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1  Introduction
1.1 � Background and significance

With the development of the Internet of Things (IoT) [1, 2] and 5G technology [3], video 
or image could be transmitted more efficiently in location-based services. As an impor-
tant topic of IoT, vision-based technology is more common for the Internet of Vehicle 
(IoV). The driving assistance system integrating vision and artificial intelligence technol-
ogy will gradually become a research hotspot in the field of smart IoV [4, 5]. This sys-
tem is more important for smart vehicles running in an indoor environment, such as 
the indoor parking of a shopping mall. The reason is that wireless communication in the 
indoor environment is more vulnerable to interference, resulting in more packet loss or 
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object. Although, some researchers have proposed a few automatic visual fingerprint-
ing (AVF) methods, which are aiming at reducing the cost of building the visual map 
database. However, the AVF method still costs too much under such a situation, since 
it is impossible to determine the specific location of the displaced object. Given the 
smart IoV and the development of deep learning approach, we propose an algorithm 
for solving the problem based on crowdsourcing and deep learning in this paper. 
Firstly, we propose a Region-based Fully Convolutional Network (R-FCN) based method 
with the feedback of crowdsourced images to locate the specific displaced object in 
the visual map database. Secondly, we propose a method based on quadratic pro-
gramming (QP) for solving the translation vector of the displaced objects, which finally 
solves the problem of updating the visual map database. The simulation results show 
that our method can provide a higher detection sensitivity and correction accuracy as 
well as the relocation results. It means that our proposed algorithm outperforms the 
compared one, which is verified by both synthetic and real data simulation.
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greater delay. Therefore, vision-based technology is a promising solution for the posi-
tioning and navigation of smart vehicles after entering the indoor environment.

Vision-based localization technology has its unique advantages. The evidence is more 
obvious in the composite positioning technologies. For instance, WiFi and vision [6], 
inertia and vision [7], Lidar and vision [8], hybrid localization technology [9]. Visual 
localization is a key role in their system architecture, respectively. The premise of accu-
rate visual localization is to establish a visual map database on the offline stage in the 
interested areas. Typically, with the help of customized equipment [10–12], the visual 
fingerprint can be collected very accurately in a given area. However, these devices need 
to be customized specially, which is also expensive. To solve this problem, Farhang et al. 
proposed an automatic visual fingerprinting method based on the consumer-grade 
device in [13], which was further improved in our previous work [14]. These methods 
have well solved the visual fingerprinting problem in different ways. However, some 
objects in an interested area will be moved randomly, which will lead to localization 
deviation. Unfortunately, none of the existing visual fingerprinting methods could solve 
the visual fingerprint updating problem directly, which is caused by displaced objects in 
the location area.

In contrast, the problem of updating the WiFi radio map is well studied in its corre-
sponding research community. The method of updating a WiFi radio map can be sum-
marized into three categories. One is predicting the Received Signal Strength Indication 
(RSSI) fingerprint by the particular radio propagation model, [15–17] can be classified 
as examples of this type. The other one is leveraging the deep learning framework for 
generating the renewed radio fingerprint by training the large amount of time-varying 
RSSI, Signal Noise Ratio (SNR), or Channel State Information (CSI), such as [18–20]. 
These two kinds of methods are based on the fingerprint change with some fixed pat-
terns. Unlike the characters of radio fingerprints, the visual fingerprint has no model 
for learning algorithms. Another method is crowdsourcing. When the user is coopera-
tive, the fingerprint used in his/her localization can be updated from the available radio 
map. Several methods are proposed in this category for finding the best updated RSSI 
fingerprint [21–25]. Although these methods could not be directly used for updating the 
visual fingerprint, they provide an inspired idea.

An interesting technology that should mention in this section is the Region-based 
Fully Convolutional Network (R-FCN), which was proposed by Dai et al. in [26]. R-FCN 
provides an effective solution for image recognition, which is well proved by [27–29]. It 
should be noted that we also use this framework for semantic segmentation in crowd-
sourced query images. By leveraging these regions generated by R-FCN, semantic 
Speed-Up Robust Feature (SURF) forms. Fortunately, there are many existing frame-
works for deep learning implementation, among which Caffe is a representative one. A 
list of works has shown its superior performance [30–32]. More details about Caffe are 
referred to [33].

Therefore, the purpose of this paper is to propose a visual fingerprint update algo-
rithm based on crowdsourced visual localization. More specifically, a displaced visual 
fingerprint detection method and quadratic programming (QP) based visual fingerprint 
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update method is designed in two consecutive steps. The main contributions of this 
paper are in three folds: 

1.	 A visual fingerprint update algorithm is proposed in this paper, which is based on 
crowdsourced visual localization. When the users are cooperative, compared to 
the location in the visual map database, the algorithm could detect automatically 
whether the objects in the localization area are displaced or not.

