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1  Introduction
With the development of the Internet of Vehicle (IoV), more and more vehicle-to-every-
thing (V2X) communication technologies emerge, such as IEEE-based dedicated short-
range communication (DSRC) technologies and 3GPP-based LTE technologies [1, 2]. 
These technologies support stable wireless communication between vehicles and road-
side infrastructures [3, 4]. Meanwhile, artificial intelligence becomes more and more 
popular. In the future 6G vision, there is no doubt that deep neural models will appear 
everywhere including Vehicular CrowdSensing (VCS) networks, one of the key scenarios 
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in the future 6G ubiquitous artificial intelligence. In a VCS network, Service Providers 
(SPs) always require vehicular devices to collect image data of urban regions as the input 
of deep models and carry out the model inference [5]. With the inference results, the SPs 
are able to make better decisions and provide higher quality services [6–8].

However, the existing device-only and edge-only inference paradigms are hard to sup-
port the deployment of deep model inference in VCS networks. On one hand, the vehic-
ular device has to collect the streaming image data quickly and use them to perform 
the model inference when driving at a high velocity. On the other hand, a more compli-
cated deep model consumes more computation resources and energy. The device-only 
inference paradigm that runs the model inference in vehicular devices is difficult to meet 
the two requirements due to the limited computation resources and battery capacity of 
the vehicular devices [9, 10]. Meanwhile, the edge-only inference paradigm allows the 
vehicular devices to upload their collected data and executes the model inference in edge 
servers, but brings about considerable communication costs because of the transmission 
of large-volume raw data [11–13]. Besides, privacy disclosure risk hinders the vehicles 
from sharing their raw data and being willing to join the VCS networks.

To solve the above disadvantages of model inference paradigms, the device-edge co-
inference paradigm was proposed [14]. In this paradigm, a deep model is partitioned 
into two parts. One part is stored in the vehicular device, while the other part is kept by 
the edge server. The vehicular device runs the first part of the deep model and uploads 
the intermediate output. The edge server uses the intermediate data as the input of 
the rest of the deep model and obtains the final result [15]. Previous works focused on 
finding out an appropriate partitioning way that has a small-size intermediate output 
and puts the model layers of large computation load on the side of edge server [14, 16]. 
This can largely reduce communication costs and improve model inference efficiency. 
Besides, sharing intermediate model output instead of raw data alleviates the privacy 
disclosure issues to a certain extent [17].

Nonetheless, the device-edge co-inference paradigm still exists privacy issues. The 
attacker can reconstruct the raw data by obtaining and analyzing the intermediate model 
output [18]. Thus, designing defense mechanisms against privacy attacks is necessary. 
The work in [16, 19] chose a deeper layer as the partitioning point which outputs a 
smaller-size and less-information intermediate result. The work in [19, 20] used a drop-
out mechanism to randomly set some pixel of input data or intermediate data into zero, 
which reduces the information carried in the intermediate output. The work in [19–21] 
injected randomly generated noise into input data or intermediate output, which per-
turbs the reconstruction performance. These defense mechanisms heavily rely on exper-
imental experience and lack theoretical guidance.

In this paper, we introduce the device-edge co-inference paradigm into VCS networks. 
Through the collaboration of vehicular devices and edge servers, the execution efficiency 
of deep model inference applications in VCS networks is significantly improved. Besides, 
we use a black box reconstruction attack, which is able to recover the input raw data only 
based on the intermediate output, to validate the privacy vulnerability of the co-infer-
ence. We then design a model-perturbation defense mechanism against such attacks by 
adding randomly generated noise to perturb the intermediate output. A differential pri-
vacy (DP) theoretical analysis is provided to verify that the proposed mechanism can 
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guarantee ǫ-DP. Compared with the common defense approach that directly adds noise 
into intermediate data [19, 21, 22], our proposed mechanism enables a lower privacy 
budget, i.e., a higher privacy protection level. We further design a Stackelberg game-
based incentive mechanism that motivates vehicular devices to join the deep model 
inference and compensate for their economic loss from potential privacy leakage. The 
experimental results on the road sign classification dataset demonstrate that our pro-
posed defense mechanism can significantly defend against the reconstruction attack and 
that the proposed incentive mechanism is effective.

In summary, the main contributions of this paper are as follows.

•	 We introduce the device-edge co-inference paradigm into VCS networks. The vehic-
ular devices and edge servers work together to improve the efficiency of deep model 
inference and reduce the communication costs in VCS networks.

