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1  Introduction
1.1 � Challenges and contributions

With the development of 5G wireless communication and the Internet of things (IoTs), 
new technologies such as virtual reality (VR), augmented reality (AR) and unmanned 
driving appear [1–3]. These technologies require higher data transmission rate and lower 
time latency. Although new mobile devices are becoming more and more powerful in 
terms of central processing units (CPUs), they cannot handle applications that require 
a lot of computing power during a short time. In addition, due to the limited battery 
energy capacity, high energy consumption is still an important reason for limiting users 
to deal with high computing applications [4–6]. These factors promote the development 
of mobile cloud computing (MCC) [7]. MCC transfers the computing load of applica-
tions to the cloud servicer and provides complex applications for the mobile users [8, 9]. 
The high-speed and reliable air interface allows the computing services of mobile devices 
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to run in the remote cloud service center [10]. However, MCC has an inherent limita-
tion, that is, the distance from the mobile users to the remote cloud center is relatively 
far, which will lead to too long latency of the mobile applications. Therefore, MCC is dif-
ficult to meet various emerging mobile applications that are critical to latency, and it is 
difficult to achieve the millisecond delay of 5G computing and communication [11–13].

In order to solve the long latency in MCC, cloud services are moved near the mobile 
users to provide the cloud computing in the wireless access network, which is the so-
called mobile edge computing (MEC) [14, 15]. The concept of MEC is first proposed by 
European Telecommunications Standards Association (ETSI) in 2014. The initial pur-
pose is to offload the computing tasks on the mobile devices to the base stations [16]. 
MEC integrates the functions of the base stations and physical servers and offloads tasks 
to the edge server nodes, which facilitates the mobile users to perform computing-inten-
sive and delay critical tasks on the mobile devices. Therefore, proper task scheduling and 
offloading can bring more energy savings and lower latency [17].

Due to the open characteristics of the wireless channel, when the mobile user offloads 
the task to the edge server through the backhaul link and the server feeds back the com-
puting results to the mobile user, the data on the backhaul link in the transmission pro-
cess are at risk of being eavesdropped. Physical layer security is considered as an effective 
method to ensure the security of the wireless transmission [18]. From the perspective of 
information theory, the essence of the physical layer secure transmission is to maximize 
the security rate of the system. The security rate is defined as the rate of the legitimate 
users minus the rate of the eavesdropping users [19].

With the popularization of the intelligent terminals and the wide application of IoTs, 
the energy consumption generated by the information and communication technology is 
gradually increasing, and the resulting carbon dioxide emissions account for an increas-
ing proportion of global greenhouse gas emissions. Green communication has become 
an important index for the design and implementation of wireless communication in the 
future [20]. By offloading some tasks to the edge server, MEC can effectively reduce the 
energy consumption of the users and improve the life of the users’ batteries, which has 
become a promising technology in the future green communication.

In this paper, we mainly study the task offloading problem of minimizing the energy 
consumption of the vehicular stations (VSs) in MEC-assisted high-speed railway (HSR) 
wireless communication system. The energy consumption of each VS consists of two 
parts. The first part is the energy consumed by VS when executing the local computing 
tasks, and the second part is the energy consumed by safely transmitting offloaded com-
puting tasks to the relevant edge servers. The energy consumption caused by executing 
local computing tasks is related to the amount of tasks that VS need to schedule, the 
offloading ratio, the CPU frequency, the number of CPU cycles, etc. The factors related 
to the energy consumption generated when transmitting offloading computing tasks 
include: the amount of tasks that VS needs to schedule, the offloading ratio, the wireless 
channel state information, the inter channel interference, the transmission power, the 
system bandwidth, the interference by the eavesdropping user, the energy consumption 
of the hardware equipments, etc.

For MEC-assisted HSR wireless communication system, we propose an iterative algo-
rithm to minimize the energy consumption of multiple VSs, while ensuring the latency 
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constraints and the power constraints of the computing tasks. The main contributions of 
this paper are as follows: 

(1)	 The MEC-assisted HSR wireless communication system is considered, and the 
energy consumption minimization of multiple VSs based on task offloading is stud-
ied. The optimization variables include the amount of the scheduled task of each 
VS, the task offloading ratio and the transmission power. The constraints condi-
tions include the local computing time, the task offloading time, the security rate, 
the transmission power, the task offloading ratio and so on.

(2)	 Because the optimization variables task scheduling, task offloading ratio and trans-
mission power are coupled with each other, the optimization problem of minimiz-
ing energy consumption is difficult to solve. By fixing two of the three variables, we 
decompose the original problem into three sub-problems, namely task scheduling 
sub-problem, task offloading ratio sub-problem and power control sub-problem.

(3)	 For the task scheduling sub-problem, a solution based on interior point method 
is proposed. For the task offloading ratio sub-problem, we give the closed form 
expression of the optimal solution. For the non-convex power control sub-problem, 
by introducing the auxiliary variables and using the successive convex approxima-
tion, the non-convex optimization problem is transformed into a convex optimiza-
tion one, which can be easily solved by CVX. At last, a novel iterative algorithm for 
minimizing energy consumption is proposed.