2.	 A novel method is proposed in this paper for detecting the positional change of the 
visual fingerprints. A region-based fully convolutional network is used for labeling 
the SURF descriptor in the query image, which is defined as Semantic SURF. Com-
pared with the traditional Perspective-n-Point (PnP) solver with all 2D-3D corre-
spondences, our method is calculated with semantic 2D-3D correspondences. Our 
proposed method has a higher detection ratio, which is proved by synthetic and real 
data simulation results.

3.	 A Quadratic Programming (QP) based visual fingerprint update method is also 
proposed. In this way, the fingerprint can update automatically without the real 
crowdsourced localization results. The accuracy is higher than that of the compared 
method under different configurations.

The rest of this paper organizes as follows. In Sect. 1.2, some related works will be dis-
cussed. Section 1.3 describes the visual fingerprint update problem in visual localization 
and presents our proposed system model. In Sect. 2, we propose our semantic SURF-
based detection method and QP-based update method, respectively. Section 3 explains 
the experimental setup.  Section  4 provides the simulation results, and the conclusion 
draws in Sect. 5.

1.2 � Ralated works

As far as we know, this paper is the first proposal for solving the visual fingerprint update 
problem. Therefore, in this section, we introduce the relevant works in our proposed 
algorithm. Farhang et  al. proposed an automatic visual fingerprinting (AVF) method 
for the first time in [13], which improves the efficiency of collecting the fingerprint and 
reduces the cost of acquisition equipment. Once the object is displaced, which is also 
shot in the query image by the crowdsourced user, the result of visual localization will 
deviate. At present, it seems that the only solution is the periodic scanning by the AVF 
method to correct the error in the database due to object displacement. However, this 
will lead to two problems, one is how to set the optimal acquisition cycle, the other is the 
consumption of labor and time cost caused by overall rescanning.

Visual localization is more accurate than the other methods, which is mainly due to its 
6 degree of freedom mapping equation. The coefficients of these equations are defined 
by 2D–3D correspondences. [34] proposed an effective and efficient method for find-
ing 2D–3D correspondences. The method expresses the 3D point by 2D image feature 
descriptor when it is generated by the Structure from Motion (SfM) technique. The 
mean value of the two matched 2D feature descriptors is saved for representing the 
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particular 3D point. The 2D feature descriptor could be Scale Invariant Feature Trans-
form (SIFT) [35], SURF [36], or any other features. When a 2D image feature and 3D 
point match, a Fast Library for Approximate Nearest Neighbor (FLANN) [37] search or 
bag of visual words approach could accomplish this task. In our proposed algorithm, we 
also use this method to find reliable 2D–3D correspondences. More specifically, SURF 
and FLANN are chosen in the framework.

Efficient PnP (EPnP) is the most widely used solver for PnP problems [38], which is 
classical for its O(n) complexity with known camera internal parameters. The algorithm 
utilizes the linearization and re-linearization method for solving the weight of a linear 
combination of a matrix eigenvector, which derives from 3D-2D correspondences. With 
these weights, the camera coordinates of the 3D point can calculate. Then, the rotation 
matrix and translation vector decompose with the help of Singular Value Decomposi-
tion (SVD) for solving the matrix maximum trace problem. Furthermore, a more accu-
rate result will be reached by setting the closed-form solution as the initial input of the 
Gauss–Newton scheme. Displaced objects in the indoor interested environment may 
lead to localization error due to the mismatch between the 2D feature image coordinates 
and 3D point world coordinates. A natural idea is setting a threshold, which acts as a 
criterion for the 3-dimensional localization results. When the feedback of crowdsourced 
users is beyond the threshold, it can assume that some reference objects in the scene 
may move. This method could treat as the traditional strategy and the benchmark of our 
proposal. Specifically, EPnP with all 2D–3D correspondences with a judging threshold is 
chosen as our benchmark. Since in the large-scale environment the self-verifiable locali-
zation mark is the vertical result, there is only one predefined threshold for judging the 
reliability of the localization result.

RANdom SAmple Consensus (RANSAC) is well known for filtering outliers in the 
dataset by calculating the mathematical model parameters of the samples [39]. It is gen-
erally applicable to refine the matched pairs during the offline stage due to its time-con-
suming characteristics in the computer vision field. For the algorithm proposed in this 
paper, the calculation cost of RANSAC is not so restrictive. Therefore, it can be used for 
filtering the mismatch, so that a corrected localization result will be generated, which 
could also locate the displaced semantic object.