•	 We adopt a black-box reconstruction attack to recover the input image in the road 
sign classification task. This demonstrates the privacy vulnerability of the co-infer-
ence paradigm, which limits its deployment in VCS networks.

•	 We then propose a model perturbation mechanism that perturbs the model parame-
ters to defend against the reconstruction attack. A DP theoretical analysis is provided 
as a theoretical guidance to alleviate privacy breaches in the co-inference of VCS net-
works.

•	 We further propose a Stackelberg game-based incentive mechanism. The mechanism 
quantifies the privacy loss of each vehicle by using DP properties and compensates 
them in a satisfactory way, thus attracting vehicles to join the co-inference in VCS 
networks.

The remainder of this paper is organized as follows. Section 2 introduces the co-infer-
ence paradigm for VCS networks and the reconstruction attack upon it. Section  3 
describes the proposed model perturbation defense and the related analysis. Section 4 
formulates the incentive mechanism design problem as a Stackelberg game. Section 5 
provides a detailed description of game theory analysis. The simulation results and per-
formance evaluation are shown in Sect. 6. Finally, the concluding remarks are made in 
Sect. 7.

2 � Privacy vulnerability of co‑inference
In this section, we first present the device-edge co-inference paradigm in VCS net-
works and then adopt the black-box reconstruction attack to demonstrate its privacy 
vulnerability.

2.1 � Co‑inference in vehicular crowdsensing networks

Figure 1 gives an overview of a co-inference paradigm of VCS networks over one urban 
region. We describe the main entities as follows.

•	 Vehicles are running across the urban area and recruited by the SP to execute crowd-
sensing and deep model inference. Each vehicle is equipped with sensors and a 
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vehicular device. The sensors are used to collect data at a high rate while the vehicu-
lar device has the processing and storage resources to execute a portion of the deep 
model using the acquired data as input.

•	 Edge Server is rented by the SP to carry out the deep model inference. The edge 
server has significantly more computational capabilities and capacity than vehicular 
devices, allowing it to operate the more complex parts of the deep model. The deep 
model’s final calculation outputs assist the SP in making intelligent decisions.

•	 Deep Model is partitioned by the SP into two parts. The first part, which has a lower 
computation load, is kept in vehicular devices, while the remainder, which has a 
higher computation load, is kept in the edge server. The intermediate data, which is 
the result of the deep model of vehicular devices, is sent to the edge server. The inter-
mediate data is used as input by the edge server to run its deep model section and 
obtain the final results.

The cooperation between vehicular devices and edge servers can reduce communication 
costs and deep model inference delay. The vehicular devices do not share raw data in the 
co-inference paradigm, but they are still vulnerable to privacy leakage, as illustrated by 
the following privacy attack.

2.2 � Spears: black‑box reconstruction attack

As shown in Fig. 2, the vehicular device stores the first part of layers fθ1 , while the edge 
server keeps the remainder fθ2 . The vehicular device inputs raw image data x0 and 
obtains the intermediate output v0 = fθ1(x0) . The attacker tries to be an eavesdropper in 
VCS networks and intercepts the vehicular device’s shared v0 . We consider a black-box 
setting that the attacker doesn’t know the structure and parameters of the deep model 
fθ1 . But it could query the model, i.e., use arbitrary data X as input to run the model 
and observe the intermediate outputs V = fθ1(X) . This assumption happens when the 
SP releases its APIs to other users. The black-box setting is more realistic than the white-
box setting in which the structure and parameters of the deep model fθ1 are accessible. 
It is harder for the attacker to reconstruct the image data under the black-box setting 
than under the white-box setting [18]. To this, the attacker can train an inverse model 

Fig. 1  Device-edge co-inference paradigm for VCS networks
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gω = f −1
θ1  to learn the inverse mapping from the intermediate output V to the original 

input X.
The detailed attack process is shown in Algorithm 1 and includes three phases. In the 

observation phase, the attacker uses a set of samples X = {x1, . . . , xn} to query fθ1 and gets 
V = {fθ1(x1), . . . , fθ1(xn)} . Here we consider that X follows the same distribution of x0 . In 
the learning phase, the attacker trains the inverse model gω with V as inputs and X as tar-
gets. The loss function is given as

Note that the structure of gω needs not to be related to that of fθ1 . In our experiment, we 
use a totally different structure. In the reconstruction phase, the attacker inputs v0 into 
the trained inverse model and obtains the recovered image x′0 = gω(v0) . 