The rest of this paper is organized as follows. In Sect. 2, the MEC-assisted HSR com-
munication system model and the latency-aware energy optimization problem are pre-
sented. According to the presented system model, Sect. 3 designs an efficient iterative 
algorithm to minimize the energy consumption problem which is a joint optimization 
problem of task scheduling, offloading and power control. Then, the simulation results 
and discussion are given in Sect. 4. Finally, Sect. 5 concludes this paper.

1.2 � Related work

Although the mobile devices have been very intelligent now, they are still limited by the 
computing ability and battery capacity. Some applications which need a large amount of 
computing workload lead to much battery energy consumption. In addition to the lim-
ited battery capacity, the CPU processing, memory and storage capacity will also affect 
the smooth execution of some applications on the mobile devices. The computing-inten-
sive tasks can be offloaded to the adjacent cloud servers or the edge servers, and the 
servers are all equipped with powerful computing resources.

The computing offloading problem in MEC for a single user was investigated in prior 
works. The minimization of energy consumption of the mobile users under the con-
straints of the average latency was considered in [21]. Using the dynamic offline pro-
gramming method, the two solutions of the deterministic one and the random one were 
designed to find the optimal wireless scheduling and task offloading strategy. Simulation 
results showed that the dynamic offline programming algorithm could make the mobile 
users get the optimal energy efficiency. A fine-granularity task offloading method to 
minimize the system energy consumption was proposed in [22], and the strict latency 
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constraint was also ensured. A practical multi-task application was modeled as a general 
graph topology. The original task offloading problem was transformed into a mathemati-
cal 0–1 programming problem. A binary particle swarm optimization (BPSO) algorithm 
with a low computational complexity was proposed to solve this problem. Simulation 
results showed that the proposed algorithm could save more energy than the simple 
local execution strategy and the traditional rough-granularity task offloading strategy. 
The base station could transmit energy to the mobile device or receive the computing 
offloading from the mobile device, and the single mobile device could harvest energy 
to be local computing or offload data to the base station [23]. Under the constraints of 
energy harvesting and deadline, the optimization goal of the designed strategy was to 
maximize the probability of successfully computing the given data. The optimization 
problem was equivalently transformed into minimizing the energy consumption caused 
by local computing and maximizing the energy saving caused by offloading, and the 
closed solution was given. The joint task scheduling and computing offloading for multi-
component applications were introduced in [24], and the component offloading and the 
scheduling order were studied. The proposed optimization decision strategy changed 
from the predetermined compiler scheduling order to the radio scheduling order. For 
some component correlation graph structures, by processing some components in par-
allel in the mobile device and the cloud, the proposed strategy reduced the execution 
time of the components. The cooperative task execution between a mobile device and a 
cloud server in random wireless channel was investigated in [25]. A mobile application 
consisted of a series of tasks that could be processed on the mobile device or the cloud 
server. An efficient scheduling strategy was designed to minimize the energy consump-
tion of mobile devices under the minimum latency constraint. For a practical sequen-
tially executed task model, the proposed exhaustive search method obtained the optimal 
solution, and the proposed adaptive lagrangian relaxation-based aggregated cost algo-
rithm achieved the approximate solution.

The computing offloading and resource allocation for multi-user are further studied 
in some recent works. Labidi et al. [26] studied minimizing the energy consumption in 
multi-user small cell network systems through joint radio resource scheduling and com-
puting offloading. An optimal scheduling and offloading method was proposed by using 
the deterministic method. In this method, only one user was selected for scheduling and 
computing offloading at each time slot, and the other mobile users were local computing 
or idle state. Zhang [27] considered the MEC-assisted multi-user multi-task 5G hetero-
geneous network; an optimization problem to minimize the system energy consump-
tion was formed while satisfying the latency constraint. The system energy consumption 
was generated by task computation and partial offloading task transmission. In order to 
reduce the complexity of multi access characteristics, a three-stage computing offload-
ing scheme was designed. This scheme adopted the type classification and priority allo-
cation for the mobile devices; the energy-efficient optimization problem could be solved 
with polynomial complexity. A computing offloading strategy based on improved parti-
cle swarm optimization (PSO) method was proposed for MEC-assisted 5G communica-
tion system in [28]. The latency minimization optimization problem was formulated, and 
the energy consumption was the constraint condition. By introducing the penalty func-
tion to balance the time delay and the energy consumption, the proposed computational 
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offloading algorithm could reasonably allocate the offloading task to the related edge 
server. Simulation results showed that under the same energy constraints, compared 
with all local execution algorithm, MEC random algorithm that randomly assigns the 
execution task between the local user and the MEC server, and particle swarm optimiza-
tion algorithm, the proposed algorithm had lower system cost. A multiple users single 
edge server computing offloading system was considered, and each user had different 
computing offloading [29]. Under the constraint of computation latency, the weighted 
sum of energy consumption of mobile users was a convex optimization problem. For the 
derived offloading priority function, the optimal algorithm has a threshold based struc-
ture. According to the user’s channel state information and the energy consumption gen-
erated by local computation, the algorithm assigned different priorities to the users and 
performed different computing offloading. In order to reduce the iterative complexity of 
the algorithm, a suboptimal resource allocation algorithm was also proposed. The mini-
mizing energy consumption through the resource allocation in wireless cloud access net-
work was researched in [30]. Under the constraints of task execution time, transmission 
power, computing capacity and front-end transmission data rate, the formulated energy 
consumption minimization problem was a nonconvex optimization one. The noncon-
vex optimization problem was reconstructed into an equivalent convex optimization 
one by the weighted least mean square error method. Simulation results showed that the 
proposed iterative algorithm reduced energy consumption and improved system perfor-
mance. Multiple mobile users multi-cell multiple-in multiple-out (MIMO) system with 
a cloud server was considered in [31]; the energy consumption minimization problem 
with the latency constraint by jointly optimizing the transmitting precoding matrices 
and the CPU cycles was studied. The formulated optimization problem was non-convex 
and intractable to solve. A novel iterative algorithm by using successive convex approxi-
mation was proposed to achieve a local optimal solution, and the proposed algorithm 
could run in a distributed manner at multiple wireless access points.

