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1  Introduction
In the past several decades, speech enhancement has attracted considerable research 
interest due to the wide application of voice-based solutions for real-world applications. 
The purpose of speech enhancement is to improve speech quality and intelligibility under 
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Speech is easily interfered by external environment in reality, which results in the loss 
of important features. Deep learning has become a popular speech enhancement 
method because of its superior potential in solving nonlinear mapping problems for 
complex features. However, the deficiency of traditional deep learning methods is the 
weak learning capability of important information from previous time steps and long-
term event dependencies between the time-series data. To overcome this problem, we 
propose a novel speech enhancement method based on the fused features of deep 
neural networks (DNNs) and gated recurrent unit (GRU). The proposed method uses 
GRU to reduce the number of parameters of DNNs and acquire the context information 
of the speech, which improves the enhanced speech quality and intelligibility. Firstly, 
DNN with multiple hidden layers is used to learn the mapping relationship between 
the logarithmic power spectrum (LPS) features of noisy speech and clean speech. 
Secondly, the LPS feature of the deep neural network is fused with the noisy speech as 
the input of GRU network to compensate the missing context information. Finally, GRU 
network is performed to learn the mapping relationship between LPS features and log 
power spectrum features of clean speech spectrum. The proposed model is experi-
mentally compared with traditional speech enhancement models, including DNN, 
CNN, LSTM and GRU. Experimental results demonstrate that the PESQ, SSNR and STOI 
of the proposed algorithm are improved by 30.72%, 39.84% and 5.53%, respectively, 
compared with the noise signal under the condition of matched noise. Under the 
condition of unmatched noise, the PESQ and STOI of the algorithm are improved by 
23.8% and 37.36%, respectively. The advantage of the proposed method is that it uses 
the key information of features to suppress noise in both matched and unmatched 
noise cases and the proposed method outperforms other common methods in speech 
enhancement.
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the interfering noise conditions. Recently, the classic noise reduction methods includ-
ing spectral subtraction (SS), Wiener filtering (WF), hidden Markov model (HMM) 
and statistical model-based algorithms have been widely studied to remove or attenu-
ate additive noise from noisy speeches [1–4]. Spectral subtraction is one of the typical 
speech enhancement algorithms proposed to remove environment noise, but the result-
ing enhanced speech often suffers from annoying musical artifact called musical noise. 
The Wiener filter is a linear estimator and minimizes the mean-squared error between 
the original and enhanced speech, which depends on the filter transfer function from 
sample to sample based on the speech signal statistics. HMMs are doubly stochastic 
processes or probabilistic functions of Markov chains that model time-series data as the 
evolution of a hidden state variable through a discrete set of possible values. There are 
two problems to solve for the traditional HMM, which are the limitation of conditional 
independence and difficulty of processing segmental features. The performance of con-
ventional methods is generally dependent on the nature of the background noise and 
the statistical properties of speech, because traditional methods need to estimate power 
spectrum of noise. However, it is difficult to accurately estimate different types of noise 
with nonlinear or non-stationary features.

In recent years, deep learning became increasingly popular as a mapping method 
between the noisy and clean speech signals to accomplish the task of enhancing a 
desired speech signal. The fully connected structure of multi-layer neuron nodes and the 
application of nonlinear activation functions enables the deep learning to solve various 
classification and regression models for the separation of the speech and the noise. Deep 
learning with multiple nonlinear layers only needs the current observation data and has 
strong nonlinear mapping and self-learning abilities to learn generalizable features from 
large amounts of training data. The advantage of deep learning for speech enhancement 
is that it can remove the noise considerably from the noisy speech, because it makes 
no assumptions about the statistical properties of the signals and uses a large collec-
tion of noise types to generate diverse noisy speech samples for training. Representative 
deep learning models like convolutional neural networks (CNN), deep neural networks 
(DNN) and recurrent neural networks (RNN) have been successfully applied into fields 
like computer vision and natural language processing [5–7]. Recently, deep learning with 
a large training data set has shown good generalization capabilities to unseen noise types 
and better performance in both noise reduction and speech distortion over the conven-
tional approaches [8, 9]. In [10], a deep convolutional neural network (CNN) is proposed 
to improve recognition accuracy for noise robust speech recognition, and it also can 
reduce word error rate (WER) significantly. A deep auto-encoder (DAE) is introduced 
to address the mapping relationship of the Mel-frequency power spectra between noisy 
speech and clean speech, and denoising DAE provided superior speech enhancement 
performance compared with a minimum mean square error-based speech enhancement 
[11]. A speech enhancement framework based on the DNN and restricted Boltzmann 
machine (RBM) is proposed, where RBM is introduced to initialize the multiple-layer 
deep architecture [12]. Although deep learning methods have achieved great success, 
the long-term dependencies hidden in time-series data are not considered and utilized 
in traditional deep learning. Specifically, there are data redundancy, data missing and 
abnormal data in time-series data. So it is necessary to model long-term dependencies 
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in time-series data to enlarge the receptive field and discover longer patterns in speech 
enhancement.

