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1 � Methods/experimental
In order to improve the accuracy of environmental noise prediction in chemical industry 
park, this paper proposes a multivariate and multi-station neural network model (Multi-
PL) based on LSTM and Prophet. According to the periodicity of environmental data in 
the park, it is divided into multivariate data and multi-station data. Secondly, the struc-
ture and implementation of the model are introduced and explained in detail. Finally, 
the prediction accuracy under different proportions of training sets is compared through 
experiments, and different data sets and different models are used for experiments. 
Experiments with and without the use of the 3σ criterion were conducted to compare 

Abstract 

With the gradual transformation of chemical industry park to digital and intelligent, 
various types of environmental data in the park are extremely rich. It has high applica-
tion value to provide safe production environment by deeply mining environmental 
data law and providing data support for industrial safety and workers’ health in the park 
through prediction means. This paper takes the noise data of the chemical industry 
park as the main research object, and innovatively applies the 3σ principle to the zero-
value processing of the noise data, and builds an LSTM model that integrates multivari-
ate information based on the characteristics of the wind direction classification noise 
data combined with the wind speed and vehicle flow information. The Prophet model 
integrating multi-site noise information was adopted, and the Multi-PL model was con-
structed by fitting the above two models to predict the noise. This paper designs and 
implements a comparative experiment with Kalman filter, BP neural network, Prophet, 
LSTM, Prophet + LSTM weighted combination prediction model. R2 was used to evalu-
ate the fitting effect of single model in Multi-PL, RMSE and MAE that were used to 
evaluate the prediction effect of Multi-PL on noise time series. The experimental results 
show that the RMSE and MAE of the data processed by the 3σ principle are reduced by 
32.2% and 23.3% in the multi-station ordered Prophet method, respectively. Compared 
with the above comparison models, the Multi-PL model prediction method is more 
stable and accurate. Therefore, the Multi-PL method proposed in this paper can pro-
vide a new idea for noise prediction in digital chemical parks.
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the single model in different data sets, and to compare the model with other models. The 
results of experiment 4.2 show that the application of 3σ criterion and multivariate and 
multi-station data can improve the prediction performance of the single model. In addi-
tion, experiment 4.3 proves that Multi-PL is better than single model, traditional predic-
tion method and LSTM + Prophet linear combination model.

2  Introduction
With the spread of 5G high-speed transmission technology, chemical industrial com-
plexes are also entering the Era of Internet of Things (IoT) through sensors [1]. As the 
chemical park brings good economic benefits through the gathering of factories, pollu-
tion problems are gradually exposed. Exhaust gas and wastewater can be recycled and 
reused through Ecological Industrial Park, and noise, as a threat that is often overlooked, 
continues to affect human mental and hearing health. Factory noise may cause mild 
or moderate noise deafness [2]; noise can also cause headaches, insomnia, unrespon-
siveness, hearing loss and other symptoms [3–6]. The chemical park is surrounded by 
farmland and villages, and noise will have a negative impact on villagers’ lives, animal 
breeding and natural ecology [7]. How to use effective methods to predict noise and dig 
out noise rules to reduce the impact on life and physical health is a problem that needs 
to be considered and solved.