In this paper, the computing offloading strategy of multiple VSs and multiple edge 
server in MEC-assisted HSR communication system is considered; under the constraints 
of the safe computing task offloading, transmission latency and transmission power, a 
novel iterative algorithm to minimize the total energy consumption of multiple VSs is 
proposed.

2 � Methods
2.1 � System model

We consider a MEC-assisted HSR communication system that consists of K single 
antenna VSs installed on the train roof, the roadside base station (RBS) having a MEC 
server and one eavesdropper. All RBSs are deployed at regular intervals and the set of 
VSs is defined as K = {1, 2, . . . ,K } . All base stations and the eavesdropper are configured 
with single antenna. Suppose that the running speed of the train is a uniform speed v 
within a distance. In this region, the running time is equally split into N time slots for the 
sake of convenience. Thus, we get the equation L = NTv where T is the length of a time 
slot, L is the running distance and the set of time slots is defined as N = {1, 2, . . . ,N } . 
The system model is illustrated in Fig. 1.
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In time slot n, VS k has the tasks mk [n] to be processed. With the partial offloading 
protocol, the computing tasks are divided into two parts: ηk [n]mk [n] offloading tasks 
that are securely offloaded to the RBS and executed by MEC server and (1− ηk [n])mk [n] 
local computing tasks that are computed locally where ηk [n] is the offloading ratio. To 
avoid interference among VSs during tasks offloading, each time block is equally divided 
into K time slots where each time slot only allows one VS to offload its tasks to the RBS. 
Thus, for each VS, TK  is the time spent on offloading in each time slot n ∈ N .

For VS k in time slot n, the local computing time can be expressed as

where fk [n] denotes the CPU frequency of VS k and Ck [n] is the number of CPU cycles 
required for VS k to compute one bit of computing tasks locally [32].

For VS k in time slot n, the energy consumption for executing local computing tasks 
can be represented as

where ̟ k is the effective capacitance coefficient which depends on the chip architecture 
at VS k [33].

We consider the inter-channel interference (ICI) caused by Doppler effect to the high-
mobility train, which is treated as a part of white noise. Thus, the Doppler interference 
factor PICI is expressed as

where J0(·) is the zeroth-order Bessel function of the first kind, fd is the maximum Dop-
pler frequency and Ts is the symbol duration.

(1)τ lock [n] =
(1− ηk [n])mk [n]Ck [n]

fk [n]
,

(2)Eloc
k [n] = (1− ηk [n])mk [n]Ck [n]̟k f

2
k [n],

(3)PICI = 1−

∫ 1

−1
(1− |τ |)J0(2π fdTsτ )dτ ,

EavesdropperVSMECRBS

Fig. 1  System model for secure MEC-assisted HSR communication
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When VS k needs to transmit the tasks to the associated RBS in time slot n, the achiev-
able data rate of the uplink transmission from VS k is given by

where pk [n] denotes the transmission power from VS k to the associated RBS at time 
slot n, hk [n] represents the uplink channel gain from VS k to the associated RBS at time 
slot n and σ 2

k  is the noise power.
The data rate for the eavesdropper to eavesdrop the signal from the VS k can be given as

where gk [n] represents the uplink channel gain from VS k to the eavesdropper at time 
slot n and σ 2

e  is the noise power.
The secrecy rate is given by [34]

where [x]+ � max(x, 0).
For VS k in time slot n, the offloading time can be expressed as

where B is network bandwidth.
For VS k in time slot n, the energy consumption for transmitting the computing tasks to 

the associated RBS can be represented as

where Pc represents the hardware power dissipated in all other hardware components of 
the communication system.

