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In this paper, we present a low complexity sparse beamspace direction-of-arrival (DOA)
estimation method for uniform circular array (UCA). In the proposed method, we firstly
use the beamspace transformation (BT) to transform the signal model of UCA in
element-space domain to that of virtual uniform linear array (ULA) in beamspace
domain. Subsequently, by applying the vectoring operator on the virtual ULA-like array
signal model, a novel dimension-reduction sparse beamspace signal model is derived
based on Khatri-Rao (KR) product, the observation data of which is represented by the
single measurement vectors (SMVs) via vectorization of sparse covariance matrix. And
then, the DOA estimation is formulated as a convex optimization problem by following
the concept of a sparse-signal-representation (SSR) of the SMVs. Finally, simulations are
carried out to validate the effectiveness of the proposed method. The results show that
without knowledge of the number of signals, the proposed method not only has
higher DOA resolution than the subspace-based methods in low signal-to-noise ratio
(SNR), but also has far lower computational complexity than other sparse-like DOA
estimation methods.

Keywords: Direction-of-arrival estimation, Uniform circular array, Low complexity,
Beamspace transformation, Convex optimization

1 Introduction

In the past decades, direction-of-arrival (DOA) estimation of propagating plane waves
for uniform circular array (UCA) has been widely used in various fields, such as com-
munication, radar, sonar, radio astronomy and so on [1]. The DOA estimation methods
and their derivatives are divided into three categories: beamforming techniques [2, 3],
subspace-based methods [4, 5], and the maximum likelihood approach [6, 7]. Besides
these approaches, sparse-signal-representation (SSR)-based DOA estimation methods
[8-12] have been paid great attention in recent years, which are widely used in element-
space domain, beamspace domain [13], and various scenarios where mixture (coherent
and incoherent, or circular and non-circular [14, 15]) signals exist as well. They are differ-
ent from the conventional representative methods, such as the Capon beamformer [16]
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and the multiple signal classification (MUSIC) [17, 18]. In conventional DOA methods,
the observation data matrix is generally treated as a linear combination of the steer-
ing vectors and incoming signals plus stochastic noise [19]. However, the observation
data matrix of the SSR-based DOA estimation approaches is formulated by the sparsely-
represented signal vectors and the overcomplete basis, where the overcomplete basis is
comprised of spatial samples from the array manifold [10] on the premise that the DOAs
of signals fall sparsely into the entire spatial domain. In [8], the £;-SRACV is based on a
sparse representation of array covariance vectors and applies the sparsity constraints to
an ¢1-norm minimization problem for improving the DOA estimation performance. In
[10], £1-SVD sparsely represents the signal subspace by the singular value decomposition
(SVD). In [9], a low complexity sparse covariance-based DOA estimation method called
LC-SRACV is proposed, which uses the Khatri-Rao (KR) product in SSR framework to
recover array covariance vectors of only one single measurement vector.

These methods mentioned above are all manipulated in element-space domain. In
beamspace domain, the beamspace transform (BT) technique [20, 21] is mainly adopted
to solve the DOA estimation problem of UCA. It is a kind of manifold separation tech-
nique [22] that is suitable for an arbitrary array. It substantially is a modal transform
that maps the steering vectors of a UCA to that of a virtual uniform linear array (ULA)
with Vandermonde structure. Using the technique, some DOA estimators with MUSIC
in beamspace domain and derives, such as Real Beamspace MUSIC (RB-MUSIC)[17] and
unitary ESPRIT in beamspace domain [23], are proposed. However, the estimators rely
heavily on a priori known signal number, which has a close relationship with noise sub-
space, and have less capability of angular separation if the number of sources beyond the
number of the sensors.

In this paper, we propose a low complexity sparse beamspace DOA estimation for
UCA by vectorizing the array covariance vectors, called BS-£1-SRSMVS, which exploits
the methodology combining the BT technique and the SSR model of single measure-
ment vectors (SMVs) in beamspace domain. Having transformed the signal model from
UCA to virtual ULA and vectorized the observation data, a KR-based virtual ULA sig-
nal model [24] is proposed. The new array manifold matrix of the signal model can be
decomposed into the product of a selection matrix and a Vandermonde vector. Compar-
ing the subspace-based method as RB-MUSIC, the proposed method does not need a
priori knowledge of the number of sources; meanwhile, it has higher performance of angle
resolution. Due to the centro-Hermitian characteristics of the steering vectors of virtual
ULA, using Khatri-Rao product, the sparse vectors to be estimated can be recovered with
single measurement vectors rather than multiple measurement vectors (MMVs) [25, 26]
used in other SSR-based DOA estimation methods, such as £1-SVD and £;-SRACV. The
difficulty in SSR-based DOA estimation for UCA is that how to reduce dimensionality of
the observation data for lower computational complexity. The kernel ideology of the new
methodology is that transforming the observation data of UCA to that of virtual ULA,
which is a prerequisite for the downscaling of the observed data, and applying the vec-
torization to the covariance observation data of virtual ULA, which makes the covariance
matrix reduced to the SMVs.

