
Optimal graph edge weights driven nlms 
with multi‑layer residual compensation
Fang Yang*  , Xin Chen and Li Chai 

1  Introduction
Image denoising is one of the most fundamental and important tasks in image pro-
cessing and computer vision. Generally speaking, it aims at retrieving the clean image 
uori ∈ R

S1×S2 from an observed noisy image u ∈ R
S1×S2 . Typically, the noisy image is 

assumed to be corrupted by Gaussian noise. In the past decades, numerous denoising 
methods have been proposed. Regarding the way to separate uori from u, the denoising 
methods can be divided into two classes: those implemented in the spatial domain and 
those implemented in the transform domain.

In the spatial domain, classical methods denoise an image by averaging the pixels with 
different weights, e.g., equal weights of box-car filter, weights depending on the distance 
between pixels in Gaussian filter, weights computed from geometric and radiometric 
distances of bilateral filter [11, 12, 19]. Besides, various extensions have been proposed 
to balance the smoothness and details, e.g., averaging in local windows with adap-
tive size [22] or local regions with adaptive shape [32]. In contrast to these connected 
local regions, Buades et  al. proposed a method to average pixels in non-local regions 
named non-local means (NLMs) [3]. The main idea of NLMs is to select similar pixels 
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in a non-local region (even the whole image), then average them with different weights. 
Since the similarity between two pixels is computed by the corresponding non-local 
patches around them, NLMs are robust to noise and yield effective performance. How-
ever, the NLMs filter removes some image details such as edges and rare textures during 
denoising, especially when the SNR is low. Although total variation (TV) regularization 
models [7, 17, 26] have been combined with NLMs approaches to deal with rare patches 
(no similar pixels have been selected), it still can not address this issue.

The basic idea of denoising in the transform domain is to separate noise from the 
observed signal in the transform domain. In general, the noise is randomly distributed, 
changes rapidly in images, and has almost uniform power across the whole frequency 
domain. The clean images usually change slowly in local areas, and their power is gen-
erally distributed on low frequencies. Based on this phenomenon, various transforms 
have been used for denoising, e.g., Curvelet transform [25], Wavelet transform [6], graph 
Fourier transform [15, 18, 29]. Among all transform-based methods, the block-match in 
3D transform-domain filter (BM3D) is the most popular and widely used method [8]. 
BM3D filter is effective by combining the NLMs theory with the wavelet transform-
based denoising. Except for the transforms with fixed bases, data-driven transforms 
have also been widely used in image denoising tasks, including PCA [2], sparse coding 
[14], dictionary learning [9] and compressed sensing [10].

More recently, machine learning-based denoising methods, especially deep learning-
based approaches, attract public attention. The deep network was first applied in image 
denoising in [16], in which the auto-encoder network does not need manually set param-
eters for removing the noise. Then Zhang et al. proposed the DnCNN to deal with image 
denoising, super-resolution, and JPEG image deblocking [34]. The generative adversarial 
network (GAN) is used to remove blind noise in [4]. In addition, attention mechanism 
[30] and batch re-normalization [31] theories have been introduced in denoising tasks, 
which achieve excellent performance. In a word, the recent deep learning approaches 
can yield better results than the traditional filters, however, a considerable amount of 
high-quality training data is required for the network training, which is not always avail-
able in reality.

This paper aims at developing the NLMs by introducing the graph signal processing 
theory and a multi-layer framework. Graph signal processing (GSP) is a powerful and 
developed tool for analyzing signals on graphs [5, 20, 24, 33]. Traditional image process-
ing methods regard the image domain as regular 2D grids. But if one treats each pixel 
on an image as a node of a graph and constructs proper links between nodes, one can 
interpret an image as a signal on an irregular graph. Then the computation of similar-
ity between pixels and patches will no longer be restricted by the regular grids. In this 
way, the image information can be exploited more comprehensively by using the GSP. 
The optimal graph Laplacian regularization (OGLR) method derives the optimal metric 
space in the sense of minimum mean square error (MMSE), thus defining the optimal 
edge weights. Unlike the patch similarity-based weights in the classic NLMs filters, the 
OGLR defines the weights by considering (1) the distance between the target pixel and 
the candidate pixel, (2) the local gradient and (3) the patch similarity. The OGLR method 
yields good results for image denoising. However, it needs a large number of iterations to 
achieve comparable performance. Moreover, it involves a lot of matrix inversion, making 
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the method time costly. Hence in our paper, we replace the weights in the classical NLMs 
by the graph edge weights from the OGLR algorithm and embed the newly obtained 
NLMs into a multi-layer framework. The main contributions of this paper are threefold:

Firstly, our method uses the edge weight defined on a graph structure to compute the 
similarity between nodes and patches, which behaves better than the traditional NLMs. 
Experiments show that our method is comparable with the state-of-the-art methods, 
both visually and quantitatively. Furthermore, our method is better at denoising piece-
wise smooth images, especially when the noise level is high.

