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1  Introduction
Direction-of-arrival (DOA) plays a significant role in array signal processing, which has 
been widely used in many fields such as sonar, radar, wireless communications, seismol-
ogy [1–5]. In the past few years, underdetermined DOA estimation, i.e., determining the 
DOAs of more sources than the number of sensors, has attracted tremendous attention. 
Nevertheless, traditional subspace-based DOA estimation techniques based on the uni-
form linear array (ULA), such as multiple signal classification (MUSIC) [6] and estima-
tion of signal parameters via rotational invariance technique (ESPRIT) [7] are restrained 
by the number of sensors. Specifically, an array with N sensors can only resolve up to 
N − 1 targets with these subspace-based methods.

In order to detect more sources, some systematical sparse arrays have been proposed 
to increase the degree of freedom (DOF) by developing the corresponding difference 
coarray (DCA). The coarray concept has previously been proposed in [8, 9]. It is defined 
as the set of all differences or sums between array element locations which can achieve 
larger virtual array aperture. The minimum redundancy array (MRA) [10] is a well-
known sparse array structure that can generate the maximum number of consecutive 
virtual sensors. Nevertheless, there are no closed-form expressions for MRA. In recent 
years, the coprime array (CA) [11] and nested array (NA) [12] have aroused extensive 
attention. Both of them provide large coarray apertures and an increased number of 
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DOF. The coprime array is able to identify up to O(MN ) sources with M + N − 1 sen-
sors, where M and N are coprime. And the nested array can resolve up to O(N 2) sources 
with N physical sensors. Compared with the coprime array, the nested array has more 
significant mutual coupling effects. Thus, plenty of modified coprime array construc-
tions have been proceeded [13–17].

Since the DCA derived from coprime array is discontiguous, the locations where there 
are no virtual elements in the coarray are called “holes”. For the traditional subspace-
based DOA estimation methods, only the longest consecutive part of the derived virtual 
array can be used [18]. However, the information of the discontiguous virtual sensors is 
discarded. In order to make the coarray information fully utilized, the sparse recovery 
methods like l1 norm minimization and LASSO algorithm [19] are proposed. But these 
methods discretize the parameter space in a dense grid which would produce the basis 
mismatch problem. In this case, the off-grid targets cannot accurately fall on the pre-
defined spatial grid. The basis mismatch problem cannot be completely resolved until 
the gridless methods without setting grid are proposed. Currently, plenty of DOA esti-
mation methods have been developed based on coarray interpolation by interpolating 
additional sensors into the positions of holes in the virtual array [20–23]. In [20], a DOA 
estimation algorithm using coarray interpolation is proposed through nuclear norm 
minimization (NNM) for coprime arrays. And a gridless DOA estimation is put forward 
via a low-rank Toeplitz covariance matrix reconstruction approach [22]. Moreover, a vir-
tual array interpolation algorithm based on the atomic norm minimization (ANM) and 
Toeplitz matrix reconstruction is proposed in [23].

Recently, a novel method that generates the sum–difference coarray (SDCA) via vec-
torized conjugate augmented MUSIC (VCAM) algorithm has been proposed in [24]. 
As the sum coarray (SCA) is able to fill a majority of the holes in DCA, this method 
can obtain larger consecutive coarray aperture, leading to much larger number of DOF. 
Although the virtual aperture of SDCA is more than twice the physical aperture, there 
still exist some holes. The nonconsecutive virtual sensors will be discarded.

In this paper, to fully utilize all information derived from SDCA, we introduce the con-
cept of interpolation to generate a virtual ULA. The holes in the SDCA are filled up by 
interpolating the virtual arrays. Specifically, we interpolate the missing elements in the 
discontiguous virtual array into a virtual ULA at first. So that all information derived 
from virtual array can be fully used. Secondly, we derive an atomic norm of the out-
put signals after virtual array interpolation. Accordingly, an ANM problem is formed 
to reconstruct the Toeplitz covariance matrix of the interpolated virtual array. And the 
ANM problem is resolved by semi-definite programming (SDP). At last, the recon-
structed covariance matrix can be used to estimate DOA by employing the subspace 
method. Simulation results prove the superiority of the proposed method.