IoT data contain a lot of useful information, such as satellite Industrial Internet of 
Things (IIoT) data can be used to solve service quality problems [8]. Noise predic-
tion is restricted by many conditions. With the development and change of artificial 
intelligence technology, existing technologies can solve learning trends, big data clas-
sification and trend prediction problems by introducing environmental factors [9]. 
Information transmission in the IIoT is also limited by spectrum resources, so data 
loss is a common situation [10]. It is an extremely important research topic to dig 
out the laws of noise and predict the future noise level to be able to mitigate noise 
hazards [11]. Noise prediction research has received increasing attention. For exam-
ple, the literature [11] proposed a gradient boosting model to predict noise, which 
combines multiple characteristics to analyze areas with severe noise exposure, and 
performs well under specific frequency sensors. [12] proposed a two-layer long short-
term memory (LSTM) network to predict environmental noise under a large amount 
of data, which can reflect the change of noise level within a day, but only the time 
regularity of noise is considered. [13] proves that the LSTM model is better than the 
traditional ARIMA time series forecasting model. In literature [14], LSTM model is 
used for airport noise prediction, and metadata of aircraft type, trajectory informa-
tion and weather data are also integrated into the model, resulting in higher predic-
tion accuracy, but lack of consideration of spatio-temporal characteristics of noise. 
[15] proposed an integrated model of airport noise prediction based on space fitting 
and BP neural network, which integrates time and space characteristics to improve 
the accuracy and fault tolerance of prediction. However, the application area of this 
model is limited and not flexible enough. [16] established a feature-weighted support 
vector regression model FWSVR based on the time series similarity, which has gener-
alization ability. [17] simulates the noise of a typical road network based on the exist-
ing traffic flow model. The above two methods are limited to univariate prediction 
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and lack information integrity. [18] uses the improved Federal Highway Administra-
tion (FHWA) model to predict the noise level. This method integrates multivariate 
information, but the information is not perfect in practical application. Environmen-
tal noise prediction still faces the following challenges: Noise has superposition and 
mutability, how to capture the noise law of the park? How to reduce the influence 
of sparse zero and outliers caused by sensor faults on the prediction without affect-
ing the noise law? In addition to noise prediction, Prophet, Stackelberg model and 
extended Kalman filter have also been used by some researchers to achieve good 
results [19–21]. However, a single forecasting method cannot capture the distribu-
tion of complex time series patterns. More and more researchers are capturing com-
plex time series distribution patterns based on hybrid forecasting models in order to 
obtain better forecast accuracy and performance [22]. There are three types of hybrid 
models for time series prediction. Hybrid model based on ARMA and machine learn-
ing [23, 24]: Literature [23] combined ARMA, PSO-SVM and clustering method for 
wind power generation prediction, and [24] uses the combined EMD-GM-ARMA 
model for coal mine safety production situation prediction. Hybrid model based on 
ARIMA and machine learning [25–27]: In literature [25], the mixed SSA-ARIMA-
ANN model was used to predict daily rainfall, in [26], the combined ARIMA and 
ANN model was used to predict daily radiation and in [27], the mixed ARIMA and 
SVM model was used to predict corn futures price. Hybrid model based on machine 
learning [28–30]: Literature [28] uses CNN and AI-tuned SVM for power consump-
tion prediction, literature [29] uses CNN-LSTM hybrid model for price sequence 
prediction, and literature [30] uses LSTM-RNN combined model for low-traffic flow 
forecast. The prediction accuracy obtained by applying the mixed model in the above 
literature is better than that of the single model, so the mixed model will be the key 
method to solve the problem of time series prediction of park noise. The above-men-
tioned literature focuses on noise pollution mainly on road traffic, airport, and urban 
environmental noise, ignoring the harm of noise in chemical parks. Motivated by the 
studies mentioned above, this paper studies the noise prediction of chemical industry 
park from the perspective of mixed model, which fills in the blank of the research 
direction of noise prediction in chemical industry park.

Based on the existing sensor distribution and traffic data in the chemical park, this 
paper builds a scene model suitable for the distribution characteristics of the park, con-
structs a noise multivariate data set and a multi-station data set according to the scene, 
and introduces the 3σ criterion to deal with the zero value of noise in order to improve 
the prediction accuracy. A Multi-PL model based on LSTM and Prophet models is pro-
posed. Multivariate data set features such as wind speed, vehicle flow, and noise data 
based on wind direction classification are used in the multivariate LSTM model to 
improve the prediction accuracy. The multi-station noise data set is used as an addi-
tional regression variable for the Prophet model. Fitting the above model forms Multi-
PL prediction model with higher accuracy.