It is assumed that the computing capability of MEC server is infinite and the time spend-
ing on MEC and the downlink transmission is disregarded. The total energy consumption 
for VS k in time slot n can be given by

(4)RVS
k [n] = log2

(

1+
pk [n]hk [n]

PICIhk [n] + σ 2
k

)

,

(5)Reav
k [n] = log2

(

1+
pk [n]gk [n]

PICIgk [n] + σ 2
e

)

,

(6)Rk [n] =
[

RVS
k [n] − Reav

k [n]
]+

,

(7)τ offk [n] =
ηk [n]mk [n]

BRk [n]
,

(8)Eoff
k [n] = pk [n]τ

off
k [n] +

T

K
Pc,

(9)

Ek [n] = Eloc
k [n] + Eoff

k [n]

= (1− ηk [n])mk [n]Ck [n]̟k f
2
k [n] +

T

K
Pc

+
pk [n]ηk [n]mk [n]

B

[

log2

(

1+
pk [n]hk [n]

PICIhk [n]+σ 2
k

)

− log2

(

1+
pk [n]gk [n]

PICIgk [n]+σ 2
e

)

]+
.
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2.2 � Problem formulation

In this paper, we jointly optimize the task scheduling m � {mk [n], ∀k , n} , the offload-
ing ratio η � {ηk [n], ∀k , n} and the power control vector p � {pk [n],∀k , n} , so that the 
sum of all VSs’ energy consumption during the time T is minimized. The problem can 
be formulated as 

 where Rmin
k  is the minimum quality of service (QoS) requirement for VS k, Mk is the 

task of VS k that needs to be processed in the time T, and pmax
k  represents the maximum 

transmit power of VS k. Constraint (10b) guarantees the QoS of VS k. Constraint (10c) is 
to ensure that the total task from VS k is processed within the time T. Constraint (10d) 
and constraint (10e) indicate that the time spent in local computing and task offloading 
cannot be more than the maximum tolerance time, respectively.

The joint task scheduling, offloading ratio and power control problem in P1 have 
some challenges to solve, since three key variables are coupled in P1. To solve P1, we 
decompose P1 into three kinds of subproblems by fixing two of three classes of vari-
ables alternately.

3 � Iteration‑based algorithm for MEC‑assisted HSR communication systems
3.1 � Task scheduling subproblem

When the power control vector p and the offloading ratio η are fixed, the optimization 
problem P1 can transformed into K task scheduling subproblems, where the subprob-
lem for VS k is given as 

(10a)P1 : min
m,η,p

N
∑

n=1

K
∑

k=1

Ek [n]

(10b)s.t. Rk [n] ≥ Rmin
k , ∀k ∈ K, ∀n ∈ N ,

(10c)
∑

n∈N

mk [n] ≥ Mk , ∀k ∈ K,

(10d)τ offk [n] ≤
T

K
, ∀k ∈ K, ∀n ∈ N ,

(10e)τ lock [n] ≤ T , ∀k ∈ K, ∀n ∈ N ,

(10f )mk [n] ≥ 0, ∀k ∈ K, ∀n ∈ N ,

(10g)0 ≤ pk [n] ≤ pmax
k , ∀k ∈ K, ∀n ∈ N ,

(10h)ηk [n] ∈ [0, 1], ∀k ∈ K, ∀n ∈ N ,
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For convenience, the optimization objective in P2 is simplified as

where ∆k [n] = (1− ηk [n])Ck [n]̟k f
2
k [n] +

pk [n]ηk [n]
BRk [n]

.
The constraint (11c) and constraint (11d) can be rewritten as

Therefore, the following inequality is obtained.

Since P2 is a linear programming problem, we solve it by using interior point method. By 
applying the log-barrier method, P2 is transformed into an unconstrained optimization 
problem where the optimization objective is given by

where �k [n] = min
{

Tfk [n]
(1−ηk [n])Ck [n]

,
TBRk [n]
Kηk [n]

}

.

By deriving the first-order derivative of �(mk [n]) with respect to mk [n] , the follow-
ing equation can be obtained as

(11a)P2 : min
mk [n]

N
∑

n=1

Ek [n]

(11b)s.t.
∑

n∈N

mk [n] ≥ Mk ,

(11c)τ offk [n] ≤
T

K
, ∀n ∈ N ,

(11d)τ lock [n] ≤ T , ∀n ∈ N ,

(11e)mk [n] ≥ 0, ∀n ∈ N ,

(12)
Ek [n] =

[

(1− ηk [n])Ck [n]̟k f
2
k [n] +

pk [n]ηk [n]

BRk [n]

]

mk [n] +
T

K
Pc

= ∆k [n]mk [n] +
T

K
Pc,

(13)

{

mk [n] ≤
Tfk [n]

(1−ηk [n])Ck [n]
,

mk [n] ≤
TBRk [n]
Kηk [n]

.