The rest of this paper is organized as follows. Section 2 introduces the signal model 
of coprime array and the generation of SDCA. Section 3 presents the proposed DOA 
estimation method with SDCA interpolation-based ANM algorithm. Simulation results 
are provided to demonstrate the effectiveness of the proposed method in Sect. 4. Finally, 
Sect. 5 gives the conclusion.

Notations: Lower-case (upper-case) bold characters are used to represent vectors 
(matrices). C and R is the set of complex number and the real number. The superscripts 
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(·)∗, (·)T, (·)H denote the complex conjugation, transpose, and conjugate transpose opera-
tion, respectively. vec(·) stands for the vectorization operator. rank(·) and Tr(·) , respec-
tively, imply the rank and trace of matrix. ⊙ represents the Khatri–Rao product, ⊗ refers 
Kronecker product, and ◦ refers the Hadamard product. |S| implies the cardinality of a set S.

2 � Signal model
2.1 � Coprime array configuration

Consider a coprime array as illustrated in Fig. 1, which is composed of two sub-arrays. One 
sub-array has N sensors with the inter-element spacing of Md, and the other consists of M 
sensors with the inter-element spacing of Nd. Here, M and N are a pair of coprime integers 
(M < N ) . And the unit inter-element spacing d is set to be half wavelength �/2 . Since the 
two sub-arrays share the first physical sensor, the coprime array contains L = M + N − 1 
sensors. The sensor positions can be expressed as

Assume the first sensor is the reference, i.e., p1 = 0.
Suppose that Q far-field narrow-band sources from directions {θ1, θ2, . . . , θQ} impinge on 

the coprime array. Then, we can represent the received signal of the tth snapshot as

where A = [a(θ1), a(θ2), . . . , a(θQ)] represents the array manifold matrix with 
a(θq) =

[

1, ej2πp2 sin(θq)/�, . . . , ej2πpL sin(θq)/�
]T being the steering vector corresponding 

to the direction θq . s(t) = [s1(t), s2(t), . . . , sQ(t)]
T is the signal vector. Referring to [25], 

the qth deterministic source signal can be denoted as sq(t) = Aqe
jωqt , where Aq and ωq 

represent the deterministic complex amplitude and the frequency offset, respectively. In 
addition, n(t) ∼ CN (0, σ 2

n I) is the zero-mean additive white Gaussian noise vector with 
covariance matrix σ 2

n I , where I is the identity matrix.

2.2 � The concept of SDCA

In this subsection, we utilize the VCAM algorithm which was proposed in [24] to gener-
ate the SDCA. For the Ts samples of the sensor data outputs xm(t) and xn(t) , the time 
average function can be calculated by

(1)P = {p1d, p2d, . . . , pLd} = {Mnd | 0 ≤ n ≤ N − 1} ∪ {Nmd | 0 ≤ m ≤ M − 1}.

(2)x(t) = As(t)+ n(t) =

Q
∑

q=1

a(θq)sq(t)+ n(t),

Fig. 1  Coprime array configuration
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where τ  = 0 denotes the time lag, and Rs∗qsq (τ ) = |Aq|
2ejωqτ . Compared with 

sq(t) = Aqe
jωqt , Rs∗qsq (τ ) can be seen as a signal with the power |Aq|

4 coming from direc-
tion θq . Notice that the mth sensor is chosen to be the reference (i.e., m = 1 ) for the sake 
of analysis. Then, (3) can be simplified to

where n = 1, 2, . . . , L . Putting all the Rx∗1xn
 into a single vector yields

where vs(τ ) = [Rs∗1s1
(τ ),Rs∗2s2

(τ ), . . . ,Rs∗QsQ
(τ )]T = [|A1|

2ejω1τ , . . . , |AQ|
2ejωQτ ]T and 

vx(τ ) = [Rx∗1x1
(τ ),Rx∗1x2

(τ ), . . . ,Rx∗1xL
(τ )]T . Then, we replace τ with −τ and take the con-

jugate to get

By combining vx(τ ) and [vx(−τ )]∗ , the conjugate augmented correlation vector v(τ ) is 
given by

where Ā = [AT,AH]T = [ā(θ1), ā(θ2), . . . , ā(θQ)] with its qth column being 
ā(θq) = [aT(θq), a