(1)l(ω;X) = 1

n

n
∑

i=1

∥

∥gω
(

fθ1(xi)
)

− xi
∥

∥

2

2
.

Fig. 2  Reconstruction attack and model perturbation defense for device-edge co-inference
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3 � Differential privacy method
In this section, we first introduce preliminaries on DP method and then describe the 
proposed model perturbation defense mechanism. A theoretical analysis is given to 
show that the proposed defense mechanism provides ǫ-DP.

3.1 � Preliminaries on differential privacy

DP is a statistical framework for measuring the privacy risk. The definition of ǫ-DP is as 
follows [23].

Definition 1  (ǫ-DP) Given two neighboring inputs X and X ′ which differ in at least one 
sample, a randomized mechanism f provides ǫ-DP if

According to the above definition, given any neighboring inputs X and X ′ into the 
mechanism f, the probability of their outputs being in the same range S is characterized 
by ǫ . The parameter ǫ denotes the privacy budget. A smaller ǫ leads to a better privacy 
protection for the vehicular device. That is to say, given any output, the attacker cannot 
tell if it is generated by inputting X or X ′.

A common defense approach is to introduce randomly generated noise of some spe-
cific probability distribution into the output f (·) [24]. One probability distribution used 
widely in DP is Laplace distribution denoted by Lap(0, σ) , where 0 is the mean and σ is 
the scale. The Laplace Mechanism [20] is defined by

It provides ǫ-DP when the added noise is sampled from Lap(0, σ) with σ ≥
�

f
ǫ

 . Here �
f  is the global sensitivity indicating that the maximum difference between the outputs 

||f (X)− f (X ′
)||1 with any pair of inputs X and X ′.

(2)Pr[f (X) ∈ S] ≤ eǫ Pr[f (X ′
) ∈ S].

(3)Mf (X) = f (X)+ lap(0,

�
f

ǫ

).
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3.2 � Shields: model perturbation defense

Instead of adding noise directly into the intermediate output fθ1(X) [19, 21, 22], we 
introduce noise into the deep model parameters θ1 as shown in Fig. 2. This can avoid 
drastic change of the intermediate output and reduce the negative effect on the follow-
ing inference. The challenge is that it is difficult to calculate the sensitivity. Hence, we 
limit the maximum value of the parameters within a fixed bound G to calculate the sen-
sitivity. The clipping operation is carried out during the deep model training [23, 24]. 
Here, the parameters θ1 is bounded by θ1/max

(

1, ||θ1||∞G

)

 . It means that the value of 

the parameter is not larger than G. Thus, the sensitivity can be approximately calculated 
as

Next, we add the noise randomly sampled from the Laplace distribution Lap(0, 2G
ǫ
) into 

the bounded parameters. The process of defense mechanism is shown in Algorithm 2. 
We show that Algorithm 2 gives the ǫ-DP guarantee in Theorem 1.

Theorem 1  Given the sensitive data X and the deep model fθ1 , Algorithm 2 satisfies ǫ
-DP when its injected Gaussian noise Lap(0, σ) is chosen by σ = 2G

ǫ

1 � Proof
Given any adjacent inputs X and X ′,

According to Definition 1, we have ǫ = 2G
σ

 and Algorithm 2 satisfies ǫ-DP. The proof is 
now completed. �

4 � Incentive mechanism for co‑inference
In this section, we first describe the utility functions of the vehicular devices and the 
edge server. Then, we formulate the incentive mechanism design problem as a two-
stage Stackelberg game problem. We theoretically prove that the game has a unique 
equilibrium. 

(4)

�
= max

X ,X ′
||θ1− θ̃1||1 ≤ 2G,

fθ1(X) ∈ S,

f
θ̃1(X

′
) ∈ S.

(5)

Pr
[

f
θ1+Lap(0, 2G

ǫ
)
(x) = S

]

Pr
[

f
θ1+Lap(0, 2G

ǫ
)
(x′) = S

] =
e−

ǫ

2G |θ1|

e−
ǫ

2G |θ̃1|

= e
ǫ

2G (|θ1|−|θ̃1|) ≤ e
ǫ

2G |θ1−θ̃1| ≤ eǫ .
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4.1 � Utility of vehicle and edge server

We consider that there is a set of vehicles N running across the urban area and being 
recruited by the SP for collecting data of targets. Each vehicle i is running at a constant 
speed vi ∈ [20, 60] km/h. According to [5], a slower vehicle could stay in an area longer 
and capture more image data. According to [25], the quality of the captured image data 
from a slower vehicle is higher, i.e., the image data has less vagueness occurred by the 
shake of sensors. In other words, the collected data of a vehicle with lower vi has more 
considerable quality and quantity. After that, the vehicles input the collected data to run 
the deep model on their vehicular devices.