This paper is organized as follows. In Section 2, we overview the related works of SSR-
based DOA estimation methods. In Section 3, we derive the steering vectors of the virtual
ULA in beamspace domain via the BT technique and induce a dimension-reduction vir-
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tual array signal model for UCA. Subsequently, we propose a new sparse beamspace
DOA estimation method with SMV version. In Section 4, we analyse the computational
complexity of different methods theoretically. In Section 5, simulation experiments are
conducted to demonstrate the performance of the proposed method. Finally, Section 6
concludes the paper.

2 Related works

Here we focus on some DOA estimation methods based on sparse signal representation
[8-10, 15]. The models are reconstructed using types of vectors, which are introduced in
Sections 2.1 and 2.2. The advantages and disadvantages of these methods are introduced
in Section 2.3.

2.1 Singular vectors of observation data matrix

In this case, the observation data matrix is generally processed in element-space domain.
Using the singular value decomposition transformation [10], a signal model composed
of K singular vectors is reconstructed, namely the singular vectors space. The method
called ¢1-SVD. Its signal model is formulated as YV = AS®¥ 4+ N*", where the superscript
of (e)*" denotes the operation of SVD , Y¥, A, §5V and N*" are respectively observation
data matrix of signals, array manifold matrix, impinging signals and noise. S$*" is a two-
dimension matrix, which is indexed by rows with spatial angle samples whose dimension
ranges from 1 to Q and by columns with singular vectors whose dimension ranges from
1 to K. Thus the ¢3-norm of the i-th row vector s; of S corresponds to the sparsity of

the spatial spectrum, where |[|s;[|2 = 4/ K 52, k=1,--- K, s;(k) is the k-th element
(£2)

ofs;, i =1,...,Q, Qis the number of spatial angle samples. Here it is simplified to s; *".
So the DOA estimation is converted to the problem of searching the spatial spectrum of
s by minimizing [|Y — AS®||2 + A [|s]l;, where s = [5552), . »SgZ)]’ X is the weighted
parameter, || e||p is the Frobenius norm. It is obvious that the SVD transformation and £,-
norm of the row-indexed singular vectors are necessary. Generally, using the optimization

toolbox, the DOA estimation is transformed to
min [|s]l; subject to [|Y*Y — AS™|2 < 2. (1)

Where B is the regularization parameter, however, the choice of which is still an open
problem if no knowledge of sources is available.

2.2 Covariance matrix vectors of signal space

Another signal representation is the vectorized signal model based on the covariance
matrix vectors. As the method introduced in [8], the signal model of ¢;-SRACV is
represented as R = K(¢)B + 021y, where R is the signal covariance matrix, ¢ =
(o1, 02, ,dql, K(qﬁ) =[a(¢1),a(¢2),- - - ,a(pq)] is the overcomplete basis constructed
according to the array structure, and Q is the number of the overcomplete basis vectors.
Iy is an M x M identity matrix, in which M is the number of sensors, o2 is the power
of noise. B € C¥M is the matrix composed of multiple measurement column vectors,
which all share the same sparse structure. The nonzero elements of B is appeared in the

same rows of the column vectors {bT}IIVI, where (e)7 stands for the transpose. Having

solved £3-norm of B by rows, i.e. ||b;[2 = ,/Z%I:l bl?(m), m=1,---,Mi=1---,Q,
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we can obtain the vector of b = [bib), .. ,ng)], the nonzero element of which corre-

sponds to a certain vector a(¢;) of the overcomplete basis K(¢). Here ||b;||2 is abbreviated
to bl@) . The problem is expressed as

mBin [Ib|l; subjecttoR = 1~\(¢)B + 021y 2)
Having introduced the Lagrange multiplier 5, (2) is transformed to
. iy 2 2
min [W - vec[R — A(¢)B — oLy ||;, + 7 [Ibll1 , (3)

where W is the weight matrix related to the covariance matrix R, vec(e) denotes the
vectorization operator.

Specially for a ULA, a derived method called LC-SRACYV is presented in [9]. Due to the
centro-Hermitian property of column vectors of K(qﬁ), having vectorized the covariance
matrix of B, (3) is transformed to

min [W - [vec(R) — (A*(¢) © A@#)u — o vec(ln)] I+ nllull, (4)

where O represents the KR product and (e)* denotes complex conjugate. Here u is the
Q-sparse vector. Different from [8], the object to be optimized is not a matrix but a vector.

2.3 Advantages and disadvantages

Comparing the subspace-based methods, except for not being sensitive to orthogonality
of the signal subspace and noise subspace, the SSR-based DOA estimation approaches
also have other superiorities.

Asknown in [9], LC-SRACYV extends the array aperture from M (the number of sensors)
to 2M — 1 and increases the degrees of freedom. And it has much less computational cost
than that of £;-SRACYV and £;-SVD. The £;-SRACYV does not concern any knowledge of
covariance array, and it is applicable for an arbitrary array. £;-SVD[10] is not dependent
on the knowledge of the noise covariance.

However, there are obvious limitations in these SSR-based DOA estimation methods.
For LC-SRACY, its main limitation lies in the fact that the steering vectors must be the
special Vandermonde structure, and it is not suitable for UCA completely because the
elements of overcomplete basis are not only dependent on direction samples, but also
related to the array geometry. They have not a clear monadic corresponding relationship
with direction samples. £1-SVD is dependent on the signal subspace singular vectors and
noise power. Its computational complexity has a close relationship with the number of
incoming signals. In addition, it is challenging to determine the regularization parameters
when no knowledge of noise or sources is available. £;-SRACV adopts £; penalty for spar-
sity and €3 penalty for each representation coefficient vector. Two-fold iterations make its
computational cost higher than that of the formers.