(14)0 ≤ mk [n] ≤ min

{

Tfk [n]

(1− ηk [n])Ck [n]
,
TBRk [n]

Kηk [n]

}

.

(15)

�(mk [n]) = t

N
∑

n=1

(

∆k [n]mk [n] +
T

K
Pc

)

− ln

(

−Mk +
∑

n∈N

mk [n]

)

−

N
∑

n=1

ln (−mk [n] +�k [n]),
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According to the above derivation, we have

Moreover, the second-order derivative of �(mk [n]) with respect to mk [n] is given by

The Hessian matrix of �(mk [n]) is represented as

By applying interior point method to solve P2, the update strategy of task scheduling mk 
can be expressed as

The detailed solving process is described in Algorithm 1.

3.2 � Offloading ratio subproblem

When the power control vector p and the task scheduling m are fixed, P1 can be split to 
N subproblems, which is equivalently formulated as 

 For convenience, the optimization objective in P3 is rewritten as

The constraint (21b) and constraint (21c) can be rewritten as

(16)
∂�

∂mk [n]
= t∆k [n] −

1
∑

n∈N mk [n] −Mk
+

1

�k [n] −mk [n]
.

(17)∇�(mk [n]) =

(

t∆k [n] −
1

∑

n∈N mk [n] −Mk
+

1

�k [n] −mk [n]

)N

n=1

.

(18)







∂2�

∂2mk [n]
= 1

(
�

n∈N mk [n]−Mk)
2 +

1

(�k [n]−mk [n])
2 ,

∂2�
∂mk [n]∂mk [l]

= 1

(
�

n∈N mk [n]−Mk)
2 .

(19)

H(mk [n]) =
1

(
∑

n∈N mk [n] −Mk

)2
I

+ diag

(

1

(�k [1] −mk [1])
2
, · · · ,

1

(�k [n] −mk [n])
2

)

.

(20)mt
k = mt−1

k −H−1
(

mt−1
k

)

∇�

(

mt−1
k

)

.

(21a)P3 :min
ηk [n]

K
∑

k=1

Ek [n]

(21b)s.t. τ offk [n] ≤
T

K
, ∀k ∈ K,

(21c)τ lock [n] ≤ T , ∀k ∈ K,

(21d)ηk [n] ∈ [0, 1], ∀k ∈ K.

(22)

Ek [n] =

(

pk [n]mk [n]

BRk [n]
−mk [n]Ck [n]̟k f

2
k [n]

)

ηk [n] +mk [n]Ck [n]̟k f
2
k [n] +

T

K
Pc.
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It is trivial to verify that the optimal solution of the offloading ratio is given as

for ∀k ∈ K.

3.3 � Power control subproblem

When m and η are given, P1 is split to NK subproblems, which is equivalently formu-
lated as 

 Constraint (25c) can be rewritten as

Since the objective function in P4 is non-convex, P4 is transformed as P4.1 by introduc-
ing the auxiliary variables χk [n], k ∈ K, n ∈ N  . 

 In P4.1, constraints (27b) and (27c) are still non-convex due to the non-convexity of the 
logarithm terms in Rk [n] and the coupling of two variables.

For the convenience of calculation, constraint (27c) is rewritten as

(23)

{

1−
Tfk [n]

mk [n]Ck [n]
≤ ηk [n],

ηk [n] ≤
TBRk [n]
Kmk [n]

.

(24)η
opt
k [n] =







max
�

1−
Tfk [n]

mk [n]Ck [n]
, 0
�

, if pk [n] ≥ BRk [n]Ck [n]̟k f
2
k [n],

min
�

TBRk [n]
Kmk [n]

, 1
�

, otherwise,

(25a)P4 :min
pk [n]

Ek [n]

(25b)s.t. Rk [n] ≥ Rmin
k ,

(25c)τ offk [n] ≤
T

K
,

(25d)0 ≤ pk [n] ≤ pmax
k .

(26)
Kηk [n]mk [n]

TB
≤ Rk [n].

(27a)P4.1 : min
pk [n],χk [n]

ηk [n]mk [n]

B
χk [n]

(27b)s.t. Rk [n] ≥ max

{

Rmin
k ,

Kηk [n]mk [n]

TB

}

,

(27c)Rk [n] ≥
pk [n]

χk [n]
≥ 0,

(27d)0 ≤ pk [n] ≤ pmax
k .
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Constraint (28) is relaxed as the following two constraints by introducing the auxiliary 
variables ϕk [n], k ∈ K, n ∈ N .

and

Since f1 and f2 are concave functions, f1(pk [n])− f2(pk [n]) is a form of subtraction of 
two concave functions. We adopt the successive convex approximation (SCA) technique 
to re-express (29) in the (t + 1)-th iteration, which is given by

The first item in inequality (30) is coupled with respect to the optimization variables. Its 
first-order Taylor expansion around a feasible point (χ t

k [n],ϕ
t
k [n]) at the (t + 1)-th itera-

tion is given as

(28)

log2

(

1+
pk [n]hk [n]