As aforementioned, the model perturbation defense mechanism provides a privacy 
protection for vehicular devices. In practice, there are a lot of deep model inference 
scenarios that need to protect the privacy of vehicular devices. For example, in the sce-
narios of recognizing target recognition, such as vehicle license plate, pedestrian, road 
sign, etc., the images contain sensitive information that may expose the drivers’ driving 
habits or the vehicles’ moving path. It may cause economic loss to the drivers if without 
the privacy protection. In this paper we consider the deep model inference for the road 
sign classification scenario and conduct experiments to measure the inference perfor-
mance under the defense mechanism. The result in Fig. 5 shows that with a larger pri-
vacy budget ǫ , the inference accuracy increases. We fit the inference accuracy curve as

which is used to measure a vehicular device’s inference performance with its chosen ǫi.
We can see that the SP expects the vehicles to choose a higher ǫi for a higher infer-

ence accuracy. Thus, the SP would design a reward R to compensate the privacy loss of 
vehicles. Given the reward from the SP, each vehicle’s profit is related to its contribution 
characterized by ǫi and vi . Similar to [5, 26], the profit of i is denoted as R( ǫivi /

∑

i∈I
ǫi
vi
) . 

The cost of i is defined as its potential privacy loss. Base on the DP analysis, a lower ǫ 
means a higher privacy protection level. If the privacy is breached, the economical loss 
of i is denoted as ci + e

vi
 , where evi is the expense on executing crowdsensing tasks under 

driving speed vi , e is the unit expense, and ci is the estimated value of collected data by i. 
Thus, the utility function of i is given as

(6)Ai = a log(bǫi + 1),

(7)Ui(ǫi) =
ǫi
vi

∑

i∈I
ǫi
vi

R− ǫi(ci +
e

vi
).
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The SP needs to aggregate the inference results from all the vehicles to alleviate indi-
vidual error from crowdsensing. Here we consider that the aggregated inference perfor-
mance is the weighted sum of all the vehicles, which is given as

where 1vi is the weight. The SP puts higher weight on the slower vehicles since they usu-
ally collect data with higher quality and quantity for model inference [5, 25]. Thus, the 
utility function of the SP is given as

where � is the conversion factor from inference performance to profits, and R is the 
reward that the SP offers to the vehicles.

4.2 � Game formulation

A Stackelberg game is a decision-making tool that contains a leader player and sev-
eral follower players [26]. Each player is rational and only wants to maximize its 
utility. The follower players can observe the decision made by the leader player and 
choose their strategies accordingly [27]. A non-cooperative game is a decision-mak-
ing tool that contains several rational players competing with each other [28]. They 
make the decisions at the same time.

In this paper, the problem is how the SP designs the reward R to compensate the 
privacy loss of vehicles while each vehicle chooses the privacy budget ǫi to complete 
co-inference tasks of VCS networks under privacy protection. We formulate the 
problem as a Stackelberg game, where the SP is the leader player, while the vehicles 
are the follower players. Each vehicle has to decide its optimal response ǫ∗i  given 
R and other vehicles’ privacy strategies. Mathematically, the problem is written as 
Problem1:

The value of ǫi affects both the inference accuracy and the privacy protection level. A 
higher ǫi brings to a higher inference accuracy but a higher risk of privacy leakage. Here, 
ǫmin ensures that the inference accuracy under model perturbation defense is acceptable 
and ǫmax ensures that the least privacy protection level requirement is satisfied. The SP 
can command the expected inference performance by controlling R and aims to find the 
optimal reward R∗ to balance the gained profit from deep model inference and expense 
on rewarding. Mathematically, the problem is written as Problem2:

(8)Ā = a
∑

i∈N

1

vi
log(bǫi + 1),

(9)
US(R) = �Ā− R

= �a
∑

i∈N

1

vi
log(bǫi + 1)− R,

(10)
max
ǫi

Ui(ǫi)

s.t. C1: ǫmin ≤ ǫi ≤ ǫmax.

(11)max
R

US(R).