3 Proposed method

In this section, we introduce our proposed method. In Section 3.1, we firstly derive
the virtual array signal mode in beamspace domain by using beamspace transforming.
And in Section 3.2, we introduce the covariance matrix representation by KR-product.
In Section 3.3, we introduce the sparse beamspace DOA estimation method via single

measurement vector.
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3.1 Virtual array signal model in beamspace

Consider an array composed of M sensors located along the circumference of a uni-
form circular array with radius r. There are P(P < M) narrowband uncorrelated signals
impinging on the array in the far-field. ¢ = {¢1, P2, - ,¢p} is the set of the incident
angles of the signals. The observation data is formulated as

where x(¢2) =[x1t),%208), - ,xm(@®]T is an M x 1 noise-corrupted snapshot vec-
tor. s(t) =[s1(t),s2(t),---,sp(t)]T is a P x 1 signal vector, and n(t) € CM is the
assumed zero-mean Gaussian white noise. N is the number of snapshots. A(¢) =
[a(g1),a(d2), - ,a(¢p)] € CM*P s the array manifold matrix of the UCA, here
a(¢p),p=1,---,P, are the M x 1 steering vectors. It can be expressed as

/& cos(dp—y1)

o cos(Bp—2)

ag)=| " | (6)

/¢ cos(dp—vm)

where j = /=1, ¢ = kr, and the wavenumber k = 27/A with A being the wavelength of
the incident signals. ym = 2n(m — 1)/M,m = 1,2,---, M, are sensors’ locations along
the circumference of the UCA.

Assume that the signals {sp(t)}f::1 are uncorrelated for different sources, and also
independent of n(¢). The covariance matrix of the observation data x() is given by

R = E[x()x(t)] = A($)RA (§) + 0Ly, 7)

where Ry = E[s(#)s'(#)] is the signal covariance matrix, whose diagonal elements are
{asi,};::l. a,% is the noise power, E(e) and (e)'? are the expectation and the conjugate trans-
pose operator respectively. The signal mode of the UCA can be transformed to that of a
ULA-type array by synthesizing the beamspace manifold, which is similar to that of ULA
using phase mode excitation of continuous circular aperture[20]. The signal model of the
virtual ULA essentially takes discrete spatial sampling of far-field pattern resulting from
all harmonics of array excitation (each harmonic means one phase mode, theoretically it
ranges from —oo to +00. Actually the magnitude of harmonic decays super-exponentially
with increasing harmonic order /%, i.e. h-th phase mode. If / is large enough and reach a
certain number H,, the magnitude is asymptotically approaching zero) by incoming sig-
nals over continuous aperture of UCA[27]. The beamspace manifold synthesized by a
beamformer F// = C,V[20] is given by

a.(¢p) = Fia(¢p) = C,V7a(¢,) ~ VM) d(4)), (8)
where

C, =diag{j",....; 7 L0 . e}, 9)

V=«/M[W,HE:~~:w0:~~~:wHe], (10)

o = diag [J1,(©), ..., L To@) 1 ©)s - T, (D)) (11)

where C, and J; are (2H, + 1) x (2H, + 1) diagonal matrices. J; is a matrix of Bessel
functions. The amplitudes of Bessel-function coefficients on the master diagonal taper
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symmetrically, and the coefficients act as such a function, that is, linking the amplitude
of each phase-mode excitation with that of the corresponding far-field phase-mode pat-
tern. The matrix V is a normalized beamforming weight matrix that excites the array
with a finite number of excitation modes. & €[ —H,, H,] are phase modes that can be
excited. Here a rule of thumb for determining H, is given as H, ~ ¢ and H, should satisfy
H, < M/2. The vectors of {wh}g;7 y, are regarded as the spatial discrete sampling cor-
responding to the far-field pattern, which are caused by the 4-th phase mode excitation
along the continuous circular aperture. It is defined by

_ Ay ihy.
wil = — [, e, ] (12)

From (8), we know that the steering vectors a.(¢,) in beamspace domain can be
represented by the vector d(¢). It is expressed as

d(gy) = [eMetr, e 0,1,6%, . etetr]", (13)

Here m];d(qbp), p = 1,2,.., P, are the ideal steering vectors of the virtual ULA with
Vandermonde structure.

