.e., VRKD (ResNet-

18)) acquires the best (FET) performance. For example, if the batch size is set to 128, the
FET of VRKD (ResNet-18) about is 33% of that of the DenseNet121, 30% of that of the
ResNet-50, 25% of that of the teacher network (i.e., four ResNet-18), and 21% of that of
the ResNet-101, respectively. These results clearly show that the proposed VRKDmethod
can save much running time during the testing phase to obtain a fast testing speed.

3.4.3 Impact of distillation temperatures and KLD loss’s weights

From Fig. 6(a), the CNN based student network is more affected by the viewpoint robust
knowledge distillation temperature (i.e., T of Equation (2)) than SDC-CNN and ResNet-
18 based student networks. Similarly, the CNN based student network is more affected by
KLD loss’s weights (i.e., λ of Equation (1)) than SDC-CNN and ResNet-18 based student
networks, as shown in Fig. 6(b). Because that the shallow CNN itself is much weaker
than SDC-CNN and ResNet-18 in terms of the feature learning ability, so that it is more
influenced by the teacher network.

4 Conclusion
In this paper, to accelerate vehicle re-identification, a viewpoint robust knowledge distil-
lation (VRKD) method is proposed, which consists of a complex teacher network and a

Fig. 6 a Different student networks’ R1 via varying distillation temperatures. Here, the KLD loss’s weight (i.e., λ
of Equation (1)) is set to 1. b Different student networks’ R1 via varying of KLD’s weights (i.e., λ of Equation (2))
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simple student network. The teacher network learns viewpoint robust features by quadru-
ple deep networks that hold the same backbone network and different directional pooling
layers. In contrast, the student network only contains one backbone sub-network and a
global average pooling layer. The student network distills viewpoint robust knowledge
from the teacher network by minimizing the Kullback-Leibler divergence between the
posterior probability distributions resulted from the student and teacher networks. The
student network of small computations is applied in the testing phase, therefore, the
vehicle re-identification speed is significantly accelerated. Experiments on VeRi776 and
VehicleID demonstrate that the proposed VRKD method can achieve superiorities in
terms of accurate and testing speed performance, comparing with many state-of-the-art
vehicle re-identification approaches.
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