
Image denoising based on global image 
similar patches searching and HOSVD 
to patches tensor
Jiye Guo1, Huayan Chen1, Zhengwei Shen1*   and Ziqing Wang2 

1  Introduction
As a fundamental topic in image and video processing, denoising has been widely stud-
ied in [1–6]. In recent years, image denoising methods mainly exploit three paradigms, 
i.e., global methods, filtering methods and patch-based methods. Originated from the 
literature [7], patch-based approaches [8–12] have shown great success to various image 
processing tasks, in which the essence of these methods is to exploit the recurrence of 
similar patches extracted from the noise image and the nonlocal self-similarity of natural 
images.

The most important thing of these patch-based methods is how to accurately meas-
ure the similarity between different patches of a natural image. Nearest neighbor search 
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(NNS) that based on Euclidean distance (ED), that is the square error of corresponding 
two patches, is one of widely used patches searching method, and the so-called BM3D 
algorithm [13] is one of its classical application. NNS method performs similar patches 
searching in a local window of image, thus is a local searching method. However, patches 
with significant structures, for example round edges or corners in an image, do not have 
a repeating pattern within a local window, which indicates that only using NNS to find 
similar patches is not an optimal method.

In order to better capture the structural similarity patches in natural images, various 
similar patches searching methods have been established in the literature. In [14], a so-
called Needle patch representation method is proposed to improve on the reliability of 
patch-matching when the image quality deteriorates, and the patch representation Nee-
dle consists of small multi-scale versions of the patch and its immediate surrounding 
region. With the development of recent innovations in training deep convolutional neu-
ral network, a deep learning local image patches matching methods that based on Tri-
plet and Siamese networks using a combination of triplet loss and global loss has been 
proposed in [15]. In [16], a 2-channel based neural network is established to learn a gen-
eral image patches similarity function directly from raw image pixels.

Patch priors that give high likelihoods for patches will yield better patches restoration 
performance [17]. Recently, using learned specific probabilistic distribution of patches 
from noise-free image dataset to globally search and recover similar patches from a 
degraded image has become a hot research issue in image processing. In principle, the 
probabilistic distribution of patches can be modeled using arbitrary distributions, but 
most commonly, Gaussian mixture model (GMM) is often used to model patches priors 
[17], even though the literature [18] argues that a generalized Gaussian mixture model 
is a better fit for image patches prior modeling. In fact, patches priors are learned over 
small image patches by GMM will make computational tasks such as learning, infer-
ence and likelihood estimation much easier than working with whole images. GMM also 
has been shown to be a powerful tool for patches classification and for similar patches 
matching. In addition, the learned means, covariance matrices and mixing weights over 
all patches can greatly improve the accuracy for searching similar patches.

The expected patch log likelihood (EPLL) algorithm [17] based on GMM employs a 
global prior to search patch such that every selected patch is more like the given local 
prior. In [19], by integrating the external patch prior and internal self-similarity into one 
framework, the learned GMM (external patch prior) is used to guide the clustering of 
patches from the input degraded images, and then a patches matrix low-rank approxi-
mation process (internal self-similarity) is used to estimate the latent subspace for image 
recovery. In [20], a patch searching method that clusters similar patch candidates into 
patch groups using GMM-based clustering is proposed, and the selected patch groups 
that contain the reference patch are used to image denoising.

However, the simple GMM clustering method generally puts some nonsimilar 
patches, especially geometric nonsimilar patches, into a group which indicates this 
kind of similarity measure between patches is not accuracy. In other words, we need a 
more refined clustering method to determine which patches are similar or nonsimilar, 
which will motivate us to refine the GMM patches clustering method. To this end, in this 
paper, we exploit two additional operations to refine the GMM patches cluster: firstly, 
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we employ a simple K-means methods to refine the patches classification by using the 
mean intensity of each patch; secondly, for each reference patch in a certain group, we 
gradually expand the search radius until the number of similar patches contained in this 
circle satisfy our needs. The aim to do this is because the more similar images patches 
are grouped together (in the patches matrix sense [19] or the patches tensor used in this 
paper), the better the patches denoising effect will be. To better exploit the spatial geo-
metric structural information of similar patches, we apply the 3D patches tensor X  , as 
shown in Fig. 1, to organize the similar patches instead of vectorizing each patches to 
form a similar patches matrix as in [19], then low-rank tensor approximation method 
based on HOSVD is used to perform image denoising. An iterative adaptive weighted 
core tensor thresholding algorithm is proposed to achieve low-rank tensor approxima-
tion. The reason using this algorithm are twofold, firstly, the tensor nuclear norm [21] (in 
fact is the ℓ1 norm penalization) will result in significantly biased estimation to the val-
ues in core tensor, thus cannot achieve a reliable image recovery. Secondly, although the 
nonconvex penalty, such as ℓp with (0 ≤ p < 1) , can also provide unbiased solution, it is 
computationally cumbersome. As a surrogate to nonconvex penalty [22], the weighted ℓ1 
norm not only can ameliorate the bias to the larger values in core tensor, but also is low 
computational complexity.