Secondly, a multi-layer representation is performed in our method to remove the noise 
while preserving the details. Obviously, the multi-layer strategy helps to smooth the 
image better. In addition, for the sake of recovering image details, the residual terms at 
each layer (the difference between the input and output of the NLMs filter) are com-
bined with the smooth filtered image.

Last but not least, the coefficients of each component derived from each layer, includ-
ing the smooth filtered image and the residual terms, are learned according to the least 
square method. These coefficients can be set as default parameters for any image.

Note that a similar idea has been proposed in [28]. However, the key difference is that 
our method adapts the NLMs filter parameters (the graph Laplacian regularization) to 
the input image, instead of a fixed filter presented in [28].

This paper is organized as follows. Section 2 introduces the related work about graph 
construction, the OGLR algorithm and the multi-layer representation of filter images. 
The proposed denoising method is detailed in Sect. 3. Experiments and results are pre-
sented in Sects. 4 and 5 respectively. And finally, conclusions are given in Sect. 6.

2 � Related work
2.1 � Graph construction

Let G(V , E) denote a graph structure, V = {vi}Ni=1 is a set of N nodes, and E = {eij} a set 
of edges. If two different nodes vi and vj are connected, there exists an edge weight wi,j 
describing the affinity between these two nodes. Generally, the larger the wi,j is, the more 
similar or correlated the nodes vi and vj are. A widely used form of the weight wi,j is as 
follows:

where φij measures the distance between two nodes vi and vj , and r is a threshold. Note 
that φij does not necessarily correspond to the Euclidean distance between the nodes. 
Typically, wij is non-negative. Apparently, the larger the distance between two nodes, the 
smaller wi,j is. The weighted affinity matrix W ∈ R

N×N is then formed by the weight wi,j 
and measures the similarity between nodes. The degree matrix D ∈ R

N×N is a diagonal 
matrix with each entry the degree (sum of each row of W ) of each node.

A graph signal u is often defined as a discrete signal on the nodes of the graph 
u : V → R . The discrete signal u can be regarded as a vector u ∈ R

N , where the i-th 
entry represents the signal value at the i-th node in V . In terms of 2D discrete images, 
each pixel represents a node, and the pixel intensity stands for the signal value.
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2.2 � The optimal graph Laplacian regularization algorithm

The OGLR algorithm seeks for a metric space to measure the similarity of image patches 
[21]. For each pixel location in a 2D image, a vector vi of length M is constructed by using a 
set of exemplar functions 

{

fm
}M

m=1
:

The set of vector {vi}Mi=1 is used to build the weighted graph G(V , E ,W) with N vertices, 
where N is the total number of pixels. The determination of the exemplar functions is 
induced from a continuous graph Laplacian regularizer, described by an anisotropic Dir-
ichlet energy functional E(u):

 where s ∈ Ω is the pixel location. The metric tensor G : Ω �→ R
2×2 can be viewed as the 

structure tensor at s constructed according to the gradients {∇f}Mm=1:

An optimal metric tensor G∗ can be estimated by considering the noise model from 
patch gradients in the MMSE sense:

where g̃ is the average gradient of a patch, and the constant αg is determined by the 
covariance of the patch. With the estimated G∗ , the exemplar functions can be expressed 
in the following form:

where (xi, yi) are the coordinates of pixel i, and {zl}Ll=0 is a set of L non-local patches that 
are similar to z0 . These similar patches are obtained by using the K-Nearest-Neighbour 
(KNN) algorithm, which seeks L patches with the smallest Euclidean distance from the 
current patch z0 . Here σp is a given constant over the whole noisy image, and σg is an 
estimated variance of the gradient of the patch. f∗1 and f∗2 indicate the spatial relationship 
between pixels, f∗3 represents the average pixel intensity of a target patch. Note that the 
coefficient in f∗1 , f

∗
2 and f∗3 can balance the contributions of the spatial and intensity fac-

tors. Hence, the three exemplar functions defined in Eq. (6) can be used to construct the 
optimal graph edge weight.

(2)vi = [f1(i),f2(i), . . . ,fM(i)].