The methodology of phase mode excitation-based beamformer offers the operation on
transforming observation data in element-space to that of beamspace. For the observation

(cMexP

data illustrated in (5), using the methodology, we have y(¢) , which is given by

¥(t) = Flix(¢) = VMJ: D(¢)s(t) + Fiin(t), (14)

here M, = 2H, + 1 is the total number of excited modes. From (14), we know that the
observation data x(¢) of M x P dimensions in element-space domain is mapped to a
dimension-reduction matrix y(¢) of M, x P dimensions in beamspace domain. And the
term \/A_/[];D(qi)s(t) is a noise-free beamspace data matrix, which is expressed as a prod-
uct of virtual array manifold D(¢), the source vector s(t) and Bessel functions. Here
D(¢p) =[d(¢1),d(¢2), ..., d(¢p)] has centro-Hermitian columns with Vandermonde struc-
ture, Ff is a unitary matrix that satisfies F'F, = I;,. The by-product F/n(t) of the
transformation still remains the white Gaussian process. Thus, we have the covariance
matrix of the observation data y(¢). It is given by

Ry = M) D(¢)RD (¢)]; + 021y, (15)

3.2 KR-based covariance matrix representation

In this subsection, we apply the KR subspace approach to DOA estimation[24] of the
virtual ULA. For the signal representation formulated in the above section, applying the
vectorization operator on (15), we have a new array model expressed as

Y := vec(Ry) = M[(J;D*$)) © (. D(@))] 52 + o1. (16)
Here 1 =| elT, eZT, ...eAT/Ie]T, where {ep}?iel, 1=1,2,---,M,,are the M, x 1 vectors with one

at the p-th position and nought otherwise. 55 is a column vector composed of nonzero
elements on the diagonal of Rs. The virtual array response matrix (]2‘ D*(¢) ©(J;D(¢)) €

2
CMz*P can be formulated as

(;D*(¢)) © (J.D($)) = GB(¢), 17)
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here B(¢p) € CPMe=D*P js 3 dimension-reduced virtual array response matrix that
expressed as

B(¢) = [b($1),b($2), .. b($p), .b(¢p)], (18)
where
b(y) = [T M, e, 1, %, ...a<Me—1>¢p]T, (19)

and G € CMex(2Me=1) jg given by
G=(; ®J)H, (20)

where ® symbolises Kronecker product. Here H is the selection matrix [9] of ULA given
by

H= [vec (Hp, 1), ,vec (Hy), vec (Ho) , vec <H1T) ,---,vec (H}%_l)] 1)

with

Or—i Ia—i

Hy=| Mot Mt i—0,1,.M, — 1. (22)
0ii Oin,—i

As is known from (20), the selection matrix G of the virtual ULA is just a derivation of

H, that is, an inner product of J; ® J; and the selection matrix of ULA. (16) can be

reformulated as below,

Y = MGB(¢)62 + 021. (23)

From (23), we know that the observation data Y, vectorization of Ry, behaves like a new
signal model. 6? is the equivalent signal vector, which describes the power of each signal.
The virtual array response matrix GB(¢) is a new observation matrix, which has a larger
aperture than the array which is not vectorized. o2 represents the power of noise. When
no knowledge of noise is available, 02 is estimated and given by the minimum of the
eigenvalue of Ry. From [28], we know that Rank(GB(¢)) is P, which satisfies P < 2H, + 1.
So if any complete basis of P-dimension vectors is given, (23) can be expressed as a linear
combination of the signal powers in the P-dimension vectors space.

Remark 1 [n [9] and [28], the dimension of the array manifold matrix is reduced from
M? x P to (2M — 1) x P by Khatri-Rao product. It works for ULA, but not for UCA. For
an arbitrary array, the array response matrix is generally expressed as (A* © A) € CM*xP,
But for UCA, having vectorized the observation data by BT technique, the response matrix
is reduced to B € C*1etDxP According to the spatial sampling criterion of H, < M/2, we
know that if M > 10, then M?> ~ (5 ~ 6)(4H, + 1), that is, the array response matrix is
reduced from M? x P to (4H, + 1) x P.

3.3 Sparse beamspace DOA estimation via single measurement vector

Assuming that the overcomplete basis {b (4’4)}3:1 (Q> Mz), where {qbq}[?:l,q
1,2,---,Q, are the discrete samples from the potential incident directions of signals
in beamspace domain. Here denote {(Zq};):l by the vector a . Therefore, (23) can be
reformulated as the SMV form

Y = MGB(¢)u + 61, (24)
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Fig. 1 Comparison of pattern amplitudes for the M-sensor UCA. (@) M=9, He is 4, 10, correspondingly r = 0.6,
1.5A. (b) M=9, He is 4, 15, correspondingly r = 0.4, 1.5A. (€) M=16, H, is 7, 15, correspondingly r = 0.8, 0.4A.
(d) M=16, He is 7, 31, correspondingly r = 0.8, 0.2

which is essentially an underdetermined signal reconstruction problem. We can estimate
the DOAs of the signals by recovering the sparse vector u of the single measurement
vector Y. At this point, if the grid resolution of (7) is dense enough, then some P column
vectors of B(a) are approaching to or equal to {b(¢p)}£:1. Correspondingly, a P-sparse
vector u is estimated, whose nonzero elements are close to or equal to {osi,}f;:l. In theory,
(24) can be solved by the following constraint £; optimization that expressed as [29]

min||@||; subject to Y= MGB(a)ﬁ + 0'31, (25)
u
here @ and Y are the estimates of u and Y respectively. From (25), we know that if a
is approaching to 53, then Y approximates to Y. And some {55}521 are very close to the
DOAs of the incident signals. We know that the estimate error of Y — Y with the weighted
matrix of W = %R)? ® Ry follows asymptotically normal (AsN) distribution[29], which is

given by
W2[Y — MGB(@)ii — 021] ~ AsN(0, Lp). (26)