The initial motivation of this work come from two observations: firstly, tensor organi-
zation of image patches can preserve more structural information of image than matrix 
form of vectorized image patches exploited in the literature; secondly, the more accurate 
the distance/similarity measure between image patches is, the better the image denois-
ing effect achieved by low-rank image patches tensor approximation method will be. 
These observations inspire us to propose an image similar patches clustering method, 
denoted as GKGLM, i.e., “GMM” + “k-means” + “inter-class geometry location similar-
ity patches searching.” The advantages of these variants of GMM are the hybrids globally 
patches searching (i.e., GMM) and the locally patches searching (i.e., the k-means and 
inter-class geometry location similarity patches searching). Furthermore, consider the 
high computational complexity of training process of GMM using expectation maximi-
zation (EM) method, we propose a novel GPU based GMM training method using the 
back propagation and gradient descent method. Meanwhile, an iterative weighted image 
patches tensor approximation is proposed to perform image denoising, which the key 
advantage of this iterative method is the unbiased estimation to larger entry values in 
core tensor that are the main feature of images. See Fig. 2 for the flowchart of this paper.

j = 1, · · · , J

k = 1, · · · ,K

i = 1, · · · , I

Fig. 1  A third-order tensor X ∈ R
I×J×K
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The main contributions of this paper arise from the following analysis: 

1.	 A global similar patches searching method is proposed based on GMM patches clus-
tering method, the k-means method and a local searching method within patches 
group are also being integrated into this framework to improve the accuracy of this 
patches clustering method, which will preserve more geometric structural similar 
information of patches.

2.	 A GPU based parallel training method is proposed to accelerate the GMM modeling 
training solved by EM algorithm.

3.	 In order to preserve more spatial geometric structural image information and fine 
details information image during denoising, an iterative adaptive weighted patches 
tensor approximation method is proposed.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief introduc-
tion of the GMM and discuss how to search similar patches of the reference patch, 
including the algorithm of training GMM by the expectation maximization (EM) 
algorithm. In Sect. 3, we introduce the definition of three-order tensor, the proper-
ties of the corresponding core tensor and HOSVD algorithm. The iterative weighted 
image patches tensor approximation algorithm for image denoising is discussed in 
Sect. 4. We present numerical experiments and results in Sect. 5.The conclusion is 
presented in Sect. 6.

Fig. 2  Flowchart of clustering and denoising
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2 � Similar patches matching by deep cluster based GMM training
2.1 � GMM patches prior modeling

As being beforementioned, the probabilistic distribution of patches can be modeled 
using arbitrary distributions; but most commonly, GMM is used to learn patches pri-
ors. We take advantage of GMM as a probabilistic model to learn patch priors from 
noise-free patches set; then, noisy image patches clustering guided by the learned 
Gaussian mixture priors. GMM makes global searching for similar patches of a refer-
ence patch in the whole noise image.

The probability of a random patch from clean images sets will be defined as follows:

where Θ = (w1, . . . ,wK , θ1, . . . , θK ) is a set of parameters; wk denotes the weight that 
probability function p(xi|θk) ( k = 1, . . .K  ) contributes to p(xi|Θ) and 

∑K
k=1 wk = 1 ; 

θk = (µk ,Σk) are mean value and covariance matrix, respectively, in density function 
p(xi|θk) . One of the most important feature of the patches is that it is close to a low-
dimensional manifold for many natural images. Therefore, to more accurately measure 
the distance between different patches, we replace the frequently used Euclidean dis-
tance (ED) with Mahalanobis distance (MD) to measure the patches difference used in 
patches cluster problem, i.e., p(xi|θk) = c · exp(− 1

2 (xi − µk)
TΣ−1

k (xi − µk)) , where c is 
a constant. As shown the patches correct matching rates results in Table 1 from [19], 
even though the correct matching rates of ED is better than that of MD in image homog-
enous region, the MD overwhelmingly surpass that of ED in the structural and textural 
region, which indicates that using Mahalanobis distance to measure the difference 
between image patches is more reasonable than using Euclidean distance.