(3)E(u) =
∫

Ω

∇uTG−1∇u(
√
detG)2γ−1ds,

(4)G =
M
∑

m=1

∇fm∇fm
T

(5)G
∗ = g̃ g̃T + αg I ,

(6)

f∗1 (i) =
√
αgxi

f∗2 (i) =
√
αg yi,

f∗3 (i) =
1

L+ σ 2
g /σ

2
p

∑

L−1
l=0 zl
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2.3 � The multi‑layer framework

A K-layer tree structure can represent the image hierarchy from fine to coarse, and all the 
leaf nodes can sum up to the input image. In the multi-layer scheme, the output filtered 
image uout can be described by a smooth term and several detail terms:

where {β0,β1, . . . ,βK} is a set of coefficients that controls the smoothness and the detail 
preservation of the output image. More details on the multi-layer scheme can be found 
in [27, 28].

3 � Graph edge weights driven NLMs in a multi‑layer framework
Although the OGLR algorithm has excellent filtering performance, it needs numerous iter-
ations to achieve a comparable result. Moreover, it involves a large amount of inverse oper-
ation during the denoising process, thus leading to a very high computational cost. Hence 
in this paper, we would like to take advantage of the edge weights defined in OGLR and 
apply it to the NLMs algorithm. Then we embed the newly obtained NLMs method into a 
multi-layer scheme. The multi-layer scheme can decompose input image details from fine 
to coarse scale, where the fine scale is used to preserve image details and the coarse scale 
helps smooth the image. The proposed pipeline is shown in Fig. 1.

3.1 � NLMs kernel

The NLMs kernel is computed based on the graph edge weights. With the exemplar func-
tions 

{

fm
}M

m=1
 , the vector vi on node vi is as follows:

Then the distance φij in Eq. (1) between node vi and vj can be obtained by:

where � · � is the L2 norm and φij determines the weighted affinity matrix W according to 
Eq. (1). The diagonal elements of the degree matrix D is defined as:

(7)uout = β0usmooth + β1udet ail1 + · · · + βKudet ailK ,

(8)vi =
[√

αgxi,
√
αg yi, 1/(L+ σ 2

g /σ
2
p )

∑

L−1
l=0 zl

]

.

(9)φij = �vi − vj�,

Fig. 1  Flowchart of the proposed algorithm
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The NLMs kernel F is a normalized version of the weight matrix and obtained by the 
product of D−1 and W:

The NLMs kernel F is similar to the graph-based bilateral filter [12] and the classical 
NLMs kernel [3]. The difference lies in that F considers the spatial relationship between 
pixels and the average intensity of patches. In addition, the relationship and the average 
intensity are weighted by the gradient estimates, which helps to improve the denoising 
performance. On the one hand, when the image is polluted by high-level noise, the spa-
tial relationship between pixels dominates the denoising process (like a Gaussian filter). 
On the other hand, when the signal-noise ratio (SNR) is high, the average intensity plays 
a more critical role.

It is worthy to note that the OGLR algorithm denoises the target patch z0 by cal-
culating the inverse of the Laplace operator, i.e., z∗ = (I+ τL)−1z0 . Although L is of 
small size, the inverse operation still costs a lot of time. On the contrary, our NLMs 
kernel works forward, which avoids the inverse operation as done in the OGLR algo-
rithm (except for the inverse of the diagonal matrix D, a linear operation). Hence, 
our method works much faster than the OGLR method.

3.2 � Determine the coefficients with least square

The set of coefficients {βk} in the multi-layer scheme plays a significant role in 
achieving good denoising performance. In this paper, instead of using parameters 
according to the s-curve functions proposed in [28], we regard the determination 
of {βk} as a regression problem and apply the least square algorithm to solve it. Our 
cost function is as follows:

where K is the number of layers, P is the total number of training images, zp represents 
the p-th noisy image patch, z0p stands for the p-th noise-free image patch. The aim of 
(12) is to find an appropriate series of {βk} that work on different filters to minimize the 
difference between the noisy and clean image patches.

Note that during the training process, we distinguish the images with different 
noise levels. In other words, each noise level will be assigned with a set of optimal 
coefficients. For each noise level, when the training process is finished, we will esti-
mate the noise variance according to the newly-obtained {βk} . If the estimated noise 
is higher than a given threshold σth , it is encouraged to train {βk} again with the 
newly-obtained {βk}.

Additionally, the number of layers K is also an important parameter. Details will be 
discussed in Sects. 3.3 and 4.2.

(10)Dii =
∑

j

wij .