In recent years, the Deep Learning (DL) based method has been embedded into the 
indoor localization framework. One role of DL in localization is to generate new fin-
gerprints compared to traditional ones. Hernández et al. [40] proposed a deep learning 
feature for localization, which was trained by multisensor fingerprints. Ma et  al. con-
structed hierarchical convolutional features for visual tracking in [41]. However, the 
improvement is limited in terms of localization accuracy, considering the cost of the 
training. The other application is to map the image information and its location directly 
through the DL network. This method entails an obvious cost, which needs a substantial 
set of training data. Although it shows some practical value in the latest research, such 
as [42, 43], it still has no advantage from the point of theoretical view. Another one is 
leveraging DL for semantic segmentation, which could provide a pixel-wise classifica-
tion. Undoubtedly, it is embedded into the DL-based visual localization framework to 
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enhance performance. A representative one based on DL is proposed in [44], which is 
called VLocNET++. Unfortunately, it can not be used to solve the problem mentioned 
in this paper.

DL could use as a fundamental tool for filtering features, which could provide more 
accurate coefficients for solving the PnP equations. We define this as Semantic SURF, 
and it is a basic tool for challenging the visual fingerprint update problem. Specifically, 
in this paper, we propose a visual fingerprint update algorithm under the crowdsourced 
framework, which contains a semantic SURF-based visual fingerprint, displacement 
detection method with the help of R-FCN, and a visual fingerprint update method. In 
this way, the fingerprints can update automatically and reliably.

1.3 � System model

Once the layout of the located region is known, the visual fingerprint will be collected 
from the visual sensors mounted on a smart vehicle, which is labeled in green. When it 
is fingerprinting over the extinguisher, its position will record as the position framed by 
the grey box in the database. Thereafter, the extinguisher moves to the position of the 
red dotted box. The visual localization result will deviate when the camera labeled with 
red tends to locate itself by the visual sensor and the surrounding visual fingerprint, due 
to the displaced extinguisher in the query image. Meanwhile, the camera labeled in blue 
will obtain an accurate result since its reference fingerprint is fixed, which may be the 
unmoved ashbin. The description is shown in Fig. 1.

The cameras labeled both red and blue can be regarded as volunteers, which are 
located at different times after generating the visual fingerprint database. Whenever 
the vehicle has completed the visual localization or navigation in the scene, as long as 

Fig. 1  Visual fingerprint displacement detection initiated by crowdsourced localization

Fig. 2  The overflow of the crowdsourcing visual fingerprint updating algorithm
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it is pleased to send the data back to the server cooperatively, our proposed algorithm 
will work automatically without any human aids. Noted that in our proposed algorithm, 
there is no need to give the ground truth location of the query image or any other addi-
tional information. When the query image from the volunteer sends back to the server, 
the visual fingerprint update algorithm is initiated. A block diagram of our proposed 
algorithm is shown in Fig. 2.

The location of the query image will recalculate on the server to validate the avail-
ability of the feedback from the crowdsourced user. As shown in Fig. 2, the visual finger-
print displacement detection method will be applied in the algorithm. When the results 
obtained by this method are beyond the predetermined threshold, the feedback from 
crowdsourced users is invalid, so that the overall process will terminate. On the contrary, 
when the method locks the displaced fingerprint, the subsequent fingerprint relocation 
method will initiate. Thereafter, the new location of the displaced visual fingerprint will 
be calculated, and the database refreshes. Our proposed algorithm will automatically 
detect and update the displaced visual fingerprint to substitute for the periodic manual 
fingerprint scanning. Although the overall algorithm typically operates on the server, 
the calculation should complete as quickly as possible in consideration of the amount 
of crowdsourcing data. As shown in Fig.  2, the visual fingerprint displacement detec-
tion method mainly consists of R-FCN, RANSAC, and EPnP. The online computation 
complexity of R-FCN is O(n), as well as EPnP, while RANSAC is mainly affected by the 
number of iterations and the value of maximum tolerable error.

A brief illustration of the role of the region-based fully convolutional network (R-FCN) 
in this paper is provided in Fig. 3. The crowdsourced image is an input of R-FCN, whose 
output is the corresponding semantic segmentation and the label with its score.

In the next step, semantic SURF will extract, respectively, which shows in Fig.  4. It 
could be further filtered by RANSAC with its corresponding one in the reference image. 
According to its matching results with the point cloud simultaneously, several bundles 
of semantic PnP equations will be established. Then, different localization results calcu-
late. Otherwise, the semantic point cloud can also be generated by leveraging the seman-
tic SURF. Besides matching, the images above could also describe the traditional way of 

Fig. 3  The architecture of R-FCN and some crowdsourced images with their labeling results by R-FCN
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generating point clouds by two frames in a sequential image sequence, while the images 
below could represent a novel way for creating semantic point clouds by R-FCN.