The rest of this article is structured as follows. The second part introduces the research 
background, data set and preprocessing. The third part introduces the principle and 
construction of Multi-PL model. In the fourth part, the experimental results of the train-
ing model are given and evaluated in detail. The last part is summary and prospect.
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3 � System model and data set
3.1 � System model

The research scene of this paper is an engineering plastics industrial park in Shan-
dong Province, China. Based on the original smart chemical industry park, noise 
monitoring data are obtained through sensors. The collected data are accurate and 
effective, which provides an effective data basis for noise prediction.

The Park covers an area of 8.97 km2 and is equipped with 12 air monitoring sta-
tions (no data at Station 11 due to failure) and 8 vehicle gate monitoring stations. At 
the mark in Fig. 1a, this paper takes the data of no.10 monitoring station and gate for 
analysis. There are three main sources of noise in the park:

1.	 There are a large number of vehicles in the park for the transportation, loading and 
unloading of chemical raw materials. The volume of vehicles will affect the noise 
level.

2.	 Chemical plants generally operate 24  h a day, and the impact of noise is not only 
periodic but also persistent.

3.	 Natural sounds, such as wind, also affect the overall noise level. Different wind direc-
tions will bring different regional sound effects.

According to Fig. 1b, noise affects the hearing health of workers in the park, reduces 
the growth rate of crops, and causes residents to be irritable and tired. Conversely, 
hearing loss leads to decreased work efficiency, and residents’ behaviors affect the 
operation of the park.

In the face of many problems in the scene, noise prediction and risk identification 
can assist the park in planning the operation cycle and reduce the operation of noise 
source equipment during periods of high noise to avoid the occurrence of the above 
situations.

Fig. 1  System scene parse diagram. The above two figures define the background system model of the 
problem, including the data contained in the system and the sources of influencing factors
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3.2 � Data set construction

Based on the system model, we constructed the park noise prediction data set as shown 
in Fig. 2. Part A represents the noise data and natural environment information moni-
tored by the air monitoring station, and part B represents the vehicle information 
recorded by the gates. The information is uploaded to the gateway and stored in the park 
database server.

We carry out preprocessing by reading the data in the server. In this paper, all data are 
constructed into two sub-data sets according to requirements: multivariate data set and 
multi-station data set.

3.2.1 � Data set preprocessing

The data sets used in this paper are from the scenarios in Sect. 2.1 and span from 14:00 
on August 22, 2020 to 01:00 on February 2, 2021. As shown in Fig. 2, data pre-processing 
mainly includes the following three tasks:

Step 1: Data cleaning. Noise has mutability, and the irregular 0 dB value of the data has 
a great influence on the prediction accuracy. The 3σ criterion is introduced to deal with 
outlier zero value. Sparse missing data are completed by KNN adjacent interpolation.

Step 2: Data screening. The original noise data interval is 30 s, and a noise sensor has 
470,760 pieces of data. The data are too dense. The training process can be accelerated 
by resampling experimental data according to 10-min intervals.

Step 3: Traffic data parsing: All the vehicle information in the park is classified with the 
vehicle entry and exit status as tags, and statistics are made at 10-min intervals.

After the data set preprocessing is completed, we construct sub-data set and verify the 
correlation between noise data and different variables, laying a foundation for the subse-
quent prediction work.

Fig. 2  Data set building process. This figure describes the data source, including the whole process from 
collection, transmission and preprocessing
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3.2.2 � Multivariate data set and multi‑site data set

Multivariate data sets include vehicle flow, noise characteristics of adjacent stations based 
on wind direction classification (the construction method is located in Sect. 3), wind speed 
and noise. The multi-station dataset contains noise data from 11 monitoring stations.