(11)F = D
−1

W

(12)C = min
{β0,...βK }

P
∑

p=1

∥

∥

∥

∥

∥

(

β0F
K +

K
∑

k=1

βk(I− F

)

F
K−k)zp − z0p

∥

∥

∥

∥

∥

2

2

,
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3.3 � NLMs with K residual compensation

The NLMs filter can be embedded into the multi-layer scheme and the output fil-
tered image is with one smooth term and K residuals:

Since F is the normalized affinity matrix, it can act as a low-pass filter according to the 
graph Fourier transform theory. (I− F) is the normalized Laplacian, and it can function 
as a high-pass filter [5]. FKu stands for the smooth term, which is obtained by the cas-
cade of K low-pass filters F . The residual K terms are the corresponding detail terms. 
When K = 1 , Eq.(13) degenerates to:

where the filtered image is composed of one smooth term Fu and one residual detail 
term (I− F)u . Thus, when K increases, the smoother uout will be. The value of K can 
not be too large or too small. Too few layers may lead to an incomplete representa-
tion of the image, which can not remove the noise effectively, i.e., some details are not 
restored, or the homogeneous part of the filtered image is not smooth enough etc. How-
ever, too many layers would result in a large computation work, which consumes a lot of 
time, with only a slight performance improvement. The choice of K will be discussed in 
Sect. 4.2.

With the learned coefficients {βk} and the number of layers K, the proposed 
method is summarized in Algorithm  1. In addition, the flowchart of the proposed 
graph-based NLMs with multi-layer residual compensation is shown in Fig. 1, where 
a noisy image with noise variance σ = 50 is used as an example. 

(13)uout = β0F
Ku+ β1(I− F)FK−1u+ ...+ βK−1(I− F)Fu+ βK (I− F)u.

uout = β0Fu+ β1(I− F)u,
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4 � Experimentation
4.1 � Experimental setup

We testify the effectiveness of the proposed method both on natural images and depth 
images. Additive white Gaussian noise (AWGN) is added to these images, with standard 
deviations σ ranging from 10 to 50. According to different noise variances σ , the patch 
size in our experiment ranges from 10 to 22, the and step size NS is from 2 to 6. In the 
implementation, the normalization parameter γ in Eq. (3) was empirically set to be 0.6 
for the natural images and γ = 1 for the depth images. The constant σp in Eq. (6) is set 
to be 106 and the patch cluster size L is from 5 to 50. The noise variance threshold men-
tioned in Sec.3.2 is σth = 5.

The test images are from public dataset such as the BSDS500 dataset [1] and the Mid-
dlebury Stereo Datasets [23].

We compare our method with the original NLMs [3], OGLR [21] and two other state-
of-the-art methods, i.e., Block-Matching 3D (BM3D) [8] and the ADNet method [30]. 
The peak signal noise ratio (PSNR) and the structural similarity (SSIM) are used to eval-
uate the performance of these methods.

4.2 � Determination of number of layers K

To find out the most appropriate number of layers K, we test six different images. Five 
levels of noise are tested separately, i.e., σ = 10, 20, 30, 40, 50 . The average PSNR and 
SSIM of test images under different noise levels are computed with different K. In our 
experiments, K ranges from 1 to 6. The maximum of K is set to be 6 because when 
K > 6 , the computation of the power of matrix costs a lot of time, which is contrary to 
our motivation.

Figure 2 shows the PSNR (a) and SSIM (b) results according to K. We can see from 
(a) that when K ≥ 4 , the PSNR converges to a fixed value for all five noise levels. Given 
SSIM (b), the more layers there are, the higher the SSIM, but when K ≥ 4 , it does not 
improve significantly. Hence, to balance the PSNR, SSIM, and time cost, we make a com-
promise by setting K = 4 in our algorithm according to Fig. 2.

Fig. 2  From above to bottom: a the average PSNR (dB) of different number of layers, b the average SSIM of 
different number of layers
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4.3 � Determination of {βk}

In the process of training the coefficient set {βk} in Eq. (13), three depth images(cloth, 
Aloe and flowerpot) and three natural images (barbara, chips and man) are used as 
the training data, as shown in Fig. 3. Each image is divided into 3000 to 6000 image 
patches under different noise levels with varying patch sizes.

The learned sets {βk} are shown in Table 1 and 2. Both the two tables indicate that the 
smooth term FKu of Eq.  (13) plays the major role in the denoising process. Addition-
ally, although the coefficients of the residual terms are small values, even negative values, 
they also play important roles in retaining detailed information and removing noise.

5 � Results and discussion
Figures 4, 5, 6, and 7 depict the denoising performance of the five methods on four 
depth images (wood, bowling, lampshade, and teddy) with a noise variance σ = 50 , 
the difference between the original depth images and the filtered images, and the cor-
responding zoomed parts. Figures 8, 9, and 10 show the denoising results of the five 
methods on three natural images (bird, house and jar) with noise variance σ = 50 
respectively. From left to right are: the original image, the noisy image, the results 
obtained by OGLR, BM3D, ADNet and the proposed method.