H(θq)]
T . Select a different set of values for τ , i.e., τ = τs, 2τs, . . . ,Nsτs , 

where τs represents pseudo-sampling period and Ns represents pseudo-snapshots. 
Hence, the pseudo-data matrix of v(τ ) can be denoted as

where U = diag(|A1|
2, |A2|

2, . . . , |AQ|
2) , and W = [WT

1 ,W
T
2 , . . . ,W

T
Q]

T with the qth row 
being Wq = [ejωqτs , ejωq2τs , . . . , ejωqNsτs ] . The covariance matrix of v(τ ) can be obtained 
with the Ns pseudo-snapshots as

where Rss = U(
1

Ns
WWH)UH = diag(|A1|

4, |A2|
4, . . . , |AQ|

4) . By vectorizing Rvv , we can 

get

where p = [|A1|
4, |A2|

4, . . . , |AQ|
4]T . Besides, the qth column of Ã can be derived as

(3)Rx∗mxn(τ ) =
1

Ts

Ts
∑

t=1

x∗m(t)xn(t + τ ) ≈

Q
∑

q=1

ej2π(pn−pm) sin(θq)/�Rs∗qsq (τ ),

(4)Rx∗1xn
(τ ) =

Q
∑

q=1

ej2πpn sin(θq)/�Rs∗qsq (τ ),

(5)vx(τ ) = Avs(τ ),

(6)[vx(−τ )]∗ = A∗vs(τ ).

(7)v(τ ) =

[

vx(τ )
[vx(−τ )]∗

]

=

[

A
A∗

]

vs(τ ) = Āvs(τ ),

(8)Y = [v(τs), v(2τs), . . . , v(Nsτs)] =

[

A
A∗

]

[vs(τs), vs(2τs), . . . , vs(Nsτs)] = ĀUW,

(9)Rvv =
1

Ns
YYH = ĀU(

1

Ns
WWH)UHĀH = ĀRssĀ

H,

(10)y = vec(Rvv) = (Ā∗ ⊙ Ā)p = Ãp,
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According to (10), ã(θq) is the virtual steering vector of the virtual array. 
Obviously, a∗(θq)⊗ a(θq) = ej2π(−pi1+pi2 ) sin(θq)/� ( pi1 , pi2 ∈ P ), and 
a(θq)⊗ a∗(θq) = ej2π(pi1−pi2 ) sin(θq)/� ( pi1 , pi2 ∈ P ) are corresponding to the DCA, 
a∗(θq)⊗ a∗(θq) = e−j2π(pi1+pi2 ) sin(θq)/� ( pi1 , pi2 ∈ P ) represents the negative SCA, 
a(θq)⊗ a(θq) = ej2π(pi1+pi2 ) sin(θq)/� ( pi1 , pi2 ∈ P ) denotes the positive SCA. Conse-
quently, the obtained virtual array can be treated as an SDCA, which is composed of the 
DCA, the positive SCA, and the negative SCA.

Definition 1  (SDCA). Suppose a coprime array specified by P , its SDCA is defined as

where SSD represents the self-difference set and SCD represents the cross-difference set. 
S
−
SD and S−CD are the mirrored versions. Therefore, ignoring the unit inter-element spac-

ing d, we can get the difference coarray positions as

In the same way, SSS , SCS , S−SS and S−CS represent the self-sum set, the cross-sum set, and 
their mirrored versions. Hence, the sum coarray positions can be denoted as

Accordingly, by averaging the elements of y in (10) corresponding to the same posi-
tions in the virtual array Sv , we can obtain the virtual received data of the derived virtual 
array Sv as

where Ãv is the steering matrix of the derived virtual array Sv . From [24], we know that 
the SDCA contains some missing elements called holes. The number of DOF is limited 
when applying the MUSIC technique to estimate DOA. Because the discontinuous vir-
tual sensors are discarded, the information received by the virtual array cannot be effi-
ciently utilized.