The noise data and natural environment data are derived from part A of Fig. 2, includ-
ing information such as temperature, wind speed, wind direction, light, noise, and PM2.5. 
The traffic flow data come from part B of Fig.  2. In Fig.  3b, c, the X-axis represents the 
time interval index (in days), and (b) the Y-axis represents the noise decibel value and wind 
speed. The blue and red curves represent the noise value and wind speed, respectively, (c) 
the Y-axis represents the noise decibel value and the number of traffic flows. The blue, red 
and green curves indicate the number of vehicles entering and leaving the park and the dec-
ibel level, respectively. In order to analyze the correlation of representative data in air moni-
toring stations, Pearson correlation coefficient ρ is introduced as follows:

where cov(·) refers to the covariance operator, σ is the standard deviation, ρNW  means in 
the same station at the same time the correlation coefficient of wind speed, N (T ,Y ) and 
W (T ,Y ) , respectively, represent the noise and wind speed values of Y  station at time T  . 
ρNN represents the correlation coefficient between the noise values of different stations 

(1)



















ρNW =
cov(N (T ,Y ),W (T ,Y ))

σN (T ,Y )σW (T ,Y )

ρNN =
cov(N (T ,Y ),N (T ,Y ′))

σN (T ,Y )σN (T ,Y ′)

Fig. 3  Data analysis. The above four images, respectively, verify the correlation, similarity and periodicity of 
different elements, wind speed, traffic flow, noise of different stations and noise of prediction stations
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at the same time, N (T ,Y ) and N (T ,Y ′) represent the noise of Y  and Y ′ at time T  , respec-
tively. Draw conclusions based on the information in Fig. 3:

1.	 Correlation of data. According to (a), the correlation coefficient between noise and 
wind speed is 0.48, which is the main influencing factor in the existing information. 
According to (d), the noise data of different stations are correlated.

2.	 Similarity of data. According to (a), the fluctuation trend of noise and wind speed 
is similar. It is necessary to correlate wind speed information to predict noise more 
accurately.

3.	 Periodicity of data: Traffic flow and noise level have similar periodicity. Among them, 
at zero o’clock, the peak of vehicle entry and exit is reached, and the second peak of 
traffic in the park is reached around 12 noon.

The multivariate data set contains the influence of traffic flow, wind speed and 
wind direction on noise change, and the multi-station data set contains the correla-
tion between the noise of neighboring stations and the stations to be measured. The 
Multi-PL noise prediction method is proposed according to the unique data attribute 
of park.

4 � Multi‑PL model based on Prophet and LSTM
4.1 � Multi‑element LSTM model

LSTM (long short-term memory) network model is an improvement of RNN (recur-
rent neural network). The infrastructure of LSTM contains a part that controls the 
storage state, which can solve the problem of gradient disappearance encountered by 
RNN [31]. In this paper, the method of supervised learning is adopted, which does 
not require artificial construction of time series features. The time series curve can 
be fitted through deep learning network, and the long-term dependence of time 
sequence relationship can be captured for feature learning and prediction. The princi-
ple of LSTM is shown in Fig. 4.

Fig. 4  The structure of LSTM model. This diagram shows the basic architecture of the LSTM model
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When ft = 1 , it means that the short-term memory is completely retained. After the 
noise data are input, whether it can be stored in the cell depends on the input gate, and the 
output of the input gate is Ct as in the formula (3).

nt represents the input noise of the current layer. ht−1 is the output noise of the previous 
layer and the hidden state of the current layer. The above formula represents the state 
of the new cell after discarded useless information and retained some new information, 
where it = σ(Wi[ht−1, nt ] + bi) and it represents the probability of new information 
being retained, and the prediction noise of output depends on the output gate:

ot is the output probability. Multiplying ot and hyperbolic tangent function tanh(Ct) can 
achieve the purpose of controlling the cell state filtering, and the output Yt is the hidden 
state of the next layer. In the above expression, Wf ,Wi,WC ,Wo are the function param-
eter weight vectors and bf , bi, bC , bo are the bias vectors.