Fig. 3  The images in the process of training the coefficient set {βk} . Depth images: a cloth, b Aloe, c 
flowerpot; natural images: d barbara, e chips, f man 

Table 1  The learned {βk} for depth images with different levels of noise

β0 β1 β2 β3 β4

σ < 5 1.0223 0.0002 0.0001 0.0001 0.0021

σ = 10 0.9992 0.0000 − 0.0005 − 0.0001 0.0002

σ = 20 0.9976 − 0.0003 − 0.0004 − 0.0004 − 0.0002

σ = 30 0.9766 − 0.0006 − 0.0007 − 0.0009 − 0.0001

σ = 40 0.9885 − 0.0012 − 0.0013 − 0.0019 0.0011

σ = 50 0.9862 − 0.0021 − 0.0025 − 0.0032 − 0.0016

Table 2  The learned {βk} for real natural images with different levels of noise

β0 β1 β2 β3 β4

σ < 5 1.0058 0.0002 0.0003 − 0.0003 0.0052

σ = 10 0.9996 0.0003 − 0.0001 − 0.0003 0.0069

σ = 20 0.9946 0.0001 0.0001 0.0001 0.0046

σ = 30 0.9940 0.0000 0.0001 0.0001 0.0070

σ = 40 0.9955 − 0.0004 − 0.0003 − 0.0008 0.0153

σ = 50 0.9903 − 0.0012 − 0.0016 − 0.0016 0.0085
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Fig. 4  Denoising results of depth image (wood) with the noise variance σ = 50 [top], the difference between 
the original depth images and the filtered images [middle], and zoom-in image [bottom]. From the left (a) to 
right (g) are: the original image, the noisy image, the results obtained by NLM, BM3D, OGLR, ADnet and the 
proposed method respectively

Fig. 5  Denoising results of depth image (bowling) with the noise variance σ = 50 [top], the difference 
between the original depth images and the filtered images [middle], and zoom-in image [bottom]. From the 
left (a) to right (g) are: the original image, the noisy image, the results obtained by NLM, BM3D, OGLR, ADnet 
and the proposed method respectively

Fig. 6  Denoising results of depth image (lampshade) with the noise variance σ = 50 [top], the difference 
between the original depth images and the filtered images [middle], and zoom-in image [bottom]. From the 
left (a) to right (g) are: the original image, the noisy image, the results obtained by NLM, BM3D, OGLR, ADnet 
and the proposed method respectively
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Fig. 7  Denoising results of depth image (teddy) with the noise variance σ = 50 [top], the difference between 
the original depth images and the filtered images [middle], and zoom-in image [bottom]. From the left (a) to 
right (g) are: the original image, the noisy image, the results obtained by NLM, BM3D, OGLR, ADnet and the 
proposed method respectively

Fig. 8  Denoising results of natural image (bird) with the noise variance σ = 50 [top] and zoom-in image 
[bottom]. From the left (a) to right (g) are: the orig inal image, the noisy image, the results obtained by NLM, 
BM3D, OGLR, ADnet and the proposed method respectively

Fig. 9  Denoising results of natural image (house) with the noise variance σ = 50 [top] and zoom-in image 
[bottom]. From the left (a) to right (g) are: the original image, the noisy image, the results obtained by NLM, 
BM3D, OGLR, ADnet and the proposed method respectively

Fig. 10  Denoising results of natural image (jar) with the noise variance σ = 50 [top]. From the left (a) to 
right (g) are: the original image, the noisy image, the results obtained by NLM, BM3D, OGLR, ADnet and the 
proposed method respectively
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For the image wood, the horizontal line in the center of the image is seriously blurred 
by OGLR and BM3D. Moreover, the homogeneous parts are still corrupted and not 
well restored. ADNet can preserve edges very well visually. However, it generates some 
undesirable parts, such as the black point in the lower-left corner and the black segment 
in the center. In our case, although the edges are not preserved as well as ADNet, the 
homogeneous parts are well smoothed. The middle row shows the figures of differences 
between the original image and filtered images. Dark contours and areas indicate that 
there are significant differences. From the difference figures, we can see that our result 
is more similar to the original clean image. In terms of both visual performance and the 
indexes, our method provides the best denoising result.

For the image bowling, the PSNR and SSIM of the proposed method are superior to 
the other three methods. The edge between the bowling ball and pin is blurred, even dis-
torted by BM3D. ADNet generates a deformation on the edge of the ball. The deforma-
tion may be due to that the training data does not include images with this kind of data 
and shape. Our method and OGLR provide better results, while our result is smoother 
in the homogeneous regions. Additionally, the figures of differences demonstrate that 
our method has excellent denoising performance and preserves the brightness very well.