To address the problem, recurrent neural network (RNN) [13] and long short-term 
memory (LSTM) [14] have been proposed to learn the temporal relations and cap-
ture time dependencies of time-series data. RNNs with gated mechanism learn long 
time sequences via a way that information in nodes of hidden layers will be recycled to 
achieve time-series memory. Long short-term memory is a typical structure in RNNs, 
where different gates are used to control the percentage of saving, dropping temporal 
information and receiving incoming information. Recurrent neural network and long 
short-term memory have been demonstrated in the applications with sequential data, 
which can model the relationship between previous frame and current frame to capture 
the long-term context information [15, 16]. However, LSTM often has the problems 
of gradient disappearance and gradient explosion. As a variant and improved version 
of LSTM, GRU can use the previous input of prediction information and maintain a 
longer-term information dependence, which reduces the number of gate units on the 
LSTM model and solves the gradient disappearance problem of RNN. Due to its spe-
cial structure of an update gate and a reset gate, GRU controls the flow of information 
through learning gates and further controls input and memory of gates; thereby, it saves 
computer memory and simultaneously captures the dependence of time-series infor-
mation. In [17], a bitwise GRU network is used for the single-channel source separa-
tion task. A GRU-based recurrent neural network method to learn the desired critical 
band gains over each frequency band is presented in [18]. Recently, a speech emotion 
recognition model based on Bi-GRU is proposed and shows good recognition accuracy 
[19]. Gated recurrent units that will result in inessential content are reserved when the 
unprocessed data are used as input.

A novel DNN-GRU method is proposed to take advantage of both deep neural net-
work and recurrent neural network to drastically reduce the number of parameters and 
simultaneously improve speech quality and speech intelligibility in this paper. The DNN 
with three fully connected layers is employed to establish a mapping function between 
noisy speech and clean speech. In order to learn context information while decreasing 
the training time of deep learning, the LPS features from DNN model and noisy speech 
are fused and learned by a GRU-based speech enhancement method. The proposed 
DNN-GRU network combines the output of the speech pro-processed by DNN with the 
features of noisy speech to compensate the lack of context information and improve the 
enhanced speech quality and intelligibility.

The rest of this paper is organized as follows. Section 2 introduces the DNN and GRU 
architectures. The DNN-GRU model is introduced in Sect. 3. Experiments are presented 
in Sect. 4 to evaluate the performance of the proposed algorithm. Finally, the conclusion 
is given in Sect. 5.

2 � Preliminaries
2.1 � Deep neural network

Deep neural network is a kind of feed-forward neural network, which contains the input 
layer, several hidden layers and the output layer [20]. Figure  1 shows the topological 
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structure of DNN. Deep neural network has the ability to learn some features form mul-
tiple layers to ensure that the neural structure can construct a complex mapping func-
tion. The nodes between two adjacent layers of DNN are fully connected, and the nodes 
on the same layer are not connected to each other. As the number of layers and width of 
the network increases, the characteristics of DNN become more complex and the train-
ing time becomes longer.

Deep neural network that generates output vector from input vector is expressed by

where 1 ≤ l ≤ L , h0 = y , hL = x . hl−1 ∈ Rdl−1×1 is the dl−1 dimensional output vector of 
(l − 1)-th layer, and hl ∈ Rdi×1 is the dl dimensional output vector of l-th layers. Addi-
tionally, wl ∈ Rdl×di−1 and bl ∈ Rdl×1 are the weight matrix, with bias from (l − 1)-th hid-
den layer to the l-th hidden layer, f l(·) is the activation function on the l − th hidden 
layer, and L-th layer is the output layer.