Using least-squares criterion, the weighted estimate error follows asymptotic chi-square
distribution with M2 degree-of-freedoms. It is formulated as

1o~ ~ 2
| W2[Y — MGB(@)it — 021] ||, ~ Asx*(M?2), (27)

Page 9 of 20
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here Y = vec(ﬁy), where IN{Y = % Z?]:l y(®)y" (t). Thus, a modified DOA estimation
mode is derived from (25) by introducing the parameter of 8, which makes the inequality
| w2 (? -Y) ||§ < B? hold with a high probability p. It specifies how much estimate
error we wish to allow. It is expressed as follows

P(x*M7) < B%) =p, (28)
where P(e) denotes the probability distribution function. For the probability value of p,

by looking up the probability table of chi-square distribution, we have the regularization
parameter S, thatis, 8 = Xi? (M2). Then, (25) can be expressed as

~ ~ 2
min|li]; subject to | W~2(¥ — MGB(@)it — 621) I, < B2 (29)
u

Using the Matlab convex optimization toolbox, the P-sparse vector @ can be obtained.
We can plot the peaks versus the directions and determine the DOAs of the incoming
signals. The proposed method is summarized in Algorithm 1.

Remark 2 From (16), we know that krank(GB(¢)) > min{P,2 x krank(J; D(¢)) — 1}.
Here krank(J; D(¢)) = M,, where krank(e) denotes the Kruskal rank (see definition in
[28] for details). It means that every collection of 2M, — 1 column vectors of GB(¢) is
linearly independent and there exits a set of 2M, column vectors linearly dependent. That
is Spark(GB(¢)) = 2M,. The constraint condition of £1 optimization for a unique P-sparse
vector u is Spark(GB(¢)) > 2P. i.e. 2H, + 1 > P, which means that the DOA estimator for
virtual ULA with H, modes can handle 2H, signals at most.

T T T T
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—A— M=40,\=5.02r

. M=32,\=6.27r

m M=24,)\=8.35r
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Fig. 2 Mapping error as a function of phase mode H, for UCA with r/A, in which the circumferential spacing
between adjacent sensors is 0.0313r. The maximum of phase mode is respectively 7,11, 15, 18, and 22,
correspondingly M=16, 24, 32, 40, 48




Zhao et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:54

Algorithm 1: BS-£;-SRSMVS

10
11
12
13
14

15
16
17
18
19
20
21
22

23

24

25
26

input : the observation data x(¢); the radius r of UCA; the wavelength X; of signal
si(t),i=1,2,---,P; the number M of sensors
output: the P-sparse vector

determining the beamfomer F'f;
fori < 1toPdo
H, < CalculatePhaseModeNumber (A; r);
¢ < 2mr/Aj;
if H, > M/2 then
‘ break;
end
end
calculate C,, V and J;
Ff « MatrixMultiplcation(C,, V);
reconstructing the KR-based signal model;
y(t) <~ MatrixMultiplcation (Ff, x(t));
Ry < 3 X vOY" ;
Y < vec(Ry — o,%IM) ; // reconstruct KR-based noise-free signal
model
constructing the overcomplete basis;
calculate the selection matrix H;
G < MatrixMultiplcation (Kron(JsJ:), H);
fori < 1toQdo
‘ b(¢:);
end
B($) < [b@]T; ~
obtain the overcomplete basis GB(¢);
convex optimization;

~_L ~_21

W « ﬁKron (Ry *, Ry *); // calculate weighted matrix

initialize B, B, p;
B < Chisquare (2H, + 1, p);

27 while Norm (E) < 8 do

28 E < MatrixMultiplcation (W, Y - GB(a)ﬁ) ;
29 ifmin (||ajl;) then

30 ‘ break;

31 end

32 end

33 returnu

4 Computational complexity analysis

The methods of £;-SVD and ¢;-SRACV have advantages of being applicable for an arbi-
trary array; however, they have much higher complexity than the proposed method.
Except for the optimization calculation of objective function, for £;-SVD, the computa-

tional load is mainly stressed on singular value decomposition of observation data, and

Page 11 of 20
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for £1-SRACYV, the computational cost is concerned on eigenvalue decomposition (EVD)
of covariance matrix. The proposed method reduces the computational complexity and
lowers the dimensionality of observation data using BT technique. Table 1 shows the
computational complexity of some different methods such as £;-SVD, £1-SRACV, BS-¢; -
SRSMVS, and RB-MUSIC. We know that a priori number of incoming signals should be
necessary for £1-SVD and RB-MUSIC. So their computational costs have a close relation-
ship with P. £;-SRACYV is not susceptible to the number P of signals but the number M
of sensors. Here M > P and M > 2H,. From Table 1, we know that the computational
complexity of the proposed method is O((2H, + 1)MN + (2H, + 1)°N + (2H, + 1)3 +
(4H, + 2)(4H, + 1)(2H, + 1)Q + @?), which covers the process of beamspace transfor-
mation, covariance matrix, eigenvalue decomposition (skipping or skimming if the noise
power is known in advance), the construction of objective function via weighted matrix
W~z and optimization calculation without spectral search. Considering the estimation
accuracy of DOA, Q should be far greater than AM; thus, it is the most-weighted factor
that results in major time consumption in the estimators. Provided that the grid resolu-
tion of directional samples Q is constant, we know that the larger the number of M or P is,
the higher the computational complexity is. In addition, due to the dimension-reduction
process of UCA, the computational complexity of covariance matrix and EVD of the
proposed method is lower than that of ¢,-SVD and ¢;-SRACV. Thus, its computational
load is much less than £;-SVD and £;-SRACV. Comparing the subspace-based method
as RB-MUSIC, our proposed method has no advantages of computational complexity,
but the superiority of angular separation that conventional subspace-based methods are
incomparable, which has been illustrated in Section 5.