The images lampshade and teddy are more complex than the above two images, with 
more details and weak edges, shown in Figs. 6 and 7. The results show that our method 
can restore the image very well in smooth areas, but can not preserve the sharp corners, 
e.g., the corner of the zoomed parts. In addition, our method generates some artifacts 
in the homogeneous areas. Actually, this phenomenon exists in the NLM theory-based 
methods, including the NLM, BM3D, OGLR. When the SNR is low, i.e., the noise is 
strong, some neighboring pixels in a patch may be considered as line structures. These 
structures will be enhanced or preserved during denoising, thus producing the artifacts.

Figures 8 and 9 show the denoising results of two natural images bird and house under 
noisy case σ = 50 . It is clear that the proposed method achieves satisfactory perfor-
mance in the homogeneous region of the image, like the sky in bird and the shadow of 
the roof in house. From the enlarged sub-images in Fig. 9, one can see that BM3D, OGLR 
and ADNet generate some undesirable artifacts and destroy the edge of shadow, while 
our method provides smoother results with fewer artifacts. Figure 10 shows the results 
on jar, the carved patterns on the jar can be barely seen after denoising. This hints that 
our method is not that effective in maintaining the details of texture-rich images.

Figure 11 display the examples on two color images tape and pepper under noisy case 
σ = 50 . The color image are denoised channel by channel. Visually speaking, the denois-
ing results of our method is competitive with the other methods

Tables 3 and 4 illustrate the PSNR and SSIM of the proposed method and four other 
state-of-the-art methods on several depth images and real natural images. The highest 
indexes are in bold, the second-best are underlined. From the results, we can see that 
our proposed method is comparable with the state-of-the-art methods. In addition, it 
outperforms the OGLR method in nearly all cases, especially with a large noise variance 
σ . Furthermore, when σ is large, the performance of our method becomes more compet-
itive. In addition, our method performs better for the piece-wise depth image compared 
to the performance on real natural images. However, when dealing with texture-rich 
images such as jar and flower, our result is not as good as ADNet.
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The above experiments imply that our method is good at denoising piece-wise 
smooth images. To further testify this conclusion, we test our method on the Mid-
dlebury Stereo Datasets 2006 [13]. Table  5 summarizes a mean PSNR and SSIM of 

Fig. 11  Denoising results of color images (tape and Pepper) with the noise variance σ = 50 . From the left (a) 
to right (g) are: the original image, the noisy image, the results obtained by NLM, BM3D, OGLR, ADnet and the 
proposed method respectively

Table 3  Image denoising on depth images with NLM ,BM3D, OGLR, ADNet and our method: 
peformance comparisons in PSNR (Left, in dB) and SSIM (Right)

Bold and underline to mark the best and the second best results for each quality index, respectively

Images noise NLM BM3D OGLR ADNet Our Method

teddy σ = 10 37.04dB 0.9725 40.10dB 0.9818 39.98dB 0.9833 41.98dB 0.9878 38.24dB 0.9673

σ = 20 33.60dB 0.9336 35.94dB 0.9674 35.94dB 0.9644 37.74dB 0.9779 34.69dB 0.9644

σ = 30 30.89dB 0.8842 33.16dB 0.9481 33.49dB 0.9441 35.07dB 0.9669 33.02dB 0.9486

σ = 40 29.04dB 0.8299 31.32dB 0.9279 31.78dB 0.9277 33.15dB 0.9539 30.91dB 0.9288

σ = 50 27.71dB 0.7741 29.73dB 0.9190 30.46dB 0.9049 31.50dB 0.9404 30.38dB 0.9125

wood σ = 10 43.64dB 0.9870 42.21dB 0.9889 44.45dB 0.9882 43.46dB 0.9924 42.50dB 0.9701

σ = 20 38.39dB 0.9559 38.09dB 0.9727 40.56dB 0.9761 39.79dB 0.9862 41.09dB 0.9839

σ = 30 35.17dB 0.9137 35.94dB 0.9573 38.15dB 0.9600 37.82dB 0.9792 38.91dB 0.9770

σ = 40 32.83dB 0.8620 34.46dB 0.9420 36.57dB 0.9478 36.58dB 0.9746 37.47dB 0.9656

σ = 50 31.06dB 0.8159 33.28dB 0.9375 34.55dB 0.9184 35.41dB 0.9664 36.07dB 0.9512

Sawtooth σ = 10 43.77dB 0.9866 44.62dB 0.9884 45.35dB 0.9911 45.61dB 0.9912 43.40dB 0.9731

σ = 20 38.12dB 0.9513 41.16dB 0.9787 40.96dB 0.9779 42.72dB 0.9873 41.11dB 0.9865