Since the nonlinearity of activation functions is crucial for the success of predictive 
models, the nonlinear activation functions are commonly used to enhance the model 
accuracy including Sigmoid, Tanh and ReLu. Scaled exponential linear unit (SeLU) has a 
unique characteristic in the ability to automatically normalize its output toward prede-
fined mean and variance, which can be described by

where � and α are two fixed parameters, in general, � = 1.05 and α = 1.67 . The SeLU 
activation function has saturation zone but no dead zone, and the output will be magni-
fied after activation.

(1)







h1 = f 1
�

w1y+ b1
�

h1 = f 1
�

w1hl−1 + bl
�

x = f
�

wLhL + bL
�

(2)f (x) = �

{

x x > 0
aex − a x ≤ 0

Fig. 1  The structure of deep neural network
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2.2 � Gated recurrent unit

Gated recurrent unit (GRU) network is regarded as an updated version of LSTM with a 
simple structure including memory cell and gate units [21]. Long short-term memory and 
gated recurrent unit are improved versions of RNN, which are considered as powerful 
schemes for modeling temporal and sequential data and capturing long-term dependencies 
on datasets. Compared with the RNN, GRU has promising features on the balance between 
fast computation and capture capability for the mapping relationship among time-series 
datasets. By introducing gating mechanisms into the architecture, GRUs provide a trained 
model with consistent memory capable of seizing short-term and long-term dependencies 
among speech frames effectively.

Figures  2 and 3 depict the structures of LSTM and GRU, respectively. The LSTM has 
an input, output and forget gate. In the GRU cell, this is handled via an update gate and a 
reset gate, where the update gate mostly does what in the LSTM is done by the input and 
forget gate. The main difference is the presence or absence of an output gate, which tells 
how much of the content is presented to the next layer of the network. Compared with the 
LSTM network structure, GRU can solve the prediction problem of long interval long delay 
time series. Gated recurrent unit can outperform LSTM units both in terms of convergence 
in CPU time and in terms of parameter updates and generalization [22].

As shown in Fig. 3, the reset gate is used to control the degree of ignoring the information 
of the previous moment and the update gates control whether the status of GRU is updated 
and how many the gating units are updated. The activation gate ht of the GRU at time t is a 
linear interpolation between the previous activation ht−1 and the next activation ht%.

Fig. 2  Long short-term memory unit

Fig. 3  Gated recurrent unit
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The equation of GRU can be described as:

where rt is the reset gate determining the number of ignored prior information. xt rep-
resents the input of memory unit, zt is the update gate which determines the number of 
information input to the next state cell. Wr , Wh and Wz represent weight vectors corre-
sponding to the gates in the memory unit, respectively.

Although GRUs can handle long-term sequential for time-series data, their gate struc-
tures can lead to the disregard of important content in a long sequence [23, 24]. Gated 
recurrent units may lead to poor models where important information from previous 
time steps and long-term event dependencies is not well addressed during training stage. 
In this paper, we present an approach that alleviates this problem by introducing a novel 
DNN-GRU model which is capable of sustaining crucial content in long-term sequential 
data.

3 � Speech enhancement based on the DNN and GRU network
3.1 � Overall learning framework

Figure  4 shows the overall procedure based on DNN-GRU model, which includes the 
training phase and enhancement phase. Before training, a variety of LPS features for 
noisy speech and clean speech are extracted. In the training phase, two-stage speech 
enhancement neural network with nonlinearities is adopted, which can learn mapping 
from noisy speech features to clean speech features. Firstly, LPS features of the noisy 
speech and clean speech are inputted to a fully connected feed-forward DNN to obtain 

(3)rt = σ(Wrxt +Urht−1)

(4)zt = σ(Wzxt +Urht−1)

(5)ht% = tanh (Whxt +Uhrt · ht−1)

(6)ht = (1− zt)ht−1 + ztht%

Fig. 4  Basic schematic diagram of speech enhancement method based on DNN-GRU model
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the optimal weights, bias and hyper-parameters. Then, the LPS features of DNN pre-
processed and noisy speech are combined to compensate the missing time-series infor-
mation. Lastly, the new LPS speech features and the LPS features of clean speech are 
used to build the mapping function of GRU network to achieve noise reduction. In the 
enhancement stage, the noisy speech is sent into the well-trained DNN-GRU model to 
predict the LPS features of clean speech. The estimated LPS feature is used as wave-
form recovery to obtain the clean speech. The enhanced speech by the DNN-GRU 
model is coherent, which guarantees the contextual information of the speech signal and 
improves the speech intelligibility and quality.

In Fig. 4, Y (m) is the noisy speech, Y LPS is the LPS features of noisy speech, XLPS is the 
LPS features, XR is the estimated speech, and ∠YR is the phase of speech.