2.2 � Parameters estimation using EM algorithm based on GPU

To accelerate image denoising algorithm, we exploit a pre-trained GMM for the first 
step to cluster the similar patches. That is the parameters in GMMs modeling in (1) 
will be learned from training image patches set using the expectation maximization 
(EM) algorithm. However, most traditional implementation of EM algorithm is high 
computational complexity, thus cost a large amount of time in training processing. 
On the other hand, because the most time-consuming process in training is the calcu-
lation of distance between different patches, thus, it is easy to consider to apply paral-
lel computing to accelerate GMM training with GPU.

(1)p(xi|Θ) =
K
∑

k=1

wkp(xi|θk)

Table 1  Patches correct matching rates (ED vs. MD) [19]

Bold value indicates the best results combpared between MD and ED

σnoise Smooth Structural Textural

MD ED MD ED MD ED

σ = 35 6.2 8.1 36.4 23.0 65.6 57.3

σ = 55 4.2 7.2 24.5 13.4 53.1 36.5

σ = 75 3.4 6.9 17.0 10.0 43.0 24.3
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It is well known that an EM based GMM training methods include these two steps, 
i.e., expectation step and maximization step, respectively. Expectation step in EM 
algorithm is a kind of evaluation and cluster processing, that is the model param-
eters learned in the maximization step will be checked by evaluating the difference 
between the last and the current clustering results. And the maximization step is the 
parameters estimation processing, which is used to fit the new cluster results by using 
maximum likelihood estimation (MLE) method.

In the following, we establish a deep cluster based GMM training to accelerate the EM 
training algorithm. Particularly, in the parameters estimation step (maximization step), we 
first establish a binary cross-entropy (BCE) loss function based on the difference between 
the last clustering results Y k and the current clustering results Ŷ  in the testing step (i.e., 
the Expectation step), then, the back-propagation algorithm and the stochastic gradient 
descent (SGD) method based on GPU are used to estimate the parameters of GMM mod-
eling. See more details in Algorithm (1). We train the GMM prior model from a set of 
2 million overlapping patches that randomly sampled from [23] with their DC removed. 
Allowing for overlapping when sampling patches is important because otherwise there 
would appear blocking artifact. See Fig. 3 for the GMM model learned flowchart.
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2.3 � Similar patches searching by deep cluster based GMM training

Based on the previously trained GMM patches model, given a reference patch, we 
propose a “GMM” +  “k-means” +  “inter-class geometry location similarity patches 
searching” method to refine the patches similarity matching.

Given a noisy image Y, we firstly split it into a set of overlapping patches, then we 
denote PiY  by the i-th patch of Y. The likelihood of the i-th patch belongs to the kth 
( k = 1, . . . ,K  ) cluster under parameter Θ is defined:

It is should be noticed that here Θ = (w1, . . . ,wK , θ
′
1, . . . , θ

′
K ) with θi = (µi,Σi

′) are esti-
mated by Σk

′ = Σk + σ 2I , where Σk is a covariance matrix of the learned GMMs, σ is 
the noise standard deviation and I is an identity matrix. Maximizing the likelihood (6) to 
determine Gaussian component that makes the likelihood maximum, then we denote it 
to be the k̂ th Gaussian component and assign the ith noisy patch into the k̂ cluster. This 
is the GMM based noisy patches globally cluster, and all patches of the noisy image Y 
are split into different several clusters. As we have been emphasized in Sect. 2.1, there 
exists a deficiency of GMM based clustering method, i.e., in image homogenous region, 
the Euclidean distance based clustering method is better than the GMM based patches 
clustering method. Motivated by this observation, to improve the accuracy of patches 
matching, we employ a simple K-means method to each GMM based cluster to refine 
patches classification. After that, if there exists a class with the number of patches in it is 
less than 10, we will merge the patches in this class to the other classes most likely.

Next, we explain how to choose number of similar patches of a reference patch in 
each class to form a patches tensor. We firstly determine which class each reference 
patch is in, then we select similar patches for each reference from this class by calcu-
lating the location distance from reference patch to each patch in this class, i.e., the 
distance from the upper-left pixel of reference patch and the patches in this class. 
Secondly, the first T least distance corresponding to the patches is selected to form 
a similar patches tensor. We call this process to be the inter-class geometry location 
similarity patches searching method.