PICIhk [n] + σ 2
k

)

− log2

(

1+
pk [n]gk [n]

PICIgk [n] + σ 2
e

)

≥
pk [n]

χk [n]

⇒ χk [n]

(

log2

(

1+
pk [n]hk [n]

PICIhk [n] + σ 2
k

)

− log2

(

1+
pk [n]gk [n]

PICIgk [n] + σ 2
e

)

)

≥ pk [n]

⇒ χk [n]
(

log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

− log
(

PICIhk [n] + σ 2
k

)

− log2

(

pk [n]gk [n] + PICIgk [n] + σ 2
e

)

+ log2

(

PICIgk [n] + σ 2
e

))

≥ pk [n]

⇒ χk [n]
(

log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

− log2

(

pk [n]gk [n] + PICIgk [n] + σ 2
e

))

≥ pk [n] + χk [n]
(

log
(

PICIhk [n] + σ 2
k

)

− log2

(

PICIgk [n] + σ 2
e

))

.

(29)
f1(pk [n])− f2(pk [n]) � log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

− log2

(

pk [n]gk [n] + PICIgk [n] + σ 2
e

)

≥ ϕk [n],

(30)
χk [n]ϕk [n] ≥ pk [n] + χk [n]

(

log
(

PICIhk [n] + σ 2
k

)

− log2

(

PICIgk [n] + σ 2
e

))

.

(31)

log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

− log2

(

pk [n]gk [n] + PICIgk [n] + σ 2
e

)

≥ ϕk [n]

− ⇒ log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

(

log2

(

ptk [n]gk [n] + PICIgk [n] + σ 2
e

)

+
gk [n]

ptk [n] ln 2

(

pk [n] − ptk [n]
)

)

≥ ϕk [n]

⇒ log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

−
gk [n]

ptk [n] ln 2
pk [n] − ϕk [n]

≥ log2

(

ptk [n]gk [n] + PICIgk [n] + σ 2
e

)

−
gk [n]

ptk [n] ln 2
ptk [n].
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Thus, constraint (30) is derived as a further tight constraint (33) at the (t + 1)-th 
iteration.

To convexify (27b), the first-order Taylor expansion of the first two items in (27b) around 
a feasible point ptk [n] at the (t + 1)-th iteration is given and (27b) is derived as a further 
tight constraint (34) at the (t + 1)-th iteration.

According to the above analysis, problem P4.1 is reformulated as P4.2, i.e., 

 which is a convex optimization problem and can be solved by CVX effectively.

(32)

χk [n]ϕk [n] =
(χk [n] + ϕk [n])

2 − (χk [n] − ϕk [n])
2

4

≥

(

χ t
k [n] + ϕt

k [n]
)

(χk [n] + ϕk [n])

2

−

(

χ t
k [n] + ϕt

k [n]
)2

4
−

(χk [n] − ϕk [n])
2

4
.

(33)

(

χ t
k [n] + ϕt

k [n]
)

ϕk [n]

2
−

(χk [n] − ϕk [n])
2

4
≥ pk [n] +

(

χ t
k [n] + ϕt

k [n]
)2

4

+ χk [n]

(

log
(

PICIhk [n] + σ 2
k

)

− log2

(

PICIgk [n] + σ 2
e

)

−

(

χ t
k [n] + ϕt

k [n]
)

2

)

.

(34)

log2

(

1+
pk [n]hk [n]

PICIhk [n] + σ 2
k

)

− log2

(

1+
pk [n]gk [n]

PICIgk [n] + σ 2
e

)

≥ max

{

Rmin
k ,

Kηk [n]mk [n]

TB

}

⇒ log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

− log2

(

pk [n]gk [n] + PICIgk [n] + σ 2
e

)

≥ max

{

Rmin
k ,

Kηk [n]mk [n]

TB

}

+ log
(

PICIhk [n] + σ 2
k

)

− log2

(

PICIgk [n] + σ 2
e

)

⇒ log2

(

pk [n]hk [n] + PICIhk [n] + σ 2
k

)

− log2

(

ptk [n]gk [n] + PICIgk [n] + σ 2
e

)

−
gk [n]

ptk [n] ln 2

(

pk [n] − ptk [n]
)

≥ max

{

Rmin
k ,

Kηk [n]mk [n]

TB

}

+ log
(

PICIhk [n] + σ 2
k

)

− log2

(

PICIgk [n] + σ 2
e

)

.

(35a)P4.2 : min
pk [n],χk [n],ϕk [n]

ηk [n]mk [n]

B
χk [n]

(35b)s.t. (31), (33), (34),

(35c)0 ≤ pk [n] ≤ pmax
k ,
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3.4 � Algorithm description

In Algorithm 1, the task scheduling m with the given η and p is optimized, and in Algo-
rithm 2, the joint offloading ratio and power control (η,p) with the given m are solved. 
The joint iterative optimization procedure is presented in Algorithm 3.