3.2 � DNN‑GRU model‑based training

Clean speech and noise are added to construct noisy speech. The clean speech and noise 
form voice pair datasets which are divided into training sets and test sets.

where Y (m) , X(m) and N (m) represent noisy speech, clean speech and noise at time m , 
respectively.

In the LPS domain, the target values of different frequency bins are predicted inde-
pendently without any correlation constraint, and can be transformed back to the wave-
form domain without any information loss. The extraction process of LPS features is as 
follows.

First, the speech signal is decomposed into 25 ms frames with 10 ms frame shift by 
pre-processing as shown in Eq. (8). Each frame is smoothed with hamming window.

where Yt(n) is the t-th frame speech signal, and t is the sample point of Yt(n) . L is the 
frame length, and p denotes the window length. A discrete Fourier transform (DFT) is 
performed on Yt(n) to obtain the spectrum of each frame as shown in Eq. (9):

where f  represents the f -th frequency point at time-frame unit t , and N  is the num-
ber of DFT points. The LPS features are obtained by logarithmic function which can be 
compressed as follows:

(7)Y (m) = X(m)+ N (m)

(8)Yt(n) =

n
∑

p=n−L+1

y(p)w(n− p)

(9)Y
(

t, f
)

=

N−1
∑

n=0

Yt(n)e
−j 2πN fn

(

f = 0, 1, 2 · · ·N − 1
)

(10)Y LPS
(

t, f
)

= log([Y
(

t, f
)

])2
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Pseudocode

Algorithm: DNN-GRU algorithm

1. STEP 1 Constructing training and test sets

2. STEP 2 Feature extraction

Input: ( )Y m

Output: ( ),LPSY t f
3. Step 1: Framing:
4. Step 2: DFT:

5. STEP 3 Local noise reduction by DNN: ( ) | ( | )p DNN
t k k tX t x f Xτ

τ θ+ =−= =
6. STEP 4 Combining

Input: ( ),  ( )pX t Y t

Output: * ( )Y t

7. Step 1: preparing: ( ) | ( | )p DNN
t k k tX t x f Xτ

τ θ+ =−= =
8. Step 2: preparing:

( ) { ( ), ( 1), ( ), ( 1), ( )}Y t y t y t y t y t y tτ τ τ τ= − − + + − +L L

9. Step 3: feature fusion:
* *( ) ( | ) | ( ) ( )p

t k i k iY t y X t Y tτ τ
τ τ+ + =− =−= = U

10. STEP 5: Global noise reduction by GRU:

( ) ( | ) { ( ), ( 1), ( ), ( 1), ( )}R GRU R R R R RX t g x t x t x t x t x tη τ τ τ τ= ⋅ = − − + + − +L L

11. STEP 6: Waveform recovery: ( ) ( ){ } ( ){ }, exp , / 2 exp ,RRX n k X n k j Y n k= ∠

3.3 � DNN‑GRU model

The sequence of the noisy LPS features are used as input of the established DNN-GRU 
model. The DNN-GRU model for speech enhancement contains 8 layers, which consists 
of an input layer, three hidden layers of DNN with a sequencing size of 1024–1024–
1024, one feature fusion layer with size of 512, two GRU layers and one output layer. To 
capture the nonlinear variations of data, the SeLU is selected as the activation function 
in the hidden layers of DNN. The structure of DNN-GRU model is shown in Fig. 5).

Firstly, a DNN with three hidden layers is typically used to learn the mapping between 
the local LPS features of noisy speech and clean speech to estimate the clean LPS fea-
tures from the noisy ones in the first stage.

where Yt ∈ RN denotes the noisy LPS vector, 
{

xt+k

}τ

k=−τ
∈ RN is the enhancement LPS 

vectors, k is the front-end frames, and f DNN(Yt |θ) means the DNN-based function that 
directly maps the noisy LPS features to clean ones, with DNN parameter set to θ.