The essence of realizing multivariate is to form a sample with multiple dimensions of 
multiple information and transform it into a supervised learning problem, so as to achieve 
the purpose of multiple inputs and single output. There are 32 neurons in the first hidden 
layer, 1 neuron in the output layer is used to predict noise, and the input variables are four-
dimensional information including wind speed, noise of neighboring station based on wind 
direction, traffic flow information and noise of prediction station. The output is prediction 
noise of prediction station with 2 prediction steps and time interval of 10 min. The model 
was trained 100 times with a batch size of 128, tracking training and test losses during train-
ing by setting the validation_data parameter in the fit () function.

Multi-factor features were extracted based on LSTM model for noise prediction. The 
prediction error was large during the abrupt change period: In January, the noise plunged 
about 4.5 dB, and the high error of the prediction result was about 2 dB. Therefore, the 
Prophet model was introduced to fuse multi-station information to improve the prediction 
accuracy.

4.2 � Prophet model based on spatial multi‑station regression

The Prophet prediction model has great advantages in processing periodic data with abnor-
mal values and trend changes, and the noise of chemical parks has strong micro-abruptness 
and macro-regularity. Therefore, Prophet model is introduced for noise prediction in this 
paper. Prophet model decomposes the time series according to the following formula:

(2)ft = σ(Wf [ht−1, nt ])+ bf , ft ∈ [0, 1]

(3)Ct = ft ∗ Ct−1 + σ(Wi[ht−1, nt ] + bi) ∗ tanh(WC [ht−1, nt ] + bC)

(4)ot = σ(Wo[ht−1, nt ] + bo)

(5)Yt = ht = ot ∗ tanh(Ct)

(6)P(t) = g(t)+ s(t)+ h(t)+ ε(t)
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In formula (6), g(t) represents the noise trend term, which is mainly used to fit ape-
riodic changes in the time series. We use a trend term model based on piecewise lin-
ear functions:

In formula (7), m is the offset, k represents the growth rate, and δ represents the 
change in the growth rate. The indicator function is: a(t) = (a1(t), ..., aS(t))

T  . 

a(t) ∈ {0, 1}S , aj(t) =

{

1, if t ≥ Sj
0, otherwise

 , γ = (γ1, ..., γS)
T , γj = −Sjδj , where S represents 

the number of mutation points.
s(t) is a periodic term modeled by Fourier series:

In Formula (8), t represents a fixed period, 2n represents the number of periods 
expected to be used in the model, P represents the period of the time series, and P = 7 
represents a period of weeks.
h(t) is a holiday item that regards the influence of each holiday at different times as 

an independent model. ε(t) represents the error term or interference term, which rep-
resents random and unpredictable fluctuations. Prophet algorithm can add up trend 
terms, season terms and so on to be the predicted value of time series.

In this paper, the method add_regressor() was used to add data from multiple sta-
tions as regression variables for fitting. First, the noise time series data of other sites 
were added to Prophet in turn for prediction. Then, the sites were sorted accord-
ing to the RMSE size of the prediction results, and the ranking results were added 
to Prophet model in turn to improve the prediction accuracy. Although the Prophet 
model is flexible, it cannot consider the influence of the characteristics of multi-
dimensional factors. Therefore, achieving accurate prediction requires a more com-
plete prediction scheme.

4.3 � Multi‑PL model based on Prophet and LSTM combination

Based on the characteristics of the Prophet and LSTM models, we propose the Multi-PL 
model to make up for the limitations of a single model, and can effectively use the park 
information and the advantages of the two models to achieve higher-precision noise 
prediction.

Firstly, the noise feature sequence of adjacent stations based on wind direction was 
constructed, and the wind direction was classified as direction labels with time series 
features. Extract the noise value of the corresponding site during the time according to 
the tag, stitch the extracted noise value into a new time series feature, which is the noise 
feature in Fig.  5, and construct a multi-element LSTM model by combining the time 
series features of traffic flow and wind speed. The above work is based on the multi-
variate data set Train Set 1 . The data of each site in the multi-station dataset Train Set 2 
were, respectively, used in the Prophet model, sorted according to the size of RMSE of 
different sites, and added to the Prophet model in the order of RMSE from small to large.