In order to verify the convergence of Algorithm 3, we define φ1(m, η,p) as the objec-
tive value of P1, and define φ2(m, η,p) , φ3(m, η,p) , φ4(m, η,p) and φ4.2(m, η,p) as the 
sum of the objective values for all k ∈ K in P2, all n ∈ N  in P3, and all k ∈ K , n ∈ N  in 
P4 and P4.2, respectively.

In step 5 of Algorithm 2, we can obtain the solution pt to P4.2 with the feasible points 
pt−1 , χ t−1 and ϕt−1 . As the iterative number increasing in step 6 and step 7, the feasible 
points are updated and the feasible region is enlarged with the SCA method. When 
pt = pt−1 , we have φ4.2(pt−1,mt−1, ηt−1) ≥ φ4.2(p

t ,mt−1, ηt−1) , where pt is the globally 
optimal solution for P4.2 with fixed mt−1 and ηt−1 . Since P4.2 is equivalent to P4, the 
inequality φ4(pt−1,mt−1, ηt−1) ≥ φ4(p

t ,mt−1, ηt−1) holds. In Algorithm 2, the obtained 
solutions between inner loop and outer loop have the following relationship: 
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φ3(p
t−1,mt−1, ηt−1) ≥ φ3(p

t−1,mt−1, ηt) = φ4(p
t−1,mt−1, ηt) ≥ φ4(p

t ,mt−1, ηt) =
φ3(p

t ,mt−1, ηt)
 

That is, φ3(pt−1,mt−1 , ηt−1) ≥ φ3(pt ,mt−1, ηt).
In Algorithm 3, the obtained solutions in step 2 and step 3 have the following rela-

tionship: φ1(p
t−1,mt−1, ηt−1) = φ2(p

t−1,mt−1, ηt−1) ≥ φ2(p
t−1,mt , ηt−1) = φ3(p

t−1,mt , ηt−1)

≥ φ3(p
t ,mt , ηt) = φ2(p

t ,mt , ηt) = φ1(p
t ,mt , ηt) . That is, φ1(pt−1,mt−1, ηt−1) ≥ φ1(p

t ,mt , ηt ) . 
It is obviously obtained that φ1 is monotonically non-increasing with respect to the 
iteration number and is lower bounded by a finite value. Therefore, Algorithm  3 is 
guaranteed to converge.

4 � Simulation results and discussion
In this section, numerical simulations are performed by MATLAB software to validate 
the efficiencies and performance of the proposed algorithm, which is used to solve the 
joint task scheduling, offloading ratio and power control problem for latency-aware 
secure transmission in MEC-assisted HSR communication systems.

4.1 � Simulation configuration

We consider a railway segment of length L = 500 m where B = 2 RBSs are deployed 
[35]. A HSR with K = 2 VSs is running from point (100,  0) with the speed of 100 
m/s. Thus, the length of each time slot T = 2.5 s and the time slots N = 4 . The loca-
tion of the eavesdropper is set to (440,  70). Figure  2 gives the corresponding coor-
dinate positions of all BSs and VSs. The path loss between RBS and VS is modeled 
as PLRBS = 141.1+ 36.4 log 10(dk  [km]), where dk is the distance (in km) between 
RBS and VS k. The noise power is σ 2

k = σ 2
e = −110 dBm. The peak power budget of 

VS is set to pmax
k = 30 dBm. It is assumed that the spectral bandwidth for offloading 

is B = 10  MHz, and the relevant Doppler interference factor PICI is −  19.4  dB. The 
number of CPU cycles required per bit for local computing is Ck [n] = 103 cycles/bit, 
the CPU cycle frequency fk [n] = 3.4 GHz, and the effective capacitance coefficient 

(100,100,10) (500,100,10)

(130,0,5)

(440,70,10)

(310,0,5)

Fig. 2  Deployment locations of all RBSs and VSs
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is ̟k [n] = 10−28 [36]. Specifically, simulation parameters and values are listed in 
Table 1. Unless otherwise specified, these values are used in the sequel.

4.2 � Simulation results and analysis

Figure 3 shows the variation in the total energy consumption versus the speed of train 
under different task sizes in the time T. The tasks in the above curve indicates are 
M1 = 2.25 Mbits and M2 = 2.35 Mbits, respectively, and the tasks in the following 
curve are M1 = 2.06 Mbits and M2 = 2.16 Mbits, respectively. Figure  3 shows that 
under the same rate, the more the tasks to be processed, the more the total energy 
consumed by VSs. When the train speed is 80 m/s, the total energy consumption 

Table 1  Simulation parameters

Parameters Value

Number of RBSs 2

Number of VSs 2

Speed of train 100 m/s

Number of time slots 4

Length of each time slot 2.5 s

Maximum power of VS 30 dBm

Bandwidth 10 MHz

Doppler interference factor − 19.4 dB

Number of CPU cycles per bit 10
3 cycles/bit

CPU cycle frequency 3.4 GHz

Effective capacitance coefficient 10
−28

60 65 70 75 80 85 90 95 100

Speed of train (m/s)

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
(J

)

Fig. 3  Variation in total energy consumption versus the speed of train under different task sizes in the time T 
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in both cases reaches the minimum values, which are 0.32 J and 0.27 J, respectively. 
When the train speed is 70  m/s, the maximum energy consumption of the above 
curve is about 0.34 J. When the train speed is 65 m/s, the maximum energy consump-
tion of the following curve is about 0.29 J. Because there are many factors involved in 
the energy consumption of VSs, the total energy consumption of VSs does not change 
monotonically with the rate.