The standard back-propagation (BP) algorithm has the ability to address dropout reg-
ularization. The DNN training adopts dropout regularization to overcome over-fitting, 
which randomly discards the neurons with a certain probability to prevent complex cor-
relation among hidden neurons. The mini-batch stochastic gradient descent is a simple 

(11)Y (t) =
{

y(t − τ), y(t − τ + 1), L, y(t + τ)
}

(12)Xp(t) = xt+k |
r
k=−τ = f DNN(Xt |θ), τ ∈

(

1,XR(t)
)
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but effective method; it also is used to solve the problem of the over-fitting in a large 
scale of deep network widely. The dropout rate is set as 0.25 in this paper. In the training 
stage, a linear activation function is used for the output layer. The number of iterations 
of the standard BP algorithm is 100. The mean squared error (MSE) is used as the loss 
function, which minimizes the error between the predicted and noisy speech features.

where L is the total number of samples, XLPS(t) denotes t-th clean LPS features, and 
XR(t) represent the predicted LPS features.

Adam optimizer is used to update the weights and biases of hidden neurons in 
mini-batches. Furthermore, the rest of hyper-parameters including learning rate, the 
number of layers and hidden neurons depends on different conditions. As described 
above, if training data is diverse and large enough, the DNN-GRU model has the 
potential to learn the nonlinear relationship between noisy speech and clean speech 
without any prior knowledge.

Secondly, to capture the effective contextual information in features, the layer of 
feature fusion is adopted. As shown in Fig. 6, DNN-GRU has a cascade architecture 
consisting of a prior NN (DNN) and a posterior NN (GRU-NN) for the first and sec-
ond stage of DNN-GRU.

In Fig. 6, xp(t − 1) , xp(t) and xp(t + 1) are the LPS features of three frames after the 
first stage of DNN, respectively. y(t − 1) , y(t) and y(t + 1) are the LPS feature of noisy 

(13)MES =

√

∑L
i=1

(

XLPS(t)− XR(t)
)2

L

GRU

GRU

GRU GRU

GRUGRU

GRU

GRU

Targets

GRUNNs

Feature Fusion

DNNs

Inputs

Noise

Outputs

h1

h2

h3

Fig. 5  The structure of the DNN-GRU model
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ones. Y (t) and Xp(t) are added and expanded in the form of Fig.  6, forming Y ∗(t) . 
Input the Y ∗(t) into the GRU network for the second stage.

Since the noisy speech contains the time-series information, the combined features 
are expected from the LPS features of noisy and the LPS features of DNN processing. 
The new feature frames are combined with the noisy speech frame as follows:

where Xp(t) includes all base predictions for xp(t) ∈ RN , and Y ∗(t) containing 128 LPS 
vectors is input into the GRU network. i is the front-end frames of noisy speech.

The new LPS features of time instance tk , tk−1, L, tk−n (where k is the current time 
instance and n is the number of prior frames) are fed into the GRU network with two 
GRU layers. The first GRU layer has 1024 cells, which encode the input and pass its 
hidden state to the second GRU layer, which has 512 cells. The two GRU layers are 
used to establish the mapping from the new feature to the training target features to 
achieve the whole frames speech enhancement, and meanwhile preserving the con-
textual information of speech. The GRU network output xR(t) is the estimated XR(t).

where gGRU(·|η) means the GRU network-based function that directly maps the new 
features Y ∗(t) to clean ones, with GRU network parameter set to η.

3.4 � DNN‑GRU model‑based enhancement

Firstly, the noisy speech is pre-processed in the enhancement stage to obtain a satis-
factory enhancement effect. Secondly, the LPS features of noisy speech are extracted 
and fed into the well-trained DNN-GRU model as test data. To fully display the 
complementarity of a target set and reduce the impact of network misestimating on 
enhanced speech, we adopt the estimated LPS to reconstruct enhanced waveform.

Through the DNN-GRU model testing, the estimated LPS feature of the obtained 
clean speech is defined as XLPS(n, k) . Lastly, the reconstructed spectra XR(n, k) can be 
calculated as

(14)Y ∗(t) =
(

y∗t+k+i|
τ
k=−τ

)

|τi=−τ = Xp(t) ∪ Y (t)

(15)
XR(t) = gGRU(·|η)

=
{

xR(t − τ ), xR(t − τ + 1), L, xR(t + τ)

}

DNN
GRU

Fig. 6  Feature data combination
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where ∠YR(n, k) denotes the k-th phase of the n-th frame from the original noisy speech. 
After above operations, a frame of clean speech is derived by inverse discrete Fou-
rier transform (IDFT) from the current frame spectra and the whole waveform can be 
reconstructed.

4 � Experiment and result discussion
4.1 � Experimental setup

The proposed DNN-GRU model includes training stage and enhancement stage. In the 
training stage, a fully connected feed-forward DNN-GRU model is used to establish the 
mapping function of input–output pairs. The trained model can predict the clean speech 
from corresponding noisy speech. In the enhancement stage, based on the results of the 
DNN-GRU testing and the online estimated pitch period, the IDFT is utilized to obtain 
enhanced speech.