5 Results and discussion

In this section, we evaluate the performance of the proposed method by simulations with
different settings. We run some independent trials on a PC with a 2.4-GHz processor of
Intel Core i5-6200U, 8G of RAM. The software environment is Matlab 2017b running on
Windows 10 operating system.

50 T T T 50 T
Capon Capon
~ — ~RB-MUSIC ~ — ~RB-MUSIC
0 ——BS-[1SRSMVS(He=3) ——BS-11SRSMVS(He=5)
o o
° o
g o -
(o) (o)
o o
-100 -
0 100 200 300 0 100 200 300
DOA(degrees) DOA(degrees)

(a) (b)

Fig. 3 Spatial spectra for Capon beamformer, RB-MUSIC and BS-£;-SRSMVS. a M=7, r/A=0.5, N=1000, SNR=0,
He=3, DOAs=(30°, 90°, 150°, 210°, 270°,330°). b M=11, r/A=0.5, N=2000, SNR=20, Ho=5, DOAs=(10°, 40°,
70°,100°, 130°, 160°, 190°, 220°, 250°, 280°)
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Fig. 4 RMSEs versus SNR with different phase modes. a M=24. b M=32

5.1 Phase mode choice and mapping error
In this subsection, we run some experiments to demonstrate the relationship between the

amplitude of steering vectors and phase modes. In addition, the mapping error of steering
vectors on transforming UCA to virtual ULA is defined, and its relationship with phase
mode is given as well. Here taking a 9-sensor UCA and a 16-sensor UCA as examples,
the amplitude of steering vectors of different phase modes is depicted in Fig. 1. For the
9-sensor UCA with the maximal phase mode H, being 4, we can see from the Fig. 1(a)
that the maximal amplitude of grating lobes is 4dB lower than that of H, = 10. Similarly,
the maximum of grating lobes is 3dB lower than that of H, = 15, which is plotted in
Fig. 1(b). For the 16-sensor UCA with the maximal phase mode H, being 7, it is noticed
that the maximal amplitude of grating lobes of H, = 15 (A is 0.8 correspondingly) in
Fig. 1(c) is almost 5dB higher than that of H, = 7 and the maximum of grating lobes of
H, = 31 ( is 0.47 correspondingly) in Fig. 1(d) is about 7dB higher than that of H, = 7.
It is noteworthy that with the phase mode increasing, the main lobe of H, = 15, H, = 31
is almost 10° and 14° narrower than that of H, = 7 for the 16-sensor UCA, and the main
lobe of H, = 10, H, = 15 is about 18° and 22° narrower than that of H, = 4 for the 9-
sensor UCA. Taking the phase mode of H, = 7 for the 16-sensor UCA with radius r=1

q ‘ 1 :
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—H—BS-11SRSMVS(He=6) —&—BS-11SRSMVS(He=6)
11SVD 11SVD
11SRACV 11SRACV
b -©-CRLB 4 -©-CRLB

[ . 8
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) “e. *o =
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- <
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Fig. 5 RMSEs versus SNR with RB-MUSIC, BS-£;-SRSMVS, £1-SVD, £;-SRACV and CRLB. a M=13, N=500. b
M=13, N=1000
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for example, the circumferential spacing between adjacent array sensors is 0.39, which
is larger than half the wavelength when H, = 15. It means that the phase ambiguity of
steering vectors may be occurred in the process of UCA’s transforming to virtual ULA if
the maximum of phase mode does not satisfy H, < M/2.

Using (8), we can get the steering vectors with Vandermonde structure of a new ULA-
type array. Under the constraints of the number of sensors and interelement spacing, the
steering vectors of this new array are the finite approximation of the far-field pattern with
phase mode excitation. It is noted that this constraint of M > 2H, is similar to the Nyquist
sampling criterion, in which H, defines the maximum spatial frequency component in the
array excitation [27]. When H, = ¢, it is obvious that the circumferential spacing between
adjacent sensors of UCA is less than 0.5, which sufficiently avoids spatial aliasing in the

virtual ULA. The approximation leads to mapping error. Here we define it as

la(¢p) — VMEJ  d(¢p)lle

H,) =
k() la(¢p) e

(30)
Suppose H, = |n¢],n € Q%, which Q* is the positive rational number set. Figure 2
shows that mapping error €, (H,) decreases as H, (or n) increases and r/A decreases. The
plots show the mapping error as a function of phase mode H, of the UCA with M being
respectively 48, 40, 32, 24, 16 and X being correspondingly 4.19r, 5.02r, 6.27r, 8.35r, 12.49r.
Their circumferential spacings between adjacent sensors of the UCAs are all less than
0.5x. From Fig. 2, we know that €, (H,)=~0 (i.e. the minimum is approaching to 107°) if
H, approximates to oco. Accordingly, the interelement spacing is approaching to 0 theo-
retically, and at this point, (8) represents the far-field pattern of the continuous circular
aperture. So if extending H, large enough, the mapping error is almost negligible.