Page 10 of 21Wu et al. EURASIP Journal on Advances in Signal Processing        (2021) 2021:114 

The Stackelberg game is made up of Problem 1 and 2. The objective of this game is to 
find a Stackelberg Equilibrium (SE) point from which the SP and the vehicles have no 
motivation to deviate.. The definition of SE is as follows [28].

Definition 2  Let ǫ∗i  be the optimal solution for Problem 1 and R∗ is the optimal solu-
tion for Problem2. The point (R∗,ǫ∗ǫ∗ǫ∗) is an SE for the proposed Stackelberg game, if it 
satisfies

where ǫ∗ǫ∗ǫ∗ with entry ǫ∗i  is the set of best responses of the vehicles.

The vehicles compete with each other on the reward and thus form a non-coop-
erative subgame. There may exist a Nash Equilibrium (NE) point where no vehicle 
can enhance its utility by changing its strategy unilaterally. The definition of NE is as 
follows [28].

Definition 3  Let (ǫ∗i ,ǫ
∗
−iǫ
∗
−iǫ
∗
−i) be the solution for Problem 1, where ǫ∗−iǫ

∗
−iǫ
∗
−i is the set of the best 

responses of the vehicles except i. The point (ǫ∗i ,ǫ
∗
−iǫ
∗
−iǫ
∗
−i) is a NE point for the proposed non-

cooperative subgame if it satisfies

5 � Game theory method
In this section, we use the backward induction method of game theory to analyze the 
two games and find the NE and the SE.

5.1 � Subgame nash equilibrium

We use the backward induction method to analyze the existence and uniqueness of 
the NE in the subgame.

Theorem 2  There exists a NE point in the non-cooperative subgame among vehicles.

1 � Proof
The strategy space of each vehicle is non-empty, convex, and compact. From Eq. (7), Ui is 
continuous with respect to ǫ in [ǫmin, ǫmax] . We take the first and second derivatives of Ui 
with respect to ǫi and obtain

(12)
US(R

∗,ǫ∗ǫ∗ǫ∗) ≥ US(R,ǫ
∗
ǫ
∗
ǫ
∗
),

Ui(ǫ
∗
i ,R

∗
) ≥ Ui(ǫi,R

∗
),∀i,

(13)Ui(ǫ
∗
i ,ǫ

∗
−iǫ
∗
−iǫ
∗
−i) ≥ Ui(ǫi,ǫ

∗
−iǫ
∗
−iǫ
∗
−i),∀i.

(14)

∂Ui

∂ǫi
=

R
vi

∑

j∈N\{i}
ǫj

vj
(

∑

i∈N
ǫi
vi

)2
−

(

ci +
e

vi

)

,

∂
2Ui

∂ǫ
2
i

=
− 2R

v2i

∑

j∈N\{i}
ǫj

vj
(

∑

i∈N
ǫi
vi

)3
< 0.
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We prove that Ui is strictly concave with respect to ǫi . Thus, the NE point exists. The 
proof is now completed. �

Let ∂Ui
∂ǫi

= 0 and we get the best response function of i as

where ai =
∑

j∈N\{i}
ǫj

vj
 , ki = ci + e

vi
 , R =

kivi

(

ai+
ǫmin
vi

)2

ai
 , and R =

kivi

(

ai+ ǫmax
vi

)2

ai
.

Theorem 3  At the NE point for the non-cooperative subgame among the vehicles, the 
best response of i has a closed-from expression given by

1 � Proof
According to Eq. (15), we have

By computing the summation of this expression for all the vehicles, we obtain

We substitute Eq. (18) into Eq. (17) and get

which can be rewritten as Eq. (16). The proof is now completed. �

Theorem 4  The NE for the non-cooperative subgame is unique if the following condition 
is satisfied.

1 � Proof
According to Eqs. (17) and (18), we have

(15)ǫ
∗
i =











ǫmin, R < R
�

Raivi
ki

− aivi, R ≤ R < R

ǫmax, R ≥ R,

,

(16)ǫ
∗
i =

Rvi(|N | − 1)
∑

i∈N viki

(

1−
viki(|N − 1|)
∑

i∈N viki

)

.

(17)
∑

j∈N\{i}

ǫj

vj
= viki

R

(

∑

i∈N

ǫi

vi

)2

.

(18)
∑

i∈N

ǫi

vi
=

R(|N | − 1)
∑

i∈N viki
.

(19)
R(|N | − 1)
∑

i∈N viki
−

ǫi

vi
=

viki

R

(

R(|N | − 1)
∑

i∈N viki

)2

.

(20)
∑

i∈N
viki > 2viki(|N | − 1).