During the training stage, 100 speeches from the TIMIT database are used as clean 
speech, and the 160 noise types of noise samples are randomly selected from Nonspeech 
and Noise-15 database. The clean speeches are mixed with the noises at 6 levels of sig-
nal noise ratio (SNR) to form a noisy set. The noise SNRs are − 5 dB, 0 dB, 5 dB, 10 dB, 
15 dB and 20 dB, respectively. During the test stage, 40 speeches are randomly selected 
in the TIMIT test database, and 6 types of noises including Pink, White, Battle, Fac-
tory, F16 and Destroy noises are selected from the NOISEX-92 database to form noisy 
speeches.

4.2 � Performance measurement

Three evaluation criteria are used to evaluate the enhanced speech quality, including the 
perceptual evaluation of speech quality (PESQ) [25], segmental SNR (SSNR) [26] and 
short-time objective intelligibility (STOI) [27].

4.2.1 � PESQ

The PESQ reflects the perceptual quality of the enhanced speech. The PESQ scored from 
− 0.5 to 4.5, and the PESQ is positively related to the perceptual quality of speech. The 
PESQ value on six noises in various SNR conditions is presented in Table 1. It can be 
observed that DNN-GRU model has a superior noise reduction performance. Specifi-
cally, the PESQ value of DNN-GRU model is higher than that of the other four models at 
different SNR levels for White, Factory, F16 and Destroy noises. But for Pink and Battle 
noises, the PESQ of the proposed model is slightly lower than DNN at 20 dB SNR level. 
It can be concluded that DNN-GRU model can obtain better speech perceptual quality 
in variety of environments. Since the proposed framework is compatible with DNN and 
GRU, it has good performance than single network when processing the different SNRs 
conditions.

4.2.2 � SSNR

Since the speech signal is a short and smooth signal, the SNR values will vary at different 
times which is changed slowly. The SSNR commonly is used in practical applications to 

(16)XR(n, k) = exp
{

X(n, k)/2
}

exp
{

j∠Y R(n, k)
}
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reflect the performance measurement of enhanced speech, which is defined to evaluate 
the performance of noise reduction by

where m is the frame index, M is the total number of frames, Nm , and N  denote the 
minimum length and total length of the frame, respectively. x(n) represents the clean 
speech, and x̂(n) denotes the enhanced speech.

(17)SSNR =
10

M

M−1
∑

m=1

log10

∑Nm+N−1
n=Nm

x2(n)
∑Nm+N−1

n=Nm

(

x(n)− x̂(n)
)2

Table 1  PESQ comparison on the test set at different input SNRs of unseen noise environments