(7)g(t) = (k + a(t)T δ)t + (m+ a(t)Tγ )

(8)s(t) =

N
∑

n=1

[

an cos

(

2πnt

P

)

+ bn sin

(

2πnt

P

)]
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Use the cftool (Curve Fitting Tool) curve fitting toolbox in MATLAB to fit the two 
model prediction results and the real noise value in the training set, and obtain the for-
mula (9) between the actual noise value and the model prediction value:

The method of obtaining the relationship between the actual value and the predicted 
value by fitting method is closer to the true value than the linear weighting method of 
the predicted value of the two models, and has the property of constant compensation, 
which prevents the training result of a certain model from being too high or too low 
leading to deviations in forecast results.

5 � Experiment and result analysis
Firstly, the proportion and evaluation indexes used in the training set are described, and 
then, the 3σ criterion and multivariate multi-station prediction results analysis are intro-
duced. Finally, the Multi-PL proposed in this paper is compared with Prophet + LSTM 
linear weighted combination model, LSTM, Prophet, BP neural network model, tradi-
tional Kalman filter prediction model and other prediction models, to verify that the 
proposed method has better accuracy and prediction ability.

5.1 � Train set proportion and evaluation index

The proportion of training set and test set in multivariate data set and multi-station data 
set is determined by experimental comparison. The LSTM deep neural network is prone 
to overfitting, and the Prophet model has good stability. Taking single-site prediction as 
an example, the difference in RMSE between different data set ratio experiments does 
not exceed 0.5. Therefore, the LSTM model is used as the basis for data set division to 
ensure, however, the best is selected on the basis of fitting. According to Table 1, 72% of 
the training set is finally determined, and the rest is the test set.

(9)Train_true = A ∗ LSTM+ B ∗ Prophet+ C

Fig. 5  The structure of Multi-PL noise prediction model. This figure introduces the construction method of 
the Multi-PL model, including the noise feature composition based on the wind direction classification in the 
mode



Page 11 of 18Zeng et al. EURASIP J. Adv. Signal Process.        (2021) 2021:106 	

In order to verify the validity of Multi-PL prediction model, this paper uses three eval-
uation indexes: root mean square error (RMSE), mean absolute error (MAE) and coef-
ficient of determination ( R2 ). The calculation formula is as follows:

x is the mean value of the true value of noise, x = (x1, x2, . . . , xn), xi ∈ Rn is the true 
value of noise, x̃ = (x̃1, x̃2, . . . , x̃n), x̃i ∈ Rn is the predicted value of noise in Eqs. (10) and 
(11), expressed as the fitted value of the predicted values of the two models in Eq. (12), 
and n is the number of time series values. The smaller the number of values, RMSE and 
MAE, the better the predictive ability of the model. The closer R2 is to 1, the better the 
predictive effect of the fitted model.

5.2 � Analysis of forecast results

The 3σ criterion assumes that a set of data contain only random errors, and the noise 
value noise ∈ (u− 3σ ,u+ 3σ) interval accounts for about 99.74%. It is believed that any 
error exceeding this interval is not a random error but a gross error. The data containing 
this error should be removed or replaced, u represents the mean value of noise, σ is the 
noise standard deviation, and noise is the noise value.

This article replaces the noise range at 0 ≤ noise < u− 3σ(dB) with the mean value. 
Take the noise data of Station 10 in Fig.  6 as an example, part A is the original noise 
value containing the zero value of the sparse mutation point, and the unbiased standard 
deviation of the sample is 4.45. Part B represents the noise value after the above 3σ treat-
ment, and the unbiased standard deviation of the sample is 4.28.