σ = 30 34.78dB 0.9032 38.72dB 0.9655 38.34dB 0.9630 40.41dB 0.9802 39.56dB 0.9762

σ = 40 32.69dB 0.8484 36.84dB 0.9497 36.51dB 0.9526 38.84dB 0.9747 37.29dB 0.9665

σ = 50 31.19dB 0.7912 35.87dB 0.9500 34.94dB 0.9334 37.34dB 0.9654 35.84dB 0.9510

Tsukuba σ = 10 39.71dB 0.9724 41.52dB 0.9798 41.64dB 0.9850 41.41dB 0.9813 40.67dB 0.9701

σ = 20 35.53dB 0.9308 37.38dB 0.9577 37.56dB 0.9626 37.76dB 0.9667 37.28dB 0.9657

σ = 30 32.37dB 0.8743 34.81dB 0.9319 34.91dB 0.9403 35.58dB 0.9486 35.23dB 0.9468

σ = 40 30.05dB 0.8110 33.05dB 0.9053 32.99dB 0.9245 34.00dB 0.9244 33.41dB 0.9313
σ = 50 28.36dB 0.7497 31.67dB 0.8915 31.44dB 0.9003 32.78dB 0.9157 32.57dB 0.9133

Books σ = 10 40.28dB 0.9727 40.89dB 0.9811 42.37dB 0.9828 41.83dB 0.9838 41.69dB 0.9827

σ = 20 36.37dB 0.9351 35.10dB 0.9519 38.26dB 0.9625 37.01dB 0.9609 37.35dB 0.9666
σ = 30 33.89dB 0.8887 32.61dB 0.9235 35.88dB 0.9420 34.45dB 0.9461 35.62dB 0.9491
σ = 40 32.18dB 0.8373 31.22dB 0.8970 34.10dB 0.9256 32.44dB 0.9260 34.28dB 0.9334
σ = 50 30.86dB 0.7834 29.76dB 0.8812 32.86dB 0.9050 31.11dB 0.9147 33.31dB 0.9154

Bowling σ = 10 43.18dB0.9850 41.62dB 0.9850 42.70dB 0.9867 43.09dB 0.9899 42.12dB 0.9725

σ = 20 38.65dB 0.9542 37.72dB 0.9682 38.84dB 0.9723 39.48dB 0.9796 39.32dB 0.9816
σ = 30 35.62dB 0.9126 35.30dB 0.9484 36.45dB 0.9573 37.46dB 0.9699 38.22dB 0.9732
σ = 40 33.32dB 0.8622 33.60dB 0.9379 34.73dB 0.9481 36.03dB 0.9624 36.27dB 0.9654
σ = 50 31.54dB 0.8069 32.18dB 0.9193 33.70dB 0.9330 34.37dB 0.9466 35.56dB 0.9531
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10 depth images obtained by the five methods. The results show that our method 
is effective at denoising the depth images, i.e., piece-wise smooth images, and our 
method outperforms the other methods when the noise level σ > 30 . This is due to 
that we use the multi-layer framework: the term FKu is obtained after K filtering, 
which results in a very smooth term nearly with no noise. The residual terms function 
as supplements, which helps to restore some details from the noise. Furthermore, our 
method takes considerably less time to operate than the OGLR method. For instance, 
our method takes around 30 seconds to process an image with a size of 500*300 pixels 

Table 4  Image denoising on nature images with NLM ,BM3D, OGLR, ADNet and our method: 
performance comparisons in PSNR (Left, in dB) and SSIM (Right)

Bold and underline to mark the best and the second best results for each quality index, respectively

Images noise NLM BM3D OGLR ADNet Our method

house σ = 10 37.55dB 0.9504 36.71dB 0.9212 38.88dB 0.9622 36.57dB 0.9077 38.50dB 0.9533

σ = 20 33.86dB 0.9146 33.77dB 0.8721 35.87dB 0.9405 34.12dB 0.8713 35.68dB 0.9448
σ = 30 31.01dB 0.8659 32.09dB 0.8473 33.86dB 0.9183 32.62dB 0.8556 33.79dB 0.9279
σ = 40 29.03dB 0.8113 30.65dB 0.8249 32.49dB 0.9024 31.26dB 0.8387 31.33dB 0.9085
σ = 50 27.61dB 0.7559 29.69dB 0.8116 30.67dB 0.8631 30.28dB 0.8230 31.13dB 0.8969

church σ = 10 37.70dB 0.9600 39.53dB 0.9670 39.59dB 0.9744 40.38dB 0.9710 39.18dB 0.9629

σ = 20 33.35dB 0.9151 35.99dB 0.9455 36.04dB 0.9527 37.23dB 0.9580 35.68dB 0.9564