(21)
∑

j∈N\{i}

ǫj

vj
= vikiR

(

(|N | − 1)
∑

i∈N viki

)2

.
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Given R offered by the SP and privacy strategies ǫ−iǫ−iǫ−i offered by other vehicles, the 
best response function in Eq. (15) is denoted as ǫ∗i = Bi(ǫ−iǫ−iǫ−i,R) . The NE is unique if 
B(ǫǫǫ,R) = (B1,B2, . . . ,BN ) can be proved to be the standard function which meets the 
following conditions [5, 29].

•	 Positivity: B(ǫǫǫ,R) > 0,
•	 Monotonicity: For all ǫǫǫ and ǫǫǫ′ , B(ǫǫǫ,R) ≥ B(ǫǫǫ′,R) if ǫǫǫ ≥ ǫǫǫ

′,
•	 Scalability: For all µ > 1 , µB(ǫǫǫ,R) > B(µǫǫǫ,R).

We first analyze the positivity. According to Eq. (20), we have |N |−1
∑

i∈N viki
<

1
2viki

 , and thus 

conclude that

We further conclude that 
∑

j∈N\{i}
ǫj

vj
<

√

R
viki

∑

j∈N\{i}
ǫj

vj
 . Thus, we have

which satisfies the positivity condition.

We then analyze the monotonicity. Taking the first derivative of Bi(ǫ−i,R) with respect 
to ǫj, j ∈ N\{i} , we have

According to Eq. (22) that 
∑

j∈N\{i}
ǫj

vj
<

R
4viki

 , we have 12
√

R
viti

1
∑

j∈N\{i}
ǫj
vj

− 1 > 0 . Thus, 

the monotonicity condition is satisfied.

Finally we analyze the scalability. We have

Therefore, µBi(ǫ−iǫ−iǫ−i,R) ≥ Bi(µǫ−iǫ−iǫ−i,R) is always satisfied for µ > 1 . The scalability condi-
tion is satisfied. B(ǫ−i,R) meets the three conditions and is a standard function. Thus, 
uniqueness of the NE is proved. The proof is now completed.

�

Generally, we can obtain the NE point by using the best response dynamics [29] . 
Problem 1 is resolved and then we analyze the SE in the following.

(22)
∑

j∈N\{i}

ǫj

vj
<

R

4viki
<

R

viki
.

(23)Bi(ǫ−iǫ−iǫ−i,R) = vi







�

�

�

�

R

viki

�

j∈N\{i}

ǫj

vj
−

�

j∈N\{i}

ǫj

vj






> 0,

(24)
∂Bi(ǫ−iǫ−iǫ−i,R)

∂ǫj
= vi

vj





1

2

�

�

�

�

R

viki

1
�

j∈N\{i}
ǫj

vj

− 1



.

(25)µBi(ǫ−iǫ−iǫ−i,R)− Bi(µǫ−iǫ−iǫ−i,R) = vi(µ−√
µ)

√

√

√

√

R

viki

∑

j∈N\{i}

ǫj

vj
≥ 0.
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5.2 � Stackelberg equilibrium

We substitute ǫ∗i  into the objective function of Problem 2 and have

where hi = bvi(|N |−1)
∑

i∈N viki

(

1− viki(|N−1|)
∑

i∈N viki

)

.

Theorem 5  There exists a unique SE for the proposed Stackelberg game among the SP 
and the vehicles.

1 � Proof
The strategy space of the SP is non-empty, convex, and compact. US is continuous with 
respect to R in [0,+∞] . We take the second derivatives of Eq. (26) with respect to R and get

Thus, US is strictly concave with respect to R and the SP has a unique optimal strat-
egy R∗ in maximizing its utility. According to Theorem 4, given any reward from the SP, 
the vehicles always choose a unique set of best responses ǫ∗ to reach the NE. Therefore, 
when the SP chooses R∗ , all players determine their optimal strategies. This satisfies the 
condition in Definition 2 that there exists a unique SE point. The proof is now com-
pleted. �

The objective function of Problem 2 is a concave function and can be solved by using 
the existing typical convex optimal algorithms (e.g., dual decomposition algorithm [30] 
). If the SP has global information, such as ci , he can find out R∗ in a centralized manner. 
However, to protect the privacy of each vehicle, [31] inspires us to design a distributed 
algorithm that performs the optimization without any private information. The pro-
posed incentive mechanism is carried out cyclically. At each cycle, the SP and the vehi-
cles reach an agreement by Algorithm 3. Under the agreement, the vehicles finish the 
co-inference tasks by choosing a privacy budget and obtaining the responding rewards. 
In Algorithm 3, the SP updates the reward value by using a gradient-assisted searching 
algorithm, i.e., Eq. (28), and offers it to the vehicles. Each vehicle receives the reward 
value, determines its privacy budget based on Eq. (15), and returns the strategy to the 
SP. The iterations continue until the difference of the updated reward value is less than a 
preset threshold. Note that the communication delay is negligible due to the small size 
of shared information. The frequency of update, i.e., the number of iterations to reach 
convergence, depends on the learning rate and the threshold. When executing the algo-
rithm, the vehicles conduct wireless communication with an access point (AP). Each 
vehicular node uploads its strategy information, i.e., privacy budget ǫi , to the nearest AP 
and other vehicular nodes can query this strategy information with negligible delay. 

(26)US = �a
∑

i∈N

1

vi
log(hiR+ 1)− R,

(27)
∂
2US

∂R2
= −�a

∑

i∈N

h2i
vi(hiR+ 1)2

< 0.
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6 � Results and discussion
In this section, we conduct the experiments to evaluate the performance of the black-
box reconstruction attack and the proposed model perturbation defense mechanism. 
We also conduct the simulations to evaluate the performance of the proposed incentive 
mechanism.

Fig. 3  Recovered images via black-box reconstruction attack

Table 1  MSE, PSNR, SSIM for black-box reconstruction attack with different split point

Split Point Layer 2 Layer 4 Layer 6

MSE 1.2451 279.6696 1695.814

PSNR 47.1787 23.6643 15.8371

SSIM 0.9997 0.8407 0.4214
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6.1 � Attack and defense evaluation

6.1.1 � Experimental setup

We conduct experiments on the GTSRB dataset for road sign recognition that consists 
of 39208 samples for training and 12630 samples for testing. We adopt a Convolution 
Neuron Network (CNN) as deep model with 6 convolution layers and 2 fully connected 
layers. Each convolution layer has 64 channels and the kernel size is 3. There is a max-
pooling layer after every two convolution layers. The model is partitioned at the 2nd, 
4th, and 6th convolution layers. We use ADAM as our optimizer and set the learning 
rate as 0.001. The adopted inverse model consists of two deconvolution layers and one 
ReLU layer between them. Each deconvolution layer has 64 channels and the kernel size 
is 3.

6.1.2 � Measurement metrics

We use three metrics to measure the attack and defense performance. Mean-Square 
Error (MSE) measures pixel-wise similarity. Peak Signal-to-Noise Ratio (PSNR) quan-
tifies the pixel-level reconstruction quality of the images. Structural Similarity Index 
(SSIM) reflects the human perceptual similarity of two images according to their lumi-
nance, contrast, and structure. It ranges from [0, 1], where 1 denotes the most similar.

Fig. 4  Recovered images under model perturbation defense

Table 2  MSE, PSNR, SSIM for model perturbation defense with privacy budget setting

Privacy Budget ǫ 5 50 500

Accuracy 0.6911 0.8871 0.9587

MSE 2589.4388 624.6429 309.7245

PSNR 13.3734 20.1744 22.3587

SSIM 0.2835 0.7463 0.8142
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6.1.3 � Attack performance

Figure  3 and Table  1 show the recovered performance via black-box reconstruction 
attack. As shown in Fig. 3, when the deep model is split in a shallower layer, the recon-
structed images have high fidelity. When the deep model is split in a deeper layer, the 
reconstructed images lose some details and become blurry. Even if the split point is in 
the 6th layer, the details of road signs can still be clearly identified. Table 1 shows that the 
reconstructed images have higher MSE, PSNR, and lower SSIM, when the deep model is 
split in a deeper layer. Thus, with a deeper split layer, the black-box reconstruction attack 
becomes harder.

6.1.4 � Defense performance

Figure 4 and Table 2 show the recovered performance under model perturbation defense 
mechanism with different privacy budget ǫ . We set the split point in the 4th layer and 
randomly sample noise with privacy budget ǫ as 5, 10, 500, respectively. As shown in 
Fig. 4, with a lower ǫ , the reconstructed images become blurrier and lose more details. 
When ǫ = 5 , the details of road signs are hard to be identified. Table 2 shows that the 

Fig. 5  Inference accuracy with respect to privacy budget

Fig. 6  Performance comparison with different incentive approaches
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recovered images under defense with lower ǫ have higher MSE, PSNR, and lower SSIM. 
The deep model inference accuracy decreases when ǫ becomes smaller. The reason is 
that the injected noise also perturbs the inference results. Generally, the model pertur-
bation defense mechanism reduces the quality of image reconstruction while slightly 
decreasing the inference performance. These results offer an intuitive guide for the DP 
and the vehicles for balancing inference performance and privacy protection.