3 � Methods
In this section, we introduce the concept of interpolation into the SDCA to further increase 
the DOF. Based on the concept of array interpolation [23], additional virtual sensors are 
interpolated into the “holes” of the virtual array to create an interpolated ULA. Moreover, 

(11)ã(θq) = ā∗(θq)⊗ ā(θq) =

�

a(θq)
a∗(θq)

�∗

⊗

�

a(θq)
a∗(θq)

�

=







a∗(θq)⊗ a(θq)
a∗(θq)⊗ a∗(θq)
a(θq)⊗ a(θq)
a(θq)⊗ a∗(θq)






.

(12)Sv = SDCA ∪ SSCA = (SSD ∪ S
−
SD ∪ SCD ∪ S

−
CD) ∪ (SSS ∪ S

−
SS ∪ SCS ∪ S

−
CS)

(13)











SSD = {Mn | 0 ≤ n ≤ N − 1} ∪ {Nm | 0 ≤ m ≤ M − 1}
SCD = {Mn− Nm | 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1}

S
−
SD = {−lSD | lSD ∈ SSD}

S
−
CD = {−lCD | lCD ∈ SCD}

.

(14)











SSS = {Mn | 0 ≤ n ≤ 2(N − 1)} ∪ {Nm | 0 ≤ m ≤ 2(M − 1)}
SCS = {Mn+ Nm | 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1}

S
−
SS = {−lSS | lSS ∈ SSS}

S
−
CS = {−lCS | lCS ∈ SCS}

.

(15)yv = Ãvp,
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an ANM problem is formulated in order to reconstruct Toeplitz covariance matrix, which 
can take full advantage of all information to estimate the off-grid DOAs.

3.1 � Virtual array interpolation for SDCA

For the sake of intuitive understanding, an example is demonstrated in Fig. 2, where M = 3 
and N = 7.

Clearly, we can obtain the nonuniform virtual array derived from the SDCA as shown in 
Fig. 2a, where the missing elements {±31,±34,±35} in Sv are the holes. In order to gener-
ate a virtual ULA without discarding the discontinuous sensors, the additional virtual sen-
sors are filled into the positions of the holes, which are called the interpolated sensors. The 
interpolated virtual array SI is depicted in Fig. 2b, where all information received by the vir-
tual sensors in Sv are included. It should be noticed that the interpolated sensors expressed 
by hollow circles in Fig.  2b are nonfunctional and the corresponding outputs are zero. 
Accordingly, the received signals from the interpolated sensors are regarded as zero. Thus, 
the output yI of the interpolated virtual array SI can be initialized as

where �·�i represents the virtual sensor at the position id. SI \ Sv denotes the elements in 
SI but not in Sv . In order to successfully use the interpolated virtual array, the unknown 
virtual signals received by the interpolated sensors should be recovered.

Similar to (15), the ideal received signals of the interpolated virtual array SI can be 
expressed as

where AI = [aI (θ1), aI (θ2), . . . , aI (θQ)] ∈ C
|SI |×Q represents the steering matrix of the 

interpolated virtual array. Obviously, yI behaves like the received signal from a single 
snapshot. In addition, the rank of its covariance matrix is one and subspace-based DOA 
estimation techniques cannot be applied to identify multiple sources. To overcome this 
problem, we divide this interpolated virtual array SI into J = (|SI | + 1)/2 overlapping 
sub-arrays, and each sub-array contains J elements. Accordingly, yI can be divided into J 
segments {y1I , y

2
I , . . . , y

J
I } as shown in Fig. 3, and the equivalent signals of each sub-array 

y
j
I can be denoted as

(16)�yI �i =

{

�yv�i, i ∈ Sv ,
0, i ∈ SI \ Sv

(17)yI = AIp =

Q
∑

q=1

aI (θq)pq ,

Fig. 2  An example of the virtual coarray, where M = 3 and N = 7 . a Sv , the SDCA of the coprime array. b SI , 
the interpolated virtual array of the SDCA
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where A
j
I = [a

j
I (θ1), a

j
I (θ2), . . . , a

j
I (θQ)] ∈ C

J×Q(j = 1, 2, . . . , J) , and 
a
j
I (θq) = [e−jπdJ−j+1 sin(θq), e−jπdJ−j+2 sin(θq), . . . , e−jπd2J−j sin(θq)]T represents the steering 

vector of the qth source corresponding to the jth virtual sub-array, where di represents 
the ith virtual sensor position in SI.