σ = 30 30.54dB 0.8591 33.92dB 0.9254 33.71dB 0.9292 35.06dB 0.9413 33.59dB 0.9378

σ = 40 28.84dB 0.8021 32.42dB 0.9056 32.13dB 0.9048 33.64dB 0.9398 30.80dB 0.9101

σ = 50 27.63dB 0.7463 31.33dB 0.8974 30.60dB 0.8636 32.37dB 0.9142 30.66dB 0.8945

flower σ = 10 35.69dB 0.9469 38.15dB 0.9667 37.77dB 0.9655 38.70dB 0.9712 37.78dB 0.9620

σ = 20 32.40dB 0.8986 34.29dB 0.9314 34.33dB 0.9342 35.22dB 0.9476 34.15dB 0.9362

σ = 30 30.26dB 0.8497 32.19dB 0.8988 31.95dB 0.8998 33.17dB 0.9225 31.94dB 0.9049

σ = 40 28.90dB 0.8033 30.67dB 0.8679 30.51dB 0.8713 31.78dB 0.9046 29.73dB 0.8661

σ = 50 27.90dB 0.7575 29.72dB 0.8529 29.09dB 0.8231 30.44dB 0.8813 29.37dB 0.8544

jar σ = 10 35.71dB 0.8954 38.63dB 0.9459 37.91dB 0.9354 37.52dB 0.9349 38.01dB 0.9333

σ = 20 33.33dB 0.8471 35.26dB 0.8986 34.96dB 0.8911 34.58dB 0.8887 34.93dB 0.8884

σ = 30 31.63dB 0.7992 33.41dB 0.8637 33.29dB 0.8598 32.96dB 0.8506 33.40dB 0.8615

σ = 40 30.43dB 0.7534 32.04dB 0.8350 32.09dB 0.8375 32.02dB 0.8222 32.02dB 0.8403
σ = 50 29.48 0.7083 31.17dB 0.8191 31.00dB 0.8128 31.13dB 0.8002 31.08dB 0.8204

bird σ = 10 35.80dB 0.9735 38.28dB 0.9829 37.04dB 0.9796 38.55dB 0.9754 36.41dB 0.9679

σ = 20 32.42dB 0.9385 34.30dB 0.9651 33.62dB 0.9621 35.20dB 0.9615 32.79dB 0.9635

σ = 30 29.66dB 0.8928 31.99dB 0.9499 31.58dB 0.9421 33.21dB 0.9506 31.38dB 0.9503

σ = 40 27.66dB 0.8407 31.63dB 0.9377 30.01dB 0.9201 31.63dB 0.9377 28.47dB 0.9261

σ = 50 26.16dB 0.7851 28.95dB 0.9101 28.62dB 0.8830 30.62dB 0.9189 29.02dB 0.9213

Table 5  The results of image denoising on depth dataset

Bold and underline to mark the best and the second best results for each quality index, respectively

noise NLM BM3D OGLR ADNet Our Method

σ = 10 41.96dB 0.9797 45.20dB 0.9887 44.40dB 0.9859 43.63dB 0.9864 43.36dB 0.9779

σ = 20 37.42dB 0.9742 40.88dB 0.9749 40.47dB 0.9705 40.19dB 0.9746 39.46dB 0.9601

σ = 30 34.53dB 0.8983 38.13dB 0.9581 38.02dB 0.9522 37.80dB 0.9598 37.67dB 0.9543

σ = 40 32.53dB 0.8463 36.08dB 0.9389 36.36dB 0.9368 36.17dB 0.9487 36.62dB 0.9581
σ = 50 31.11dB 0.7915 35.16dB 0.9368 34.40dB 0.9046 34.84dB 0.9379 34.94dB 0.9445
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and a noise level of sigma=10, whereas the OGLR takes about 90 seconds. However, 
as compared to other approaches such as BM3D and ADnet, the graph-based meth-
ods take longer, which is a common downside of the graph-based method.

6 � Conclusion
In this paper, we propose a graph-based NLMs algorithm for image denoising. The edge 
weights defined in the OGLR algorithm are applied as the NLMs kernel. A multi-layer 
residual compensation strategy is then used to recover the details. The coefficients of 
the smooth term and the residual terms of the multi-layer representation are learned 
according to the least mean square method. We testify the effectiveness of our method 
both on natural images and depth images. Our proposed method outperforms the origi-
nal OGLR method in PSNR/SSIM/time cost. Compared with the other state-of-the-art 
methods, including the classical NLMs, BM3D and the AD-Net, our proposed method 
provides comparable or better results. Especially, our method has excellent denoising 
performance on the piecewise smooth images when the noise level is high.
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