(6)p(k|PiY ) = wkp(PiY |θk)
∑K

j=1 wjp(PiY |θj)
.

Fig. 3  Flowchart of training GMM
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Thus, our similarity patches searching method can utilize the global information 
and the local location information of image. For convenience, we denote this clus-
tering method as GKGLM, i.e., “GMM” +  “k-means” +  “inter-class geometry loca-
tion similarity patches searching.” At last, we summarize the GKGLM algorithm in 
Algorithm 2. 

3 � Low‑rank image patches tensor approximation
3.1 � Rank of patches tensor and HOSVD

Third-order patches tensors have column, row and tube fibers; Figs. 4 and 5 show the 
horizontal, lateral and frontal slides of a third-order. Low-rank matrix approximation 
methods are to measure the low-rank structure of the observed matrix X by mini-
mizing its rank. Similarly, the latent tensor data can be approximated from low-rank 
version of observed tensor measurements. But, the low-rank decomposition to a mul-
tidimensional tensor usually is ticklish, and generally, there exist at least three differ-
ent rank definitions of multidimensional tensor relative to different low-rank tensor 
decompositions, and it is hard to find a tight convex relaxation to the nonconvex rank 
function of multidimensional tensor. Two often used rank definitions of tensor are the 
CANDECOMP/PARAFAC (CP) rank and Tucker rank.

Definition 1  The CP rank of a tensor X ∈ RI1×···×IN is defined as the minimum num-
ber of rank-1 decomposition,

(7)rankCP(X ) = min

{

r|X =
r

∑

i=1

ciVi

}

Fig. 4  Fibers of a third-order tensor
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where Vi = a
(i)
1 ⊗ · · · ⊗ a

(i)
k  , symbol ⊗ denotes vector outerproduct, a(i)j ∈ Rnj is a vector 

and ci is the decomposition coefficient [24].

Definition 2  Tucker rank of a tensor X ∈ RI1×···×IN is denoted by rankT (X ) and is a 
N-dimensional vector expressed as follows:

where rank(X(i)) denotes the matrix rank of ith-mode matricization(see the following 
section) Xi to tensor X  for i = 1, 2, . . . ,N .

Based on these two definitions of tensor rank, tensor has a similar nuclear norm like 
the matrix nuclear norm, i.e., tensor nuclear norm (TNN), which is one extension of 
matrix nuclear norm [21].

The tensor trace norm (TTN) is similar to TNN, it is developed in [25]

where αi > 0 and 
∑N

i=1 αi = 1.
TNN and TTN, in essence, merely is a convex combination of trace norms of the 

nth-mode unfolding X(i) . A novel tensor nuclear norm ||X ||TNN is proposed in the 
literature [26] and is defined as the sum of the singular values of all frontal slices. This 
tensor nuclear norm has also been proved to be a norm and be the tightest convex 
relaxation to ℓ1 norm of tensor multilinear rank.

A HOSVD to a tensor X ∈ RI1×···×IN can be expressed as a core tensor S ∈ Rr1×···×rN 
and matrices multiplication shown as follows,

where U (i) ∈ RIi×ri (1 ≤ i ≤ R) is the left singular orthogonal matrix calculated by per-
forming SVD on matrix Xi . Figure 6 shows a HOSVD to a third-order tensor. The inverse 
HOSVD is defined by:

(8)rankT (X ) =
(

rank(X(1)), . . . , rank
(

X(N )

))

(9)||X ||∗ = min
X

N
∑

i=1

||X(i)||∗

(10)||X ||∗ =
N
∑

i=1

αi||X(i)||∗

(11)X = S ×1 U
(1) ×2 U

(2) ×3 · · · ×N U (N )

Fig. 5  Slices of a third-order tensor
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where (·)T denotes the matrix transpose operation.
In some tensor decompositions, we need to unfold or flatten the tensor into matrix, 

a.k.s. matricization. There are N mode matricization to a Nth-order tensor. The nth-mode 
matricization of a tensor X ∈ RI1×I2×···×IN is denoted by X(n) ∈ RIn×(I1I2...In−1In+1...IN ) 
(n = 1, 2, . . . ,N ) is a matrix. We also denote functions unfoldn(·) and foldn(·) to 
be the nth-mode unfolding and folding operation, that is, X(n) = unfoldn(X ) and 
X = foldn(X(n)).