Specifically, the sensor positions of the reference virtual sub-array are 
{0, d, . . . , (J − 1)d} as shown in Fig. 3. By setting j = 1 , we can obtain the steering vector 
corresponding to the qth source

Accordingly, the received signals of the reference virtual sub-array can be expressed as

Hence, we can construct the following atomic set in continuous domain by using the 
steering vector of the reference virtual sub-array as

The atomic norm of the output z received from the reference virtual sub-array is defined 
as the minimum number of atoms in A that can express z , i.e.,

where conv(A) represents the convex hull of the atom set A and inf is the infimum of 
infinite set.

3.2 � Toeplitz matrix reconstruction for DOA estimation

Based on (18), we can obtain the multiple measurements as YI = [y1I , y
2
I , . . . , y

J
I ] ∈ C

J×J . 
Thus, we can express the correlation statistic of the equivalent virtual signal YI as

(18)y
j
I = A

j
Ip =

Q
∑

q=1

a
j
I (θq)pq ,

(19)a1I (θq) = [e−jπ sin(θq), . . . , e−jπ(J−1) sin(θq)]T.

(20)z = y1I =

Q
∑

q=1

a1I (θq)pq .

(21)A = {a1I (θ)|θ ∈ [−90◦, 90◦]}.

(22)�z�A = inf{t > 0 : z ∈ tconv(A)} = inf







�

q

pq : z =
�

q

pqa
1
I (θq), pq > 0







,

Fig. 3  The virtual signals of J sub-arrays
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where RYI ∈ C
J×J is a full rank covariance matrix. Since the elements located at the 

holes in SI are set to be zeros, each element in RYI suffers a deviation during the summa-
tion process in (23). Therefore, RYI can’t be directly calculated. Encouragingly, according 
to [26], a new Hermitian Toeplitz matrix R is associated with RYI , and they are related as 
R2 = JRYI . It is possible to construct the Hermitian Toeplitz covariance matrix R from 
the second-order statistics yI by

Notice that the interpolated virtual array SI is symmetric about zero point. The complex-
valued signals of the symmetrical pair in yI are conjugate. Thus, the matrix R is directly 
derived from the signal statistics yI , which includes all information received by the inter-
polated virtual array. However, since there are several zero elements filled in yI which 
denote the holes, the diagonals in R corresponding positions are zeros. Thus, a binary 
vector b ∈ R

J is defined to describe the presence of virtual sensors indexed in SI , where 
the element of 0 in b stands for the sensor positions to be interpolated and 1 otherwise.

Therefore, according to (22), the Toeplitz covariance matrix reconstruction in (24) can 
be represented as the following ANM problem

where T (z) denotes a Hermitian PSD Toeplitz matrix with the optimization variable 
z as the first column. Therefore, T (z) can be seen as the covariance matrix of signals 
corresponding to the reference virtual sub-array. Furthermore, notice that it contains 
all information of the interpolated virtual array [23]. Here, B = bbT ∈ R

J×J is a binary 
matrix distinguishing the zero (unknown) elements and the nonzero (known) elements 
in R . This makes the nonzero elements in R consist of the elements in the reconstructed 
covariance matrix T (z) . And �·�F represents the Frobenius norm, δ is a threshold to 
restrict the discrepancies between the nonzero elements in R and the corresponding 
elements in T (z) . Moreover, T (z) � 0 guarantees the Hermitian positive semi-definite 
Toeplitz structure of the optimum solution. Then, the optimization problem (25) can be 
written as

where µ is a regularization parameter.