According to Table  2, RMSE decreases by at least 0.1  dB and MAE also decreases 
for both single-station and multi-station predictions using the 3σ criterion; compared 

(10)RMSE =

√

√

√

√

1

n

n
∑

t=1

(

x − x̃
)2

(11)MAE =
1

n

n
∑

t=1

∣

∣x − x̃
∣

∣

(12)R2 = 1−

n
∑

t=1

(x − x̃)2

n
∑

t=1

(x − x)2

Table 1  LSTM prediction results

Train set weight (%) RMSE\dB MAE\dB

50 2.742 2.588

60 1.300 0.976

70 1.262 0.986

72 1.162 0.935
80 1.280 1.076

90 1.287 0.816 (Overfit)
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with single-station data, the predicted RMSE and MAE of multi-station data set used in 
Prophet model are reduced by 5.3% and 7.3%, respectively. Each station is used for noise 
prediction of station 10. The RMSE and MAE of each station are shown in sub-pictures 
1 and 3 in Fig. 7. After the stations are sorted according to RMSE, they are shown in sub-
pictures 2 and 4. According to the order, the multi-station data are added to the Prophet 
model as regression variables, and the RMSE and MAE of the disorderly prediction are 
reduced by 26.3% and 22.8%, respectively. In the multi-site ordered Prophet method, the 
RMSE and MAE of the data processed by the 3σ principle are reduced by 32.2% and 
23.3%; compared with single-site data, the RMSE and MAE predicted by using the mul-
tivariate data set in the LSTM model are reduced by 9.3% and 15.9% dB, respectively.

It can be seen from Table 2 that the prediction results with the application of 3σ crite-
rion have higher accuracy. The Prophet model uses multi-station ordered data with the 
highest accuracy, and the LSTM model uses multivariate data sets with higher accuracy 
than the original station. On this basis, the data predicted by LSTM and Prophet train-
ing set were fitted, and the relationship between the real noise value of the training set 
and the predicted value of LSTM and Prophet training set was obtained as shown in 

Fig. 6  Comparison of 3σ before and after use. This picture verifies the change of the sparse zero value 
before and after the application. The standard deviation of the data after the application of the 3σ criterion is 
reduced, which has a good effect on improving the accuracy of noise prediction

Table 2  Comparative experimental results

Deal with zero Model Data set RMSE MAE

Use 3σ criterion Prophet Single station 1.70 1.23

Multi-stop (Disorder) 1.61 1.14

Multi-stop (Orderly) 1.186 0.92

LSTM Single station 1.29 1.13

Multi-information 1.17 0.95

Unused 3σ criterion Prophet Single station 1.814 1.28

Multi-stop 1.75 1.20

LSTM Single station 1.46 1.27

Multi-information 1.27 0.92
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Eq.  (13), where L(t),P(t) are the predicted results of LSTM and Prophet training set, 
respectively. f (t) is the fitting predicted value.

The RMSE of f (t) obtained by fitting and the true value is 0.54. The data points 
in Fig. 8 are basically fitted to the same plane and the coefficient of determination 
R2 = 0.962 . The fitting effect is good. After the test set was fed into LSTM and 

(13)f (t) = −20.57+ 1.185 ∗ L(t)+ 0.27P(t)

Fig. 7  Prediction error of single station. In this picture, the monitoring results of different stations are input 
into the Prophet model, and the calculated RMSE and MAE are used as the standard for sorting

Fig. 8  Three-dimensional fitting plan. The figure verifies the fitting effect of the LSTM and Prophet models 
with the true value. The fitting data are distributed in the same plane as shown in the figure, indicating that 
the fitting effect is good



Page 14 of 18Zeng et al. EURASIP J. Adv. Signal Process.        (2021) 2021:106 

Prophet, the predicted value was put into the verification Eq.  (13), and the predic-
tion result ftest(t) of the Multi-PL model was obtained as shown in Fig. 9.