5.2 Spectra of the proposed method
We consider the cases of two UCAs, the sensors’ number of which is respectively M=7
and M=11, and we have the performance comparisons between BS-£1-SRSMVS, Capon
beamformer and RB-MUSIC.

Figure 3 shows the spatial spectra of BS-£1-SRSMVS, Capon beamformer and RB-
MUSIC. One case is investigated, where the true DOAs of actual narrowband signals

10"

*# RB-MUSIC #-RB-MUSIC
—5—BS-11SRSMVS(He=6) —5—BS-11SRSMVS(He=6)
11SVD 11SVD
1SRACV 11SRACV
- ©-CRLB - ©-CRLB

RMSE(degrees)

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of Snapshots(N) Number of Snapshots(N)

(a) (b)

Fig. 6 RMSEs versus snapshots with RB-MUSIC, BS-£1-SRSMVS, £,-SVD, €1-SRACV and CRLB. a M=13,
SNR=0dB. b M=13, SNR=10dB




Zhao et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:54 Page 15 of 20

impinging on the array are respectively 30°, 90°, 150°, 210°, 270°, and 330°. And the sim-
ulation results are plotted in Fig. 3(a), in which the number of sensors is M = 7, r/A =
0.5, SNR = 0dB and the number of snapshots is N = 1000, the parameter of § is 7.07. The
other case which M =11, r/A = 0.5, SNR = 20dB and N = 2000 is considered. The signals
impinge on the array from the directions of 10°, 40°, 70°, 100°, 130°, 160°, 190°, 220°,
250°, and 280°. The simulation results are depicted in Fig. 3(b), in which the parameter of
B is 7.28. As is known that the maximum phase mode of the 7-sensor UCA is 3 and that
of 11-sensor UCA is 5. From the plots, we know that RB-MUSIC and BS-£;-SRSMVS are
both capable of estimating all these signals; however, BS-£;-SRSMVS has higher resolu-
tion and output SNR than those of RB-MUSIC and Capon beamformer. We also notice
that the maxima of DOAs estimated of these two cases are 6 and 10. It is indicated that BS-
£1-SRSMVS can estimate 2H, signals regardless of the number of sensors on the premise
of M > 2H,. Thus for an M-sensor UCA, the proposed method can estimate at most
M — 1 signals.

5.3 Performance evaluation

In this subsection, we carry out independent trials to verify the performance of our pro-
posed method provided that the phase mode of H, is 1, 3, 5 respectively. The number of
sensors is 24, 32. The radius r of the UCA is 0.5)1. The root mean squared error is defined
as RMSE = \/E[ éZ}Qzl (éj — 6)2], where 9~] indicates the estimated DOA and 6; denotes
the true DOA. Q is the number of independent Monte Carlo experiments with Q = 500.
SNR ranges from —5 to 15dB. We know that on the transforming of UCA in element-
space domain to virtual ULA in beamspace domain, the mapping error decreases as H,

increases. Likewise, as is seen from the RMSEs shown in Fig. 4, we know that the RMSEs
decrease as the phase modes increase, and with SNR increasing, RMSEs decrease as well.

We compare the RMSEs of the proposed method, other methods and the stochastic
Cramér-Rao lower bound (CRLB)[30], in which the number of sensors is 13 and the radius
of the UCA is 0.5). Figure 5 shows the RMSEs of different methods under different SNR
conditions. The statistical results are obtained by running the Monte Carlo simulation of
500 independent trials, where the number of snapshots is respectively 500, 1000 and SNR
ranges from —10 to 20dB in 5dB steps. The plots are shown in Fig. 5(a) and (b). With SNR
increasing, it can be seen that the RMSEs of the proposed method are statistically less
than that of £;-SVD, £1-SRACYV, and RB-MUSIC.

The RMSEs varying with the number of snapshots are plotted in Fig. 6, where SNR
is respectively 0 dB and 10 dB and the number of snapshots ranges from 100 to 1000.
From the figure, we can see that with the increase of the snapshots, the RMSEs of these
methods are all decrease no matter what SNR is. However, the proposed method and ¢; -
SRACYV both have lower RMSE than other methods. Meanwhile, the proposed method
yields much smaller RMSE than £;-SRACV when the number of snapshots is less than
300. Our proposed method outperforms these SSR-based DOA estimation methods as
£1-SVD and ¢1-SRACYV as a whole.