There are many different arrangement ways of the nth-mode matricization, but in 
practice, permutation of elements doesn’t affect the result of calculation [27]. See Fig.  7 
for a third-order tensor matricization. The nth-mode product is denoted by X ×n U  
where X ∈ RI1×I2×···×IN is a tensor and U ∈ RJ×In is a matrix. We can obtain a tensor 
Y = X ×n U of size I1 × I2 × · · · × In−1 × J × In+1 × · · · × IN . The nth-mode product 
can be expressed by matrix multiplication using foldn(·) as follows

At last, the Frobenius norm of tensor X  is denoted by �X �F = (
∑

i1,...,iN
|xi1,...,iN |

2)1/2 ; 

2-norm of vector v is denoted by ‖v‖2.

(12)S = X ×1 U
(1)T ×2 U

(2)T ×3 · · · ×N U (N )T

(13)Y = foldn(U × X(n)) ⇔ Y(n) = U × X(n)

= (1)U
(2)U

(3)U

Fig. 6  HOSVD to third-order tensor

Fig. 7  Matricization of tensor X 3×4×2



Page 11 of 20Guo et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:19 	

3.2 � Low‑rank patches tensor approximation

In this section, we establish a low-rank patches tensor approximation method that begin 
by an example. Consider a tensor X ∈ R3×2×3 and the corresponding core tensor S 
with three horizontal slices, shown in Fig.  8. Three associated singular values matrices 
Σ(i), (i = 1, 2, 3) obtained by SVD to the corresponding nth-mode matricization of tensor 
X  , i.e., X(i), (i = 1, 2, 3) , are listed as follows

Three nth-mode matricization of core tensor S shown as follows,

From this example, we can find that the quadratic sum of the ith row of S(n) equals 
to the square of the ith singular values of the corresponding Σ(n) , which proves 
one property, that is, ‖S‖2F = ‖X‖2F . For instance, 7.20512 = 51.9134 exactly equals 
(−7.1846)2 + 0.06152 + 0.22352 + (−0.4906)2 . Not only that, but all the ‖Σ(i)‖2F , 
(i = 1, 2, 3) are identical, and equal to �S�2F = �X�2F , i.e., 92. That is, we have illustrated 
the following properties:

Σ(1) =





7.5284 0 0 0 0 0
0 5.9433 0 0 0 0
0 0 0 0 0 0





Σ(2) =
�

9.3063 0 0 0 0 0 0 0 0
0 2.3221 0 0 0 0 0 0 0

�

Σ(3) =





7.2051 0 0 0 0 0
0 5.9551 0 0 0 0
0 0 2.1502 0 0 0



 .

S(1) =





− 7.1846 0.0615 − 0.1703 0.7654 0.0035 2.1071
0.2235 − 0.4906 − 5.9024 − 0.0991 0.2675 0.3350

0 0 0 0 0 0





S(2) =
�

− 7.1846 − 0.1703 0.0035 0.2235 − 5.9024 0.2675 0 0 0
0.0615 0.7654 2.1071 − 0.4906 − 0.0991 0.3350 0 0 0

�

S(3) =





− 7.1846 0.0615 0.2235 − 0.4906 0 0
− 0.1703 0.7654 − 5.9024 − 0.0991 0 0
0.0035 2.1071 0.2675 0.3350 0 0



 .

(14)||Sl(n)||2 = σ l
(n), (l = 1, . . . , In)

Fig. 8  Visualization of tensor and its corresponding core tensor
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and

where Sl(n) is the lth row vector of the nth-mode matricization of core tensor S, σ l
(n) 

denotes the lth singular value of the nth-mode matricization of tensor X .
Based on these observations, we propose a novel low-rank patches tensor approxima-

tion method, i.e., by directly penalizing the adaptive weighted singular values of core 
tensor obtained by HOSVD to patches tensor.

4 � Image denoising algorithm based on low‑rank patches tensor 
approximation

4.1 � Image denoising based on iterative low‑rank patches tensors approximation algorithm

First, we introduce the objection function for image denoising in this paper.

where Y and X denote noise image and the latent clean image, respectively, W denotes 
adaptive weights, and ||̥(X)||∗ denotes the proposed low-rank patches tensor nuclear 
norm (15). ̥ (X) denotes tensor formulation and HOSVD to image X.