When all groups of semantic SURF are beyond the predefined threshold, the crowd-
sourced data will be determined as invalid by the proposed method, the overall process 
will terminate as a consequence. When a group of semantic SURF is within the prede-
fined threshold, the displaced object will be locked by the method automatically. The 
result will be input into the visual fingerprint relocation method, which is aimed at pro-
viding a reliable new location of the displaced visual fingerprint locked by the previous 
method. Then the translation can be solved by the equations, whose coefficients are 
from the semantic 2D–3D correspondences. The optimal value of the translation is the 
solution of a constructed quadratic programming problem. Finally, the refreshed loca-
tion will be recorded into the visual fingerprint database. We will explain the visual fin-
gerprint displacement detection method and show how it defines in Sect. 2.1. Then, the 
visual fingerprint relocation method details in Sect. 2.2.

2 � Methods
2.1 � Visual fingerprint displacement detection method

As stated before, the crowdsourced image sends back to the server. For a Region of Inter-
est (RoI) rectangle of size w × h in the image, k × k bins form with each size approxi-
mate to w×h

k2
 . In the last convolutional layer, the k2 score map for each category produces, 

a pooling scheme defined as

where rc(i, j) is the response in the (i, j)th bin for the cth category, zi,j,c is one score map 
out of the k2(c + 1) score map, (x0, y0) is the top-left corner of an RoI, n is the number of 

(1)rc(i, j|�) =
∑

(x,y)∈bin(i,j)

zi,j,c(x + x0, y+ y0|�)/n,

Door
Vent

Posters

Ashbin

Fig. 4  Matching results by common SURF vs semantic SURF
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pixels in the bin, � is all parameters of the R-FCN. Then, k2 scores are voted by averaging 
on the RoI. A c + 1 dimensional vector generates as rc(�) =

∑

i,j rc(i, j|�) . Finally, the 
softmax responses computed by sc(�) = erc(�)/

∑c
ci,i=0

erci (�) . Note that the output of 
R-FCN for each RoI is the particular category ci and its bounding box Si = (sx, sy, sw , sh) . 
In general, the output from the pretrained R-FCN can express as

where Sj is the jth semantic region, m is the total semantic region labeled by R-FCN.
Then, the SURF descriptors extracts, which express as

where n is the number of SURF descriptor, Fi is a vector. With the help of the descrip-
tor, 2D features and 3D points can be mapped uniquely by [34]. Typically, the 2D image 
coordinates and the 3D point world coordinates will be the coefficients of our proposed 
method after semantic segmentation. The pixel coordinates of each SURF descriptor can 
be used to judge easily which Si it belongs to. It describes as

where Fsj ⊂ F . Then, RANSAC is used for refining the 2D-2D matches between the 
crowdsourced image and the reference image. The remaining SURF descriptor with 
its semantic label can be used for checking the displacement of the object. We define 
the matched SURF number of each semantic segmentation before RANSAC as nsjmatch , 
and the remaining SURF number after RANSAC as nsjfilter . Typically, when the ratio 
φsj = n

sj

filter/n
sj

match is lower than a threshold φthr , it could assume that the correspond-
ing semantic object is displaced comparing to the reference. Furthermore, considering 
the randomness of RANSAC, m groups of PnP equations will establish, respectively. 
By EPnP [38] algorithm, the localization results of the crowdsource user can be recal-
culated, where {Rfilter, tfilter}RANSAC is the solution of all the RANSAC filtered 2D-3D 
correspondences. When the number is too small to solve the accurate solution, the cal-
culation of the reprojection error will substitute for solving the EPnP equations, which is 
a golden standard for judging the correctness of the solution. It will correct the misjudg-
ment of the first step as far as possible.

Finally, the displaced object can be judged by 

 where Sdisp is the displaced semantic region in the image plane, φSi is the ratio labeled 
by the semantic region Si , φthr is a threshold, ǫSireproj is the reprojection error of corre-
spondences labeled by Si , ǫthrreproj is the reprojection error threshold. ǫSidiff is the differ-
ence between {Rfilter, tfilter}si and {Rfilter, tfilter}RANSAC , ǫthrdiff is the difference threshold. 
When the semantic object is unshifted, the corresponding region is defined as Sunsh . 

(2)S = {S1, S2, Sj , . . . , Sm},

(3)F = {F1, F2, Fi, . . . , Fn},

(4)Fsj ∈ Sj ,

(5a)S
disp={Si|φSi <φthr}∪{Si|ǫ

Si
reproj<ǫthrreproj}, n≤5

(5b)S
disp={Si|φSi <φthr}∪{Si|ǫ

Si

diff <ǫthrdiff }, n>5,
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Consequently, the displaced object will be ranked according to the semantic region in 
the image plane. The proposed method is summarized in Algorithm 1.