(23)RYI =
1

J
YIY

H
I =

1

J

J
∑

j=1

y
j
Iy

j
I

H
,

(24)R =











�yI �J �yI �
∗
J+1 · · · �yI �

∗
2J−1

�yI �J+1 �yI �J · · · �yI �
∗
2J−2

...
...

. . .
...

�yI �2J−1 �yI �2J−2 · · · �yI �J











.

(25)

min
z∈CJ

�z�A

s.t.

{

�T (z) ◦ B− R�2F ≤ δ,
T (z) � 0,

(26)
min
z∈CJ

1

2
�T (z) ◦ B− R�2F + µ�z�A

s.t. T (z) � 0,
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Since T (z) is a PSD Hermitian Toeplitz matrix, if k = rank(T (z)) < J  , according to 
Vandermonde decomposition, T (z) can be decomposed as [27]

Then, we can obtain the trace of T (z) as

where Tr(·) represents the trace operator. Observing the trace of T (z) in (28) along with 
the definition of the atomic norm of z in (22), we can get

Hence, the ANM problem in (26) can be equivalently transformed as,

where η =
1

J
µ . Note that the optimization problem (30) is convex and easy to be solved 

by the CVX software [28]. After the optimal solution ẑ is obtained, the covariance matrix 
T (ẑ) of the interpolated ULA can be successfully reconstructed. At the same time, the 
virtual signals derived from the interpolated sensors which are initialized as zero can 
also be recovered. Since the signal covariance matrix T (ẑ) which corresponds to the 
interpolated virtual ULA is reconstructed, the subspace methods such as the MUSIC 
based [6, 18] and the ESPRIT based [7] can be employed for DOA estimation. Here, we 
calculate the MUSIC spatial spectrum by the following formula

where UN is the noise subspace of T (ẑ) , which is acquired by selecting the eigenvectors 
corresponding to the J − Q smallest eigenvalues of T (ẑ) . Finally, the DOA estimation 
can be acquired by searching for the locations corresponding to the Q largest peaks of 
the spectrum in fMUSIC(θ) . Accordingly, the number of targets that can be identified are 
up to J − 1.

The advantages of the proposed algorithm are summarized as follows. Firstly, the 
discontiguous virtual array is interpolated into a virtual ULA, and all of the informa-
tion in the virtual array can be effectively utilized. Secondly, the interpolated virtual 
array of SDCA provides a larger coarray aperture and higher DOF. Furthermore, the 
atomic norm minimization problem can be performed to reconstruct the covariance 
matrix of the interpolated virtual array in a gridless manner, which avoids the basis 
mismatch problem.

(27)T (z) =

K
∑

q=1

v1(θq)pqv
H
1 (θq).

(28)Tr(T (z)) = J

K
∑

q=1

pq ,

(29)�z�A =
1

J
Tr(T (z)).

(30)
min
z∈CJ

1

2
�T (z) ◦ B− R�2F + ηTr(T (z))

s.t. T (z) � 0,

(31)fMUSIC(θ) =
1

vH1 (θ)UNU
H
Nv1(θ)

,
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4 � Results and discussion
In this section, several simulation experiments are illustrated to demon-
strate the superiority of the proposed method in estimating the DOAs. We 
select the pair of coprime integers M = 3 and N = 7 to constitute the coprime 
array, consisting of M + N − 1 = 9 physical sensors with the positions 
{0, 3d, 6d, 7d, 9d, 12d, 14d, 15d, 18d} . The proposed method is compared with the dif-
ference coarray interpolation-based method (DCA-I) algorithm [23] and SDCA algo-
rithm [24]. The regularization parameter η is set to be 0.25 in the simulations for the 
proposed method and DCA-I method.