Figure 4 gives the variation in the total energy consumption versus the speed of train 
under different distances between eavesdropper and VS, where the tasks are M1 = 2.25 
Mbits and M2 = 2.35 Mbits, respectively. The short distance between eavesdropper and 
VS means that the coordinates of the eavesdropper are [240, 28, 10], while the long dis-
tance between eavesdropper and VS means that the coordinates of the eavesdropper are 
[440, 70, 10]. As shown in Fig. 4, for the same rate, the energy consumption in the short 
distance is more than that in the long distance. This is because the secrecy rate in the 
short distance is less than that in the long distance. If the same offloading task is trans-
mitted, more energy will be consumed. If fewer tasks are offloaded, the VS itself needs 
to process more local tasks and consume more energy, so it cannot obtain more task 
offloading gain. Therefore, offloading tasks need to be allocated according to the specific 
conditions.

Figure 5 illustrates the obtained task scheduling solution and the corresponding off-
loading ratio by performing the proposed algorithm; the eavesdropper is far away from 
VSs, where the tasks are M1 = 2.25 Mbits and M2 = 2.35 Mbits, respectively. The left 
subfigure of Fig. 5 shows the amount of tasks to be processed by each VS in each time 
slot, and the right subfigure shows the task offloading ratio of each VS in each time slot. 
In the first time slot, each VS offloads 70% of the tasks to the RBS. In the second slot, 
VS1 and VS2 offload all tasks to RBS without performing any local computation. In the 
third time slot, VS1 offloads all tasks to RBS, and VS2 offloads 80% of tasks to RBS. In 

60 65 70 75 80 85 90 95 100

Speed of train (m/s)

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
(J

)

Long range  between eavesdropper and VS
Short range  between eavesdropper and VS

Fig. 4  Variation in total energy consumption versus the speed of train under different distances between 
eavesdropper and VS
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the fourth time slot, VS1 offloads 95% of the tasks to RBS, and VS2 offloads all the tasks 
to RBS.

Figure  6 gives the obtained task scheduling solution and the corresponding offload-
ing ratio by performing the proposed algorithm; the eavesdropper is far away from VSs, 
where the tasks are M1 = 2.06 Mbits and M2 = 2.16 Mbits, respectively. As can be 
seen from the left subfigure of Fig. 6, there are the most tasks in the first time slot, and 
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Fig. 5  Obtained task scheduling solution and the corresponding offloading ratio by performing the 
proposed algorithm
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Fig. 6  Obtained task scheduling solution and the corresponding offloading ratio when the task size is set to 
a small value in the time T 
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there are almost the same tasks in the other three time slots. In the first time slot, VS1 
offloads 70% of the tasks to RBS and VS2 offloads 75% of the tasks to RBS. In the remain-
ing three time slots, VS1 and VS2 offload all tasks to RBS without performing any local 
computation.

Compared with Figs. 5 and 7 shows the task scheduling solution and corresponding 
offloading rate obtained when the eavesdropper approaches the VSs, where the tasks are 
M1 = 2.25 Mbits and M2 = 2.35 Mbits, respectively. In the first time slot and the third 
time slot, the allocated tasks are the same as that in Fig. 5. In the second time slot, VS1 
offloads 95% of the tasks to RBS, and VS2 offloads all the tasks to RBS. In the fourth time 
slot, VS1 and VS2 offload all tasks to RBS. As shown in Figs. 5, 6 and 7, in each time slot, 
when the allocated tasks by each VS are less than 0.5 Mbits, the VS offloads all tasks to 
the RBS. When the assigned tasks to each VS are greater than 0.5 Mbits, some tasks will 
be computed locally.

5 � Conclusion
In this paper, MEC-assisted HSR wireless communication system was considered, and 
the energy consumption minimization of multiple VSs based on task offloading was 
studied. Due to the optimization variables including task scheduling, task offloading 
ratio and transmission power are coupled with each other; the optimization problem 
of minimizing energy consumption was intractable to solve. By fixing two of the three 
variables, we decomposed the original problem into three sub-problems. By introducing 
the auxiliary variables, the sub-problems were solved by interior point method and suc-
cessive convex approximation algorithm. On this basis, an iterative energy consumption 
minimization algorithm was proposed.
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Fig. 7  Obtained task scheduling solution and the corresponding offloading ratio when the eavesdropper 
approaches VSs
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