Noise SNR (dB) Unprocessed DNN CNN LSTM GRU​ DNN-GRU​

Pink 20 3.059 3.330 2.478 3.253 3.181 3.528

15 2.710 3.075 2.956 3.0151 2.951 3.314

10 2.358 2.792 2.144 2.724 2.664 2.963

5 1.962 2.491 2.228 2.411 2.324 2.790

0 1.606 2.118 1.826 2.049 1.940 2.462

− 5 1.292 1.708 1.371 1.675 1.515 2.114

White 20 2.791 3.156 2.381 3.101 3.080 3.271

15 2.443 2.921 2.922 2.889 2.847 2.966

10 2.102 2.659 1.953 2.618 2.605 2.837

5 1.720 2.356 2.145 2.345 2.287 2.674

0 1.424 2.057 1.693 2.026 1.957 2.386

− 5 1.200 1.613 1.270 1.671 1.597 1.975

Battle 20 3.152 3.362 2.550 3.339 3.241 3.353

15 2.831 3.160 2.974 3.103 3.009 3.253

10 2.503 2.880 2.265 2.818 2.723 2.880

5 2.126 2.549 2.188 2.522 2.406 2.655

0 1.796 2.205 1.844 2.156 2.062 2.332

− 5 1.471 1.829 1.446 1.739 1.693 2.175

Factory 20 3.240 3.436 3.396 3.346 3.269 3.642

15 2.907 3.240 2.970 3.146 3.059 3.423

10 2.572 2.992 2.289 2.879 2.810 3.229

5 2.039 2.563 2.209 2.463 2.368 2.937

0 1.683 2.221 1.811 2.107 1.983 2.592

− 5 1.370 1.797 1.400 1.725 1.593 2.285

F16 20 3.117 3.416 2.527 3.368 3.253 3.587

15 2.429 2.943 3.013 3.145 3.137 3.308

10 2.440 2.958 2.265 2.850 2.757 3.169

5 2.065 2.676 2.292 2.557 2.429 2.882

0 1.726 2.321 1.906 2.182 2.066 2.538

− 5 1.424 1.965 1.491 1.844 1.744 2.419

Destroy 20 3.191 3.346 2.546 3.375 3.260 3.602

15 2.878 2.223 2.967 3.174 3.047 3.440

10 2.547 2.971 2.290 2.898 2.774 3.276

5 2.193 2.738 2.273 2.635 2.487 2.950

0 1.828 2.391 1.933 2.205 2.128 2.535

− 5 1.468 1.995 1.533 1.773 1.708 2.393
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Figure  7 presents the SSNR results at different SNRs. It can be seen that when 
the input SNR is from 5 to 20 dB, the SSNR of the DNN-GRU model is better than 
that of the other reference models. It can be inferred that the DNN-GRU model has 
good noise reduction ability. Under − 5  dB and 0  dB conditions, the results of five 
models are obviously different. Specifically, the LSTM model has excellent results in 
White, Battle and F16 noises, but the DNN-GRU is still very competitive. For other 
noise conditions such as Pink and Destroy, the DNN-GRU always has superior SSNR 
scores. Overall, although the performance of the DNN-GRU model is slightly inferior 
under lower SNR conditions, the DNN-GRU model is better than other models in 

Fig. 7  The SSNR results at different SNRs
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most cases, which verifies our proposed model DNN-GRU has good speech quality 
and intelligibility.

4.2.3 � STOI

The STOI is a speech intelligibility indicator, which indicates the correlation between 
temporal envelopes of the clean speech and enhanced speech in short-time segments. 
The value range of STOI is between 0 and 1, and the larger STOI value denotes the bet-
ter the speech intelligibility. Figure 8 shows the results of STOI under the six different 
noise environments. Even though the proposed model has a little decline compared with 
LSTM at 20 dB under the Battle noise environment, the performance of STOI is better 
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Fig. 8  The STOI results at different SNRs
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than reference models generally. Specifically, the DNN-GRU model performs better than 
other models at low SNR conditions ranging from − 5 to 5 dB. In high SNR conditions 
ranging from 5 to 20 dB, DNN, LSTM and DNN-GRU have excellent noise reduction 
performance. These phenomena are caused by the superimposition of sine waves, and 
the reconstructed speech will reduce the intelligibility of the speech in a way. So it can 
be summarized that these models have good capabilities for the lower SNR conditions.

4.3 � Spectrogram comparison

In order to reflect visually differences between the proposed model and the other mod-
els, the comparison of the spectrograms of the five representative models with the Pink 
noise at 5 dB input SNR level is shown in Fig. 9. Its x-label represents time and takes 
values from 0 to 30  s. Its y-axis represents the frequency and takes values from 0 to 
8000 Hz. It can be observed that the DNN and CNN have good noise reduction effects 
for single-frame speech signals, but they do not have the ability to process time-series 
signal, so there is a clear fault phenomenon. In addition, the LSTM and GRU have pow-
erful processing capability to correct the front-end frames of speech, but their abilities 
of noise reduction are relatively poor. Figure 9g–h shows the enhanced speech result-
ing of traditional two-stage neural network speech enhancement and the proposed 
DNN-GRU model, respectively. Due to the new features fused with the features between 
the original signal and processing signal by DNN, the single-frame signal processing 
capability of DNN and the context information maintaining of sequence signals by the 
RNN are observed. Thus, the proposed speech enhancement model guarantees a good 
noise reduction effect and ensures the coherence of speech signal. Compared with the 

(a) the spectrogram of clean speech

(b) the spectrogram of noisy 
speech

(c) the spectrogram processed by DNN

(e) the spectrogram processed by 
LSTM

(f) The spectrogram processed by 
GRU

(h) The spectrogram processed by 
proposed  DNN-GRU

(d) the spectrogram processed by CNN

(g) The spectrogram processed by 
traditional DNN-GRU

(a) the spectrogram of clean speech

(b) the spectrogram of noisy 
speech

(c) the spectrogram processed by DNN

(e) the spectrogram processed by 
LSTM

(f) The spectrogram processed by 
GRU

(h) The spectrogram processed by 
proposed  DNN-GRU

(d) the spectrogram processed by CNN

(g) The spectrogram processed by 
traditional DNN-GRU

Fig. 9  Spectrograms of each speech
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traditional two-stage neural network model, the speech reconstructed by the proposed 
method is more complete because it can retain more spectrum details and has superior 
noise reduction effect.