2.2 � Visual fingerprint relocation method

In the previous subsection, the displaced object has been locked as well as the unshifted 
objects. The translation vector of the displaced object will calculate for refreshing the visual 
fingerprint database in this subsection. First of all, a benchmark method will be illustrated. 
Although it can be derived very simply from the PnP equation, we need to give a brief 
deduction in this subsection to compare with our proposed method. Another reason is that 
it is the first proposal for solving the visual fingerprint refreshing problem. The semantic 
2D–3D correspondences can be clustered into two categories, which describes as two sets 
T
disp = {ud , vd , xd , yd , zd} and Tfix = {uf , vf , xf , yf , zf } . Tdisp represents the set of displaced 

2D-3D correspondences, while Tfix is the set of fixed ones. The rotation matrix and transla-
tion vector of the crowdsourcing query image can be calculated by EPnP [38] with the coef-
ficients from Tfix , which donates as R and t = [t1, t2, t3]

T . The relative translation vector of 
the displaced object defines as cx, cy, cz , respectively. Then, according to the PnP equation, 
without considering the rotation of the displaced object, we have

where ui , vi is the ith 2D feature coordinate, �i is its depth factor, xi , yi , zi is its corre-
sponding 3D point coordinate, and K is the camera internal matrix of the crowdsourced 

(6)�i





ui
vi
1



 = K(R





xi + dx
yi + dy
zi + dz



+





t1
t2
t3



),
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user. The internal matrix can be roughly recovered from the crowdsourced image, or 
sent by the user as a part of the feedback data accurately, K can further represent as

where f is the focal length, u0, v0 is the principal point coordinate of the image. Noted 
that the coefficients of (6) are from the set Tdisp . For a tuple of Tdisp , (6) could transform 
to a simplified form of three linear associated equations with four unknowns. A very 
natural idea is to do an elimination before solving the equations. When �i is eliminated, 
we have

where Ai
11 = fr11 + (u0 − ui)r31 , Ai

12 = fr12 + (u0 − ui)r32 , Ai
13 = fr13 + (u0 − ui)r33 , 

A
i
21 = fr21 + (v0 − vi)r31 , A

i
22 = fr22 + (v0 − vi)r32 , A

i
23 = fr23 + (v0 − vi)r33 , 

B
i
1 = (ui − u0)(R

3
Xi + t3)− f (R1

Xi + t1) , B
i
2 = (v0 − vi)(R

3
Xi + t3)− f (R2

Xi + t2) . 
Note that rij and Ri are the element and the ith row vector of rotation matrix R , 
respectively.

It is clear that for a tuple of coefficients from Tdisp , two equations can be obtained. 
Therefore, when there are n tuples in the set Tdisp , 2× n linear equations will gener-
ate. According to linear algebra, a simplified form expresses as

where c = [cx, cy, cz]
T is the unknown vector. A direct least-square solution can solve as

Finally, we have

where xrs  is the refreshed location of the displaced visual fingerprint, xs is the primitive 
one in the database. It defines as our benchmark, which could be called the DLS method.

Our proposed method will deduce from the PnP equation, which is

Noted that the point coordinates [xi, yi, zi]T are the projection of the image coordinates 
[ui, vi] in the crowdsourced query image by the depth �i , rotation matrix R , and transla-
tion vector t . Be different from Eq. (6), the goal is to calculate the point coordinates of 
each semantic feature in the world coordinate system. From Eq. (12), we have 3 equa-
tions and 4 unknowns, which represent infinite solutions. Thus, we formulate a minimi-
zation problem as our goal of a solution, which is

(7)K =





f 0 u0
0 f v0
0 0 1



 ,

(8)A
i

����

2×3





dx
dy
dz



 = B
i

����

2×1

,

(9)Ad = B,

(10)d = (ATA)−1ATB.

(11)x
r
s = xs + d,

(12)�i





ui
vi
1



 = K(R





xi

yi

zi



+ t).
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where �ji donates the jth expression of �i from Eq. (12). Typically, (13) is a quadratic pro-
gramming problem. The optimal solution can obtain by solving the first derivative of 
(13). The final simplified form is 3 equations of the first degree, which is quite easy for 
computation. With n tuples of projected point coordinates, the center can obtain as 
c
p , while the primitive center of the displaced object is cr . The translation vector of the 

center coordinate c represents as

Generally, this value is used as an index to measure the accuracy of the method, since c 
is predefined in the simulation. The proposed method summarizes in Algorithm 2.

3 � Experiments
3.1 � Comparison algorithm

Some researchers have proposed visual localization methods by the leverage of 
known prerequisites, such as man height [45] or vertical direction [46]. A traditional 
idea is borrowed from this kind of setting. On the contrary, we can judge whether 
the localization result is right or wrong by the known prerequisites. However, in the 
application of pedestrian visual localization, these prerequisites will not be satisfied 
all time. Fortunately, the localization error still could be utilized for ranking the dis-
placed object. Typically, the localization result is with an error in every direction. 
Since the user is unaware of his real location in the horizontal or vertical direction, 
a traditional method can only leverage the distance perception of the human in the 
vertical direction for judging the accuracy of the localization result. Thus, the con-
ventional trick is to set an error threshold in the vertical direction. Once the result 
is beyond the threshold, it will determine that some mismatch exists in the 2D–3D 
correspondences. The threshold method referred to in the comparison is a concrete 
realization of the traditional one.