6.1.5 � Inference performance

For better characterizing the influence caused by the model perturbation mechanism 
on the inference performance, we set different privacy budgets to observe the inference 
accuracy depression. Figure 5 shows that the inference accuracy drops with the decrease 
of ǫ . We also fit the curve based on the observed results.

6.2 � Incentive mechanism performance

6.2.1 � Simulation setup

We consider that there are 5–30 vehicles being recruited for executing VCS and co-infer-
ence. The driving speed is randomly chosen in the range of [5,15] m/s. The profit coeffi-
cient is � ∈ [1000, 1250] . The expected value of privacy is ci ∈ [5, 10] and the expense for 
joining the crowdsensing task is e = 10.

6.2.2 � Performance comparison

Figure 6 shows the performance comparison among the centralized approach, the dis-
tributed approach, and the linear approach. The centralized approach assumes that the 
SP knows the estimated value of collected data of each vehicle so that the SP can use a 
convex algorithm to directly calculate R∗ in a centralized manner. Our proposed distrib-
uted algorithm allows the SP to approach the SE point in a distributed manner without 
the need for any private information. The linear approach also considers that the SP has 
no knowledge of the vehicles’ private information but the given rewards are linear to 
the privacy budget of vehicles. As shown in Fig. 6, with the centralized approach, the 
SP obtains the highest utility. The reason is that the SP knows the estimated value of 
collected data so that it can directly find out the optimal solution. By using the linear 
approach, the SP obtains the lowest utility, while the vehicle obtains the highest utili-
ties. The reason is that in the linear approach, the vehicle’s reward is linear to its own 

Fig. 7  The performance of incentive mechanism with respect to the estimated value of privacy
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privacy budget, without relation to other vehicles’ strategies. The performance of our 
proposed distributed algorithm is much better than linear approach but slightly worse 
than that of the centralized approach with an average distance of 0.05% . In general, our 
distributed algorithm enables the SP to obtain the highest utility when it has no knowl-
edge of the vehicles’ private information. In addition, the result also shows that the utili-
ties of both the SP US and the vehicle increase with the growing profit coefficient � . It is 
because a higher � allows the SP to gain more considerable profit from deep model infer-
ence so that the SP provides a higher reward.

6.2.3 � The impact of privacy value

Figure 7 shows the performance of incentive mechanism with respect to the estimated 
value of privacy ci . When the evaluated privacy value is higher, the utilities of both the 
SP and the vehicle decrease. The reason is that when a vehicle estimates a higher value 
for its privacy, it will choose a lower ǫ to protect its privacy. The profit of the SP becomes 
lower accordingly.

Fig. 8  The performance of incentive mechanism with respect to the number of vehicles

Fig. 9  The performance of incentive mechanism with respect to the velocity of vehicles
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6.2.4 � The impact of vehicles’ size

Figure 8 shows the performance of incentive mechanism with respect to the number of 
vehicles. When the number of vehicles grows, US increases, while Ui decreases. The rea-
son is that the more vehicles can collect more data to perform deep model inference 
for the SP. But the increasing number of vehicles brings about more strict competition 
among them.

6.2.5 � The impact of velocity

Figure 9 shows the performance of incentive mechanism with respect to the velocity 
of vehicles. When the velocity of vehicles becomes higher, the utilities of both the SP 
and the vehicle decrease. The reason is that when the vehicles drive at a high speed, 
their weight in the deep model inference decreases. The SP obtains a lower profit and 
gives lower rewards to the vehicles.

7 � Conclusion
In this paper, we adopted the device-edge co-inference paradigm to improve the infer-
ence efficiency in VCS networks and studied its privacy preservation. We evaluated 
the black-box reconstruction attack, which recovers the input data of the vehicular 
devices, and proposed a model perturbation defense mechanism based on DP theory 
against the attack. We designed a Stackelberg game-based incentive mechanism that 
encourages the vehicular devices to participate in the co-inference by compensating 
their privacy loss. Experimental results demonstrated the effectiveness of our pro-
posed defense mechanism and incentive mechanism.
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