Simultaneously, Table 2 lists the total number of parameters included in the training 
stage of DNN, CNN, LSTM, GRU and DNN-GRU. It is clearly seen that among LSTM, 
GRU and DNN-GRU, the DNN-GRU has the least parameter size and LSTM has the 
largest size. Compared with the DNN and CNN, more parameters need to be obtained 
for DNN-GRU network, but it can achieve feature fusion and maintain the continuity of 
speech signals.

4.4 � PESQ and STOI results under mismatch input SNRs

To verify the capability of the DNN-GRU model for speech enhancement with multiple 
noises, we select four types mismatch noises including 17 dB, 8 dB, 2 dB and − 7 dB as 
input SNRs. The proposed DNN-GRU model is also compared with the reference model 
including DNN, CNN, LSTM and GRU. The average PESQ results of each model are 
described in Table 3. The learning rate of DNN-GRU model is selected as 0.0001; the rest 
of the parameters are consistent with the previous experiment.

In Table 3, it is can be seen that despite networks using mismatched SNRs for input, 
the proposed DNN-GRU model still has a superior performance compared with other 
models. The DNN-GRU model improves PESQ value by 0.567 improvement, and the 
performance of GRU is slightly lower than LSTM. Furthermore, Table 4 lists the aver-
age STOI results. The enhanced speech using DNN-GRU model also has the best 

Table 2  The number of parameters among five models

DNN CNN LSTM GRU​ DNN-GRU​

Total parameters 6.05 M 3.68 M 18.09 M 16.38 M 12.17 M

Table 3  Average PESQ results among five models under mismatch input SNRs

SNR Unprocessed DNN CNN LSTM GRU​ DNN-GRU​

17 dB 3.032 3.172 3.069 3.292 3.266 3.587

8 dB 2.405 2.568 2.574 2.778 2.682 2.893

2 dB 1.973 2.156 1.987 2.329 2.237 2.489

− 7 dB 1.418 1.725 1.525 1.883 1.863 1.928

Average 2.207 2.405 2.289 2.571 2.512 2.774

Table 4  Average STOI results among five models under mismatch input SNRs

SNR Unprocessed DNN CNN LSTM GRU​ DNN-GRU​

17 dB 0.856 0.857 0.853 0.868 0.868 0.898

8 dB 0.781 0.765 0.743 0.824 0.795 0.832

2 dB 0.739 0.763 0.690 0.720 0.696 0.752

− 7 dB 0.546 0.553 0.549 0.510 0.491 0.565

Average 0.727 0.734 0.730 0.731 0.712 0.762
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performance, and the STOI result is similar to the matching SNRs result. According to 
the existing results, it can be inferred that the mismatched SNRs signal is combined with 
the sentence, and the STOI index represents the average value of the sentence. Com-
pared with the reference speech enhancement models, the DNN-GRU model speech 
enhancement is considered to be more capable of suppressing non-stationary noise 
more and denoising less residual noise. Therefore, it can be summarized that the DNN-
GRU model can achieve superior performance for the mismatched SNRs, and it has sat-
isfied adaptability and robustness.

5 � Conclusions
This paper proposes a novel speech enhancement strategy based on a novel DNN-GRU 
model to improve the quality and intelligibility of the enhanced speech. The fully con-
nected DNN is used to learn the complex mapping function between clean speech and 
noisy speech LPS features. The corresponding predicted clean speech is fused with noisy 
speech as the input of the GRU network, which can retain the time-series context infor-
mation of the speech signals. The DNN-GRU model is designed to estimate the spectra 
of clean speech corresponding to the noisy input and reconstruct a clean speech wave-
form. The spectrogram and experimental results showed that the proposed model per-
formed superior on the metrics PESQ, SSNR and STOI in various noise environments 
compared with the traditional speech enhancement models, including DNN, CNN, 
LSTM and GRU. The experimental results under different mismatch input SNRs and 
mixed noises indicated that the proposed model had good features of adaptability and 
robustness. Therefore, it can be concluded that the proposed DNN-GRU model main-
tains excellent denoising capability and has good speech quality and intelligibility.
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