(13)min

3∑

j,k ,j  =k

(�
j
i − �

k
i )

2
,

(14)c = c
p − c

r .
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3.2 � Synthetic data

To minimize the impact of related parts on our proposed method, the experiment is 
conducted on the synthetic data for convenience. Moreover, it could assume that the 
2D–3D corresponding match and semantic segmentation have 100% accuracy in the 
synthetic data set, respectively. Thus, the focus will concentrate on the visual fingerprint 
displacement detection and relocation method.

For simplicity, we assume that the first camera is set as the origin of the world coor-
dinate system, while the second camera assumes to be translated several units from the 
first camera along the x-axis. The reason is that the two cameras need to keep a certain 
distance to keep the overlap between the images. The camera coordinates of 3D points 
are generated randomly within a box of [−2, 2] × [−2, 2] × [6, 8] , then the pixel coor-
dinate of the two cameras is projected by a pinhole camera model with an initial point 
(960, 540) and focal length around 1000. The y-axis angle of the second camera chooses 
randomly from −10◦ − 0◦ , while the angle of the first camera varies from 0◦ − 10◦ . In 
each trial, 500 points generate. Then, the K-means algorithm applies to clustering points. 
For a cluster, they all belong to the same object as a common assumption. Consequently, 
any object can be used to simulate a displaced one. The shifted distance is set to 0.5−1 
units far from its original position. Suppose that the object displaces too far or a new one 
places, it will not exist in the crowdsourced image at that particular location. These two 
kinds of situations are beyond the scope of this paper. The setting of the crowdsourced 
camera is the same as the second camera in the synthetic data simulation. Both the dis-
placed points and fixed ones project on the image plane. With these image coordinates 
and their corresponding points, the location can be calculated by a PnP algorithm like 
EPnP [38].

We divided the synthetic data simulation into two parts according to the number of 
displaced objects. There is only one displaced object in the first part, which is more 
likely in the indoor environment. There are two displaced objects at the same time in 
the other part, which is more complex. Both results were achieved under the condition 
of φthr = 5% , ǫthrreproj = 100 , ǫthrdiff = 1 , which are the optimal setting in our simulations. 
We find that when φthr is bigger, the RANSAC threshold method will report false alarms 
in simulations using synthetic data, especially when the number of 2D-3D correspond-
ences is originally small. Meanwhile, ǫthrreproj = 100 and ǫthrdiff = 1 are to tolerate the errors 
introduced by the 2D-3D matching procedure for the real dataset. The threshold could 
be set lower in the simulations with synthetic data, e.g. ǫthrreproj = 20 in the primitive 
implementation of EPnP [38].

3.3 � Real dataset

The real dataset chooses from the image shot at the communication research center in 
Harbin Institute of Technology, whose floor plan and layout show in Fig. 1. The experi-
ment site is mainly the area marked yellow on the plan. The main aisle is about 50m long 
and 3m wide. To simulate the smart vehicles for convenience, we use wheeled equip-
ment instead, which mounted the camera on its roof. The training set is a total of 800 
images, whose image resolution is 1920× 1080 . Some samples of the reference image 
have been shown in Figs. 3 and 4 previously. By leveraging semantic segmentation, we 
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defined 9 kinds of objects in R-FCN. The statistics used in the training step are shown 
below in Table 1.

A typical example of the displaced objects in the above scene is shown in Fig. 5. The 
extinguishers in the red box of Fig. 5a are in their original positions while scanning the 
fingerprint with Canon EOS 1300D digital camera. Then, in the red box of Fig. 5b, their 
positions moved, which was shot by the crowdsourced user with iPhone 6S camera. The 
crowdsourced images were also collected by Samsung Galaxy S9plus and iPhone XR 
cameras, which have different internal parameters. It should be noted that images with 
low quality are not considered in this paper.

The learning parameters in the R-FCN have selected default values. The Caffe frame-
work is trained on a server with Inter(R) Xeon(R) Gold 5118 CPU @2.3GHz, memory 
64GB, NVIDIA SMI 418.56 GPU, and 64 bits Ubuntu OS. More details about the R-FCN 
configurations for our simulation environments can be referred to in our previous con-
ference paper [47].