Low rank is a common assumption to natural image in image processing, so we usually 
use ℓ1 or nuclear norm to approximate rank function. ℓ1 or nuclear norm regulariza-
tion can lead to sparse solution, and their convexity is another important reason why 
they have become so popular in signal processing field. However, both of them will 
result in significantly biased estimates since the convexity, thus, cannot achieve a reliable 
solution. In comparison, as a nonconvex penalty, such as the ℓq ( 0 ≤ q < 1 ), smoothly 
clipped absolute deviation (SCAD) or minimax concave (MC) penalty is superior to ℓ1 or 
nuclear norm regularization because it can ameliorate the bias problem. The advantages 
of nonconvex penalty regularization have been verified in many applications, and in fact, 
a nonconvex penalty can yield significantly better performance than a convex penalty 
regularization. On the other hand, nonconvex regularization based sparse and low-rank 
recovery are of becoming considerable interest in recent years, also partly attributes to 
the recent progress in nonconvex and nonsmooth optimization algorithm theory. Moti-
vated by these observations, we exploit iterative adaptive weights to the regularization 
term. We claim that such an iterative adaptive weighted scheme is equivalent to a kind of 
nonconvex penalty to the core tensors, where the singular values are assigned different 
penalty weights.

Proximity operator plays a central role in tackling nonconvex and nonsmooth inverse 
problem, and it is a highly efficient first-order algorithms which can scale well for high-
dimensional problems. For a proper and lower semi-continuous penalty function P�(·) , 
where � > 0 is a threshold parameter, consider the following scalar proximal projection:

(15)||S||2F =
In
∑

l=1

(σ l
(n))

2 = ||X ||2F

(16)arg min
X

1

2
||Y − X ||2F +W�̥(X)�∗
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As P�(·) is separable, the proximity operator of a vector t = [t1, . . . , tn] ∈ Rn , denoted by 
proxo�(t) can be computed in an element-wise manner as:

For commonly used proximity operators, refer to Table 2.
For a patch tensor M , we denote a generalized penalty for low-rank promotion to its core 

tensor by P̂�(·) , which is defined as :

where �i is the entry values in core tensor of tensor M.
Exploiting the adaptive weights ℓ1-norm we can better preserve essential characteristic of 

image, and the nonconvex objective function can be solved easily by using the soft-thresh-
olding operator. For each GKGLM patches tensor X k , k = 1 . . .K  , K is the number of refer-
ence patches, we have the following minimization

where Wk
j  is the adaptive weight, and �kj  is the value in core tensor Sk of tensor X k.

It is worth note that the adaptive weighted ℓ1-norm penalized optimization problem is 
nonconvex due to its varying weights Wk

j  . But, if the weight Wk
j  is nonincreasing assigned 

to the increasing core tensor absolute values |�kj | , the penalized optimization problem is a 
convex function, the conclusion has been proved in the literature. In this paper, we are not 
to tackle the noise image directly, but to perform denoising for each tensor of being consti-
tuted by similar patches of reference patches. So, the objective function can be written as 
the following subproblems.

where X s
y represents the kth reference patch tensor of noisy image Y, X s

x is latent clear 
patches tensor corresponding to X s

y , �sj is the value of core tensor of noisy patches tensor 
X s
y , and Ws

j  is the adaptive weight and assigned to |�sj | . It is obvious that the optimization 
problem can be solved easily by using the soft-thresholding operator. After achieving 

(17)proxp�(t) = arg min
x

{

P�(x)+
1

2
(x − t)2

}

(18)proxo�(t) = [proxp�(t1), . . . , proxp�(tn)]T

(19)P̂�(M) =
∑

i

P�(�i)

(20)min
X

Wk ||X k ||∗ =
∑

j

W k
j

∣

∣�
k
j

∣

∣

(21)arg min
X s
x

1

2
||X s

y − X s
x ||2F +

∑

j

W s
j |�sj |, s = 1, . . . , S

Table 2  Regularization penalties and the corresponding proximity operator ( � > 0)

Penalty name Penalty formulation Proximity operator

Soft-thresholding P�(x) = �|x| proxp�(t) = sign(t)max{|t| − �, 0}
Hard thresholding P�(x) = �[2− (|x| −

√
2)2I(|x| <

√
2)] 

or P�(x) = �|x|0 proxp�(t) =







0 |t| <
√
2�

{0, t} |t| =
√
2�

t |t| >
√
2�
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X s
x for each given noisy tensor X s

y , we will put the new patches back into the image to 
constitute a new one, and an aggregation procedure is need. Until now, we finish the nth 
image denoising and obtain the clean image X̂n.