In the first experiment, we compare the estimated spatial spectra for each algo-
rithm. Here, we consider 15 sources uniformly distributed in the range of [−60◦, 60◦] . 
The signal-to-noise ratio (SNR) is set to be 0 dB. Furthermore, the snapshots Ts and 
the pseudo-snapshots Ns are set as Ts = Ns = 100 . Figure  4 displays the DOA esti-
mations of these methods. From Fig. 4a, we can see that the DCA-I algorithm can’t 
detect the 15 sources correctly. Because the available DOF of the interpolated differ-
ence coarray is only 18. There exists a large DOA estimation bias under the low SNR 
and snapshots. In Fig. 4b, the SDCA algorithm produces several spurious peaks. It is 
because the discontinuous virtual sensors are discarded and the DOF is only 30. The 
DOA estimation ability is very poor in a low SNR and snapshots condition. In con-
trast, it is clear that only the proposed method can effectively detect all sources under 
the low SNR and snapshots as shown in Fig. 4c. Since the proposed method is capable 
of exploiting all information contained in the virtual array and the available DOF is 
further increased to 36.

In the second experiment, we compare the DOA estimation resolution by consid-
ering two closely spaced targets from θ1 = −1◦ and θ2 = 1◦ . We set SNR = 0 dB and 
Ts = Ns = 100 . In Fig.  5, we can see that the proposed method has much sharper 
peaks and estimates much more correctly than the others. It is because the proposed 
method provides a larger array aperture without discarding the discontinuous virtual 
sensors. It is evident that the proposed method is able to achieve higher resolution.

In the last experiment, we use the root mean square error (RMSE) to evaluate 
the DOA estimation performance of the three algorithms. The RMSE is defined as 
follows:
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Fig. 4  Spatial spectra of 15 sources, SNR = 0 dB . a The DCA-I method. b The SDCA method. c The proposed 
method
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where K denotes the number of Monte Carlo trials and θ̂q,k is the estimated DOA result of 
the qth source in the kth Monte Carlo trial. Accordingly, we consider Q = 7 and Q = 14 
uncorrelated narrowband sources uniformly distributed in the range of [−60◦, 60◦] , 
respectively, and we run K = 300 Monte Carlo simulations. The DCA-I algorithm can’t 
resolve 14 sources, so its RMSE is not considered. In Fig. 6, we demonstrate the results 
of the RMSE versus SNR. In this simulation, we consider Ns = Ts = 300 and SNR var-
ies from −5 to 20 dB. When Q = 14 , the proposed method obtains smaller RMSE than 
the SDCA method with the SNR increasing. When Q = 7 , the DCA-I method performs 
the worst of all, because the DCA-I method only uses the difference coarray. And the 
proposed method performs better than others, since the proposed method exploits all 
the virtual sensors of the sum coarray and difference sensors leading to higher DOF 
and larger array aperture than the others. In addition, Fig.  7 displays the RMSE with 

(32)RMSE =

√

√

√

√

√

1

QK

Q
∑

q=1

K
∑

k=1

(θ̂q,k − θq)2,
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Fig. 5  Spatial spectra of two closer targets, SNR = 0 dB . a The DCA-I method. b The SDCA method. c The 
proposed method
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the variation of the number of snapshots, the SNR is 0 dB and Ns = Ts varies from 100 
to 500. Clearly, we can see that as the snapshots increase, the RMSE of the proposed 
algorithm decreases gradually. At the same time, the proposed method performs better 
than the other two algorithms. Since the proposed method makes full use all informa-
tion derived from virtual sensors, which makes its performance better than others. Gen-
erally, the proposed method significantly outperforms others under a wide range of SNR 
or snapshots.

5 � Conclusions
In order to effectively utilize all information derived from the virtual array, the interpo-
lation concept is introduced into the SDCA. We propose an interpolation-based DOA 
estimation by reconstructing the Toeplitz covariance matrix via atomic norm minimi-
zation. The holes in the virtual array are interpolated to convert the nonuniform vir-
tual sum–difference coarray to a ULA. Then, ANM problem is formulated to solve the 
Toeplitz covariance matrix reconstruction in a gridless manner. The reconstructed 
covariance matrix can be utilized to estimate DOA. After the SDCA interpolation, the 
achievable number of DOF is further increased and more sources can be identified. The 
simulation results validate that the proposed method provides a superior performance 
compared with other methods.
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