4 � Results and discussion
4.1 � Results from synthetic dataset

Figures 6, 7 and 8 show different comparison results under the assumption of one dis-
placed object and two fixed ones from the synthetic dataset. According to the proposed 
visual fingerprint updating algorithm, the first step is to find the displaced visual finger-
print from a single crowdsourced image.

Table 1  The number of different semantic segmentations training in R-FCN

Semantic label Training 
number

Door 539

Window 149

Fire extinguisher 30

Ashbin 22

Vent 26

Poster 186

Hydrant 66

Heating 138

Exhibition board 321

Exit sign 63

(a) (b)
Fig. 5  Example for the displaced objects
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Fig. 6  Detection ratio comparison between our proposed and the threshold method with one displaced 
object
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Fig. 7  Localization error CDF under logarithmic level by EPnP with one displaced object
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Figure 6 shows the detection probability curve w.r.t. the threshold value between the 
traditional method and our proposed method. As mentioned before, the traditional 
one uses all 2D–3D correspondences as the coefficients of the PnP equations. Fur-
thermore, the solution is provided by the PnP solver. In our simulation, EPnP is cho-
sen due to its accuracy and efficiency. For each threshold sampling point, the results 
are obtained from 5000 repeated random trials. The traditional method is more sensi-
tive to the human-perceivable threshold, which means the performance is disturbed 
by the threshold value. The threshold value is also contradictory. The bigger is the 
value, the more sensitive is the crowdsourced user. However, the detection probability 
decreased dramatically with the increase of the threshold value. The threshold is set 
from 0 to 0.9 m, the reason is that with the help of an infrared or laser distance sen-
sor equipped with the device, the localization error could be perceived. Moreover, a 
human will sense at least a 20 cm error in the vertical direction.

In Fig.  7, the logarithmic localization error of different 2D-3D correspondences 
shows, respectively. The mean and maximum errors are used for comparison. It con-
cludes that the localization error is small when the 2D–3D correspondences are from 
the fixed objects, whose point label represents FOP1s and FOP2s. The logarithmic 
error is positive when the 2D–3D correspondences are from a displaced object, which 
labels as MOPs. The difference is obvious when the 2D–3D correspondences are from 
fixed objects and displaced ones. The localization result is hard to distinguish whether 
the positioning results are correct when the correspondences are mixed, which labels 
as APs. From the results, it is easy to tell which object displaces with its semantic 
label.

Once the displaced object is locked, the next step in our proposed algorithm is to 
relocate the point cloud fingerprint. In the previous step, the ground truth rotation 
matrix and translation vector of the crowdsourced image can calculate correspond-
ences from the fixed objects. The process is followed by RANSAC for all correspond-
ences. It makes our method of semantic 2D-3D correspondences more intuitive and 
efficient. Since the translation vector of the displaced object is predefined, the error 
could be calculated between the ground truth and the solved one. The predefined 
translation vector varies by a random value between 0.5 and 0.8 in the x-axis and 
y-axis. The CDF curve shows in Fig. 8. The error CDF curve of our proposed method 
is much better than the benchmark. It illustrates that the position of the fingerprint is 
refreshed by our proposed method more accurately.

The second part of the synthetic dataset results shows in Figs.  9, 10, 11. There are 
two unmoved objects and two displaced objects, which means more mismatches are in 
2D-3D correspondences. The number of all 2D–3D correspondences is 500. Noted that 
to ensure the normal solution of EPnP, at least 10 points are generated on each object.

From Fig. 9, the detection probability of both displaced objects is higher than the 
one of the traditional method. With more mismatched correspondences, the detec-
tion ratio of the traditional method promotes indeed from the comparison of Figs. 6 
and 9. However, the trend is the same. Meanwhile, the performance of our proposed 
method remains unchanged.

Figure  10 shows the logarithmic error of the localization results from different 
bundles of 2D–3D correspondences. Comparing with Fig. 7, the error between fixed 
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Fig. 10  Localization error under logarithmic level by EPnP with two displaced objects

0.2 0.4 0.6 0.8 1.0 1.2

Localization error of the moved object(m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Proposed method for mo1
DLS method for mo1
Proposed method for mo2
DLS method for mo2

Fig. 11  Localization error CDF comparison by different visual fingerprint relocation method when there are 
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and displaced objects still exists, which also will be enabled to lock the displacement 
object accurately.

In Fig. 11, the CDF curves of relocation error from different displaced object draw. The 
relocation error of the two displaced objects by our proposed method diverges slightly, 
whose computation results are both better than that of the traditional one. Advanta-
geously, the performance preserves well when in comparison with Fig. 8.

4.2 � Results from real dataset

The detection result from the real dataset shows in Fig. 12. To simplify the process of 
the simulation, we select a random location in the scene, which contains four semantic 
objects. One object is moved deliberately to a specific location. It should be noted that 
the displacement of the object will also happen in normal time, and the chosen location 
is only for the convenience of measuring the ground truth.