4.2 � Adaptive weight setting to Ws
j

Adding residual (Y − X̂n) of nth iteration back to the (n+ 1) th step denoised image 
Yn+1 is the essence of the iterative algorithm. For a better denoising performance, we 
formulate the Yn+1 as follows:

where n is the outer iteration number, k is the inner iteration number, and η is the relaxa-
tion parameter. Since, we want to add the residual back to the denoised image, the vari-
ance of noise remaining can be estimated by

where σ is noise variance of Y, γ is a scaling factor used to control the re-estimation of 
noise variance, k × l is the number of all pixels in Y.

A advantages of adaptive-thresholding is to preserve large coefficients while filters 
small coefficients, so the features in image can be survived through thresholding. 
Then, we set the weight corresponding to each �j to be:

where N is the number of image patches of each tensor Ss
y , σn can be computed by 23, 

ε > 0 is a sufficient small positive parameter for avoiding dividing by zero. We apply Ws
j  

as adaptive weight to solve the optimization problem 21 by the soft-thresholding proxi-
mal operator shown in Table 2, thus solution τ sj  to the jth element of Ss

x can be expressed 
by as follows

4.3 � Aggregation

When we put these patches back into the image, different patches tensor will be 
assigned different weights. Therefore, we use the weighted averaging to give more 
weight to patches tensors with less noise and less weight to those with much noise. 
Specifically, we use the following equation to define weight.

(22)Yn+1 = X̂s
n + η(Y − X̂s

n)

(23)σn = γ

√

σ 2 − 1

k × l
||Y − Yn−1||2F

(24)Ws
j = 2

√
2
√
Nσ 2

n

|�j| + ε

(25)τ kj = sign(�j)max{|�j| −Ws
j , 0}.

(26)w =











p2 × N

p2 × N + I
, if I ≥ 1

0, otherwise
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where N is the number of patches in current tensor, p is the patch size and I is the num-
ber of thresholded elements in core tensor of this patches tensor. The result image can 
be calculated by the following formulation

where Nx,y are all GKGLM patches tensor overlapping in position (x, y), J (i)x,y are all 
patches in ith tensor that overlap in position (x, y) and Ωi,j is a pixel in the ith tensor, the 
jth tensor in position (x, y). The proposed algorithm is summarized in Algorithm 3, we 
denote the algorithm as GKGLM-Tensor. 

5 � Experiments
In this section, we conduct image denoising experiments on several widely used nat-
ural images, for example, House, Peppers, Barbara, Monarch and C.man. And we 
compare the proposed GMMH algorithm with several state-of-the-art denoising meth-
ods, including NNM [28], BM3D [13], EPLL [17], LSSC [12], NCSR [29], SAIST [30], 
WNNM [31], BM3Dbst that is the BM3D based on boosted patch searching method [20] 
denoising algorithms, SLR [23] and LR-GSC [32]. As a common experimental setting in 
the literature, we add white Gaussian noise with zero mean and standard deviation σ to 
the noise-free images and to test the performance of competing denoising methods. The 
MATLAB source code of our proposed algorithm can be downloaded at https://​github.​
com/​Kazuk​iAmak​awa/​HOSVD_​denoi​se_​patch.

(27)X̂(x,y) =
∑

i∈Nx,y

∑

j∈J (j)x,y wi,jΩi,j
∑

i∈Nx,y

∑

j∈J (j)x,y wi,j

https://github.com/KazukiAmakawa/HOSVD_denoise_patch
https://github.com/KazukiAmakawa/HOSVD_denoise_patch
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5.1 � Implementation details

Our presented image denoising method contains two stages: the searching image similar 
patches stage and the denoising stage. In the denoising stage, there exist four param-
eters need to be set: γ , β , the patch size p, the number M of patches in a tensor X  . These 
parameters pick different values when the standard variation σ of noise is different 
(shown in Table 3). Intuitively, if you want to exploit more global image information of 
image, number M of patches in a tensor should be set as big as possible.

5.2 � Results and discussion

We evaluate the competing methods from peak signal to noise ratio (PSNR), structural 
similarity index measurement (SSIM), normalized cross-correlation coefficient (NCC) 
and visual quality viewpoints.