Among them, Test Set 1 is from multivariate data set and Test Set 2 is from multi-
station data set. Figure 10 shows the true value, LSTM and Prophet noise predicted 
value. Compared with the predicted value fitted by the Multi-PL model in Fig.  11, 
Multi-PL makes up for the prediction deviation of the two models and improves 
the prediction accuracy of outliers contained in the noise. The RMSE and MAE of 
ftest(t) and the true value were 0.53 and 0.46 dB, respectively. The prediction result 
of Multi-PL model is obviously better than that of single LSTM and Prophet model.

Fig. 9  Flow chart of test set experiment. The figure shows the experimental process when verifying the 
Multi-PL model

Fig. 10  Prediction results of single model. This figure shows the difference between the original data in the 
test set and the predicted value of LSTM and the predicted value of Prophet
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5.3 � Comparison results of different prediction models

In order to verify the prediction performance of Multi-PL model, two evaluation 
indexes, RMSE and MAE in Sect. 4.1, are used to evaluate Kalman filter prediction, BP 
neural network, LSTM, Prophet, and Prophet + LSTM linear weighted model (optimal 
weight:ωLSTM = 0.5, ωProphet = 0.5). According to Table 3, the prediction results of Multi-
PL are better than other prediction methods, and the accuracy of RMSE and MAE is 
improved by 45.9% and 25.9%, respectively, compared with the linear weighted model. 
Multi-PL model can be used as an effective prediction model for chemical industry 
parks.

Fig. 11  Multi-PL prediction results. This graph shows the difference between the predicted values of the 
original data in the test set. It shows that Multi-PL has higher prediction accuracy than single model

Table 3  Analysis of results of different prediction models

Model RMSE\dB MAE\dB

Kalman 1.91 1.16

BP 1.34 1.25

Prophet 1.18 0.92

LSTM 1.16 0.95

Prophet + LSTM ωLSTM ωProphet RMSE\dB MAE\dB

0.0 1.0 1.186 0.919

0.1 0.9 1.12 0.875

0.2 0.8 1.065 0.843

0.3 0.7 1.024 0.826

0.4 0.6 0.996 0.82

0.5 0.5 0.985 0.824
0.6 0.4 0.989 0.832

0.7 0.3 1.01 0.846

0.8 0.2 1.046 0.86

0.9 0.1 1.095 0.899

1.0 0.0 1.157 0.954

Multi-PL 0.53 0.46
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6 � Conclusions
It is very important to analyze the noise law and influencing factors in chemical industry 
park and improve the prediction accuracy of noise, which is of great significance to guide 
the working time planning and workers’ hearing health protection. Based on the appear-
ance law of time series data such as noise, traffic flow, wind direction and wind speed 
in a chemical park, this paper uses the 3σ criterion to replace the zero value of noise, 
and proposes a Multi-PL model based on multivariate information and multi-station 
information. Design and implement the comparative experiment with Prophet + LSTM 
weighted model, single model, Kalman filter prediction model and traditional BP neural 
network model under each weight coefficient. The results show that the time series data 
of park noise processed by the 3σ criterion have better performance in the prediction 
model, and the prediction error of multi-station Prophet and multivariate LSTM neural 
network model is lower than the traditional Kalman filter prediction model and BP neu-
ral network model. Moreover, Prophet + LSTM linear weighted combination model has 
a slightly higher prediction accuracy than the above models, and Multi-PL model which 
can effectively use park data and has constant compensation property has the best effect. 
Compared with linear weighted combination model, RMSE and MAE errors are reduced 
by 0.45 dB and 0.36 dB, respectively. Multi-PL can be used as an effective noise predic-
tion model in chemical industry park. On the basis of the wide application of intelligent 
parks, this study can provide a new idea for noise prediction in parks.

This paper only constructs the prediction model fitted by two multi-factor models. In 
the future, the traditional prediction model based on statistical method can be intro-
duced to make up the disadvantage of neural network and get more accurate noise pre-
diction results. In addition, transfer learning or reinforcement learning can be used to 
predict the overall noise level of the park.
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