When the semantic object shifts, 50 test images are collected near the reference loca-
tion, whose precise locations are unknown. It shows clearly that the successful detec-
tion ratio of the displaced object is independent of the human-perceivable threshold by 
our proposed method, while the ratio of the comparing one decreases indeed with the 
increase of the threshold. However, unlike synthetic data simulation, the fixed objects 
are misjudged. There are 55% and 30% misjudgments from fixed objects labeled as FO2 
and FO3, respectively. The main reason for this difference is that the number of effective 
semantic features on FO2 and FO3 is smaller in real data simulation than in synthetic 
one. The average percentage number of features on FO2 is 5.95% , while that on FO3 is 
17.64% , which are both much smaller than FO1. The reprojection errors of FO2 and FO3 
can obtain by using the location results of FO1, which can eliminate such misjudgments. 
Furthermore, it could reduce to 5% and 20%.

Figure  13 describes the localization result of the displaced object. Our proposed 
method outperforms the compared method when the error is smaller than 0.94 m. Com-
pared with the simulation results of synthetic data, the convergence of the Cumulative 
Distribution Function (CDF) curve is slower than that of the compared method in real 
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false ratio is also shown in this figure when the simulation is running in the real data set
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data simulation. In summary, the performance of our proposed method on the real data 
is worse than that of the synthetic data. The reason is that the feature matching algo-
rithm fails to provide 100% accuracy, which will lead to misjudgments and distortion of 
equation coefficients. As a result, the solution of our proposed method will have a few 
deviations.

4.3 � Operation efficiency

As known, the computation complexity of EPnP is O(n). It is supposed that the type of 
semantic segmentation is m. Typically, it regards as m ≤ 10 in an indoor environment, 
which is similar to our experiment place. Thus, according to Algorithm 1, the compu-
tation complexity of our proposed visual fingerprint displacement detection method is 
O(m× n) . Meanwhile, the computation complexity of the proposed visual fingerprint 
relocation method is O(n) by Algorithm 2, where n is the number of visual fingerprints 
belonging to the displaced object. The average running time trend w.r.t. the correspond-
ing 2D-3D point number n shows in Fig. 14.

The running time of each sampling point was obtained from the average of 1000 trials. 
With the increase of the feature number that extracts from the images, the time required by 
both methods increases slowly. Meanwhile, the number of displaced objects does not signifi-
cantly affect the performance of the method. The experiment results show that the proposed 
method is efficient. However, compared with other methods in the proposed algorithm in 
this paper, the average running time of semantic segmentation by R-FCN is still long, which 
is 1.63 s. It makes the algorithm be only able to run on the server-side temporarily.

4.4 � Comparison with AVF reconstruction

In this subsection, we list the disadvantages and advantages of our proposed visual fin-
gerprint updating algorithm and reconstruction by the AVF method, which can be seen 
in Table 2.
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Fig. 13  Localization error CDF comparison of the displaced object when the simulation is running by real 
data set
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The result of average processing time and relocation error is from 500 trials. In the 
experiment, we set one moving object, whose translation varies from 50 to 100  cm. 
Under this condition, it is convenient to calculate the relocation error of the finger-
print. It should be noted that the AVF method is easily affected by the flow of people in 
the scene. By contrast, our proposed algorithm is more flexible with the aim of crowd-
sourced localization.

5 � Conclusion
In this paper, we propose an algorithm based on crowdsourcing and deep learning for 
solving the challenging visual fingerprint update problem of the smart vehicle, which 
aims to detect whether the reference object in the crowdsourced image is displaced and 
provide a refreshed location to facilitate subsequent vehicles. The simulation results 
are achieved thoroughly from synthetic data with various configurations. Besides, a 
real indoor dataset is applied to test the performance of our proposed algorithm com-
pared with synthetic data. In summary, our proposed algorithm can promote nearly 
100% detection probability, while the average probability by threshold method is 60% . 
The accuracy of relocated fingerprints by our proposed algorithm is 42% higher than the 
DLS method. Although the accuracy of our proposed algorithm is 10% lower than the 
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Fig. 14  Running time comparison of our proposed two methods with different displaced object w.r.t. 
number of 2D-3D correspondences

Table 2  The comparison result by using AVF reconstruction method and our proposed algorithm

Feature Reconstruction by AVF proposed in [14] Crowdsource 
based 
algorithm

Participant Specialist Crowd-
sourced user

Periodicity Yes No

Location perception of the displaced object No Yes

Average processing time (s) 1221 2.6

Mean relocation error (m) 0.35 0.43
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AVF reconstruction method, our proposed algorithm outperforms in other aspects. In 
future research, the influence of the rotation of the displacement object will be consid-
ered, which will further refine the refreshed fingerprint location.
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