5.4 Performance of angular separation
We know that near the direction where the array manifold vector changes rapidly, the
corresponding angular resolution is higher as well with the change of the DOAs. Thus,
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we define the directional derivative of the steering vector and apply its Euclidean norm to
characterize the angular resolution. Generally for UCA, the coefficient p(¢,) that reflects
the angular separation is expressed as

da(¢p)
dey

, Vp:l,’P
2

p(dp) = ”

M (31)

=¢ |Y sin¥(@p—y), i=1--,M
i=1

The larger p(¢) is, the higher the performance is. From (31), we know that it is related
to the number of sensors and the sensors’ position around UCA. In theory, if M = 2, we
can obtain p(¢p) = g“\/l — cos(zﬁ”)cos@(ﬁp - Zﬁ”) and the maximal separation angle is
7 /M. Different from the subspace-based DOA methods, the SSR-based DOA estimation
methods are just dependent on the grid resolution of direction samples [8]. Theoretically,

if enough SNR, the maximal separation angle is much smaller than that of the subspace-
based DOA methods.

In this subsection, we compare the performance of angular separation of the proposed
method with that of MUSIC, RB-MUSIC, ¢;-SVD and ¢;-SRACV. In these compared
methods, the first two are applicable in element-space domain and beamspace domain
based on subspace decomposition, the last two are SSR-based methods in element-space
domain. The simulation is based on a 13-sensor UCA with half-wavelength circumferen-
tial element spacing. The number of snapshots N is 200 and 2000 respectively. The grid
resolution of the overcomplete basis is 0.1° with 1800 points sampled from 0° to 180°.
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Fig. 7 Angular separation versus SNR of different methods, M=13, r/A=0.5. a SNR=0dB, N=2000,
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The maximal separation angle is 13.85°. Here the angle we have taken is not beyond a half
of the value, i.e. 6.9°.

Figure 7 shows the angular resolution versus SNR using different methods. The two
sources are spaced closely, they spaced 5° in Fig. 7(a) and (b), and they are close to 3° in
Fig. 7(c) and (d). From the results, we know that the subspace-based MUSIC merges the
two peaks, whereas our proposed method, £1-SVD and £;-SRACYV are capable of resolv-
ing the two sources. From Fig. 7(a) and (b), we know that even if the decrease of SNR,
£1-SVD and £;-SRACYV still have the excellent performance of angular separation, but if
SNR decreases to 0 dB, £;-SVD produces spurious peaks [6]. And £;-SRACV produces
spurious peaks as well if improper regularization parameters. However, the proposed
method still has the perfect separation capability and ideal DOA estimation accuracy even

if the number of the signals is unknown.

5.5 Comparison of computational complexity

In this subsection, we compare the CPU time of £1-SVD, £1-SRACYV and that of our pro-
posed method by plotting the CPU time versus the number of snapshots, array sensors
and sources. The results are shown in Fig. 8. As is seen from the plots, we know that
the SSR-based methods have higher computational complexity than the subspace-based
methods as RB-MUSIC, which is verified in Table 1. But comparing other SSR-based

methods, the proposed method has greater superiority.
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Figure 8(a) shows CPU time versus snapshots using different methods. Here assume
SNR = 20dB, M = 18, DOA = 66°, Q = 180, the number N of snapshots ranges from 50
to 510. The DOA estimate is measured from 100 Monte Carlo runs. As is seen from the
plot, the proposed method has far less time cost than £;-SVD and £;-SRACV.

In Fig. 8(b), we plot the CPU time of different methods with the number of sources P
increasing, where SNR is 20dB, the number M of sensors is 28, the snapshots are assumed
100 and Q is 360. The DOAs of sources ranges from 10° to 340° with 30° angle spacing
between two adjacent sources. As we known from Section 4, the computational complex-
ity of the proposed method has nothing to do with source numbers but the overcomplete
basis. Thus, we can see that even if the number of the source increases, the CPU time of
the proposed method has never increased dramatically all the time. The CPU time of £; -
SVD is mainly dependent on the number of sources. If the number of sources increases
from 1 to 12, accordingly the CPU time ranges from 10.77 seconds to 37.46 seconds.

Figure 8(c) shows CPU time versus the number of sensors using different methods,
where SNRis 20dB, M = 11,13, - - - , 27, the snapshots are 500. The DOA of one incoming
signal is assumed 55°. Comparing the CPU time of £1-SVD and £1-SRACYV, the proposed
method has obvious advantages of lower computational complexity. In the case that phase
mode H, of the proposed method is fixed at the same value no matter what the number
of sensors is, the steering vectors are dimension-reduced to 2H, + 1. Thus, we know that
the CPU time of our proposed method is not relevant to the number of M but with phase
mode H,, while that of £;-SRACYV does increase with M. From the simulation, we know
that the computational cost of the proposed method is nearly a tenth that of £;-SVD and
£1-SRACV.

6 Conclusion

In this paper, a low complexity sparse beamspace DOA estimation method for UCA is
presented. In the proposed method, the virtual ULA-like array signal model is obtained
by using beamspace transform, and having applied the vectorization operation on the
covariance matrix of this new signal model, a dimension-reduction signal model is formu-
lated, which greatly reduces the computational complexity. The results show that it not
only has better DOA resolution performance than the subspace-based methods, but also
has low computational complexity comparing other sparse-like DOA estimation meth-
ods in the case of multiple incoherent incoming signals. It should be mentioned that as an
SSR-based beamspace DOA estimation method, the DOA estimation accuracy is suscep-
tible to the grid resolution of directions samples of the overcomplete basis, and its virtual
beamspace array aperture is restricted by the spatial sampling theorem as well.
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