5.2.1 � PSNR

In Table 4, we present the average PSNR results on three noise levels σ = 10, 30, 50 for 
image House, Peppers, Barbara, Monarch and C.man. Higher PSNR results on each 
noise level are highlighted in bold. From the results shown in Table  4, it can be seen 
that our proposed algorithm achieves much better PSNR results than NNM. Secondly, 
our proposed algorithm has higher PSNR values than BM3D, LSSC, EPLL and NCSR, 
BM3Dbst , SLR and is only slightly inferior to WNNM and LR-GSC for low noise level. 

Table 3  Parameter setting

σ γ β p M

10 0.28 0.16 7 100

30 0.3 0.1 7 100

50 0.35 0.1 9 70

Table 4  Average PNSR scores by different methods

Bold values indicate the best PNSR for all of the methods (the first column)

σ 10 30 50

NNM [28] 34.13 28.6 25.8

BM3D [13] 34.89 29.68 27.25

LSSC [12] 35.05 29.65 27.28

BM3Dbst [20] 35.02 29.74 27.36

EPLL [17] 34.43 29.03 26.54

NCSR [29] 35.00 29.61 27.17

SAIST [30] 35.12 29.83 27.44

WNNM [31] 35.33 30.05 27.54

SLR [23] 34.93 29.64 27.42

LR-GSC [32] 35.47 30.01 27.61

Ours 35.09 29.92 27.67
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With the noise level increasing, the performance of our proposed algorithm will be 
improved significantly, which can be verified for σ = 50 noise level.

Table 5  Average SSIM scores by different methods

Bold value indicates the best SSIM and NCC results for all of the methds (the first column)

σ 20 40 60

SSIM NCC SSIM NCC SSIM NCC

BM3D [13] 0.873 0.934 0.792 0.836 0.730 0.798

BM3Dbst [20] 0.882 0.951 0.798 0.841 0.736 0.807

EPLL [17] 0.869 0.917 0.785 0.821 0.723 0.780

WNNM [31] 0.884 0.952 0.793 0.836 0.734 0.801

SLR [23] 0.878 0.938 0.792 0.836 0.731 0.798

LR-GSC [32] 0.883 0.951 0.802 0.853 0.734 0.801

Ours 0.881 0.951 0.797 0.841 0.738 0.813

Fig. 9  Denoised images of Pepper by WNNM and our algorithm (the standard deviation of noise is σ = 50)
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5.2.2 � SSIM & NCC

In Table  5, we report the average SSIM and NCC results on three noise levels 
σ = 20, 40, 60 for image House, Peppers, Barbara, Monarch and C.man. We only com-
pare our methods to BM3D, BM3Dbst , EPLL, WNNM, SLR and LR-GSC, which outper-
forms the other algorithms. It can be seen from the SSIM viewpoint that our proposed 
method is comparable to these methods, and particularly, our method is superior to 
other method for σ = 50 noise level. The NCCNCC (normalized cross-correlation) 
shows the similarity of the denoised image with original clear image. The range of NCC 
[−1, 1] , and the closer the 1 is, the more similar the two image are, the closer the −1 
indicates that the more dissimilar the two images. The NCC results in Table 5 show that 
there exists positive correlation between SSIM and NCC, which indicates that the higher 
SSIM value is, the bigger NCC value is.

5.2.3 � Visual quality

Considering that human subjects are the ultimate judge of the image quality, the visual 
quality of denoised image is essential to evaluate a denoising algorithm. Figures 9 and 10 
show the denoised images of Pepper and Monarch by the competing method. We obtain 
that WNNM has strong ability to image denoising by Table 4, so we just compare the 

Fig. 10  Denoised images of Monarch by WNNM and our algorithm (the standard deviation of noise is 
σ = 50)
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visual effect of WNNM with our proposed algorithm. It can be seen that the proposed 
algorithm in this paper is likely to generate artifacts than WNNM, but our algorithm 
preserves edge more better.

In summary, comparing to state-of-the-art denoising algorithm, our proposed method 
has performed a comparable job in image denoising, especially in high noise level.

6 � Conclusion
In this paper, a new denoising approach based on image internal self-similarity prior, 
external patch priors and the low-rank patches tensor property of natural image is estab-
lished. We search similar patches to each reference patch to form a tensor X (k) , and we 
decompose the tensor X (k) by HOSVD, then we use soft-threshold to tackle core tensor 
S(k) . In order to improve the performance of denoising, we have trained GMM by EM 
based on deep cluster. To enhance the accuracy for searching similar patches, a globally 
searching similar patches methods within the whole image is established and a geomet-
ric searching method is used to further improve the accuracy for finding similar patches.
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