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1 Introduction
In recent decades, the linear canonical transform (LCT) has been attracted much 
attention due to its significance in optics propagation [1], time-frequency analysis [2], 
and signal processing [3]. Some well-known integral transformations, including Fou-
rier transform (FT) [4], fractional Fourier transform (FRFT) [5–9], Fresnel transform 
[10] and Lorentz transform [11], are special cases of the LCT. The generalizability of 
LCT enables it to be a representative integral transformation. The LCT has three free 
parameters, which outperforms the FT without any degrees of freedom and the FRFT 
with only one degree of freedom in non-stationary signal analysis. Indeed, the LCT 
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exhibits more flexibility in signal representation through a so-called linear canonical 
domain beyond the ordinary time, frequency and fractional domains.

Wigner distribution (WD) began its definition at quantum statistical mechanics 
[12] and later had found many applications in signal processing [13]. As it is known, 
the WD is an effective time-frequency analysis tool but subjected to the interference 
of the cross-term when dealing with multi-component signals. This kind of issue is 
the subject which the WD pays attention throughout. As a result, a large number of 
variations to the WD are currently derived, including pseudo Wigner distribution 
[14], smoothed pseudo Wigner distribution [15], S-method [16], general Wigner dis-
tribution [17], L Wigner distribution [18], Choi-Williams distribution [19], and scaled 
Wigner distribution [20]. These variations are both energy distributions in the time-
frequency plane. Take the sky-wave over-the-horizon radar signal detection [21] for 
example, however, without any degrees of freedom they fail to extract principal fea-
tures of the target echo signal from the extreme strong noise background. To address 
the problem of weak signal detection [22], ones need some breakthrough research 
approaches to extend the conventional WD.

From the perspective of improving signal representation flexibility, it seems a feasible 
method for the detection problem of weak signals to introduce the parameters of LCT 
into the conventional WD. There exist various types of parameters embedded technolo-
gies, such as linear canonical domain autocorrelation function replacement [2], linear 
canonical domain kernel replacement [23–25], linear canonical domain convolution 
replacement [26], linear canonical domain instantaneous cross-correlation function 
(ICF) replacement [27], and linear canonical domain closed-form instantaneous cross-
correlation function (CICF) replacement [28]. The corresponding variations of the WD 
are referred to as the affine characteristic Wigner distribution (ACWD) [2], the kernel 
function Wigner distribution (KFWD) [23], the convolution representation Wigner 
distribution (CRWD) [26], the ICF type of Wigner distribution (ICFWD) [27], and the 
CICF type of Wigner distribution (CICFWD) [28], respectively.

The numbers of LCT free parameters of the ACWD, KFWD, CRWD, ICFWD and 
CICFWD are three, three, three, six and nine, respectively. The more the number of 
parameters the time-frequency distribution has, the more flexible the signal repre-
sentation is. In this case, the detection accuracy will be better. Therefore, our previous 
works focused mainly on the CICFWD-based weak signal detection. To be specific, 
we established an output signal-to-noise ratio (SNR) inequality [29] (inequalities sys-
tem [30]) model or optimization [31] (multiobjective optimization [32]) model of the 
CICFWD to explain why its detection accuracy improves. Also, we solved the inequal-
ity (inequalities system) model or optimization (multiobjective optimization) model for 
noisy linear frequency-modulated (LFM) signals [33–35] to verify the improvement of 
detection accuracy. However, there exist two problems caused by too many parameters. 
The parameters selection strategy of CICFWD is not unique so that there is an unstable 
detection accuracy [36]. The CICFWD’s high complexity and low computation efficiency 
make it not suitable for real-time applications [37]. For the options with less parameters, 
there are the ACWD, KFWD, CRWD, and ICFWD. It is therefore wise to choose the 
ICFWD for maintaining a high level of detection accuracy as possible, because the num-
ber of its parameters is the largest among them.
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In our latest works, the output SNR optimization [37] and multiobjective optimiza-
tion [36] models of the ICFWD were formulated respectively. The optimal solutions 
of the models with respect to noisy single component LFM signal were also derived. 
It was crucially used there that only one absolute value term can be found in the 
objective function for the single component LFM signal. Then Lagrangian multiplier 
method [38] works very well by merely squaring the objective function. This method 
thereby relies heavily on the fact that the LFM signal is single component which does 
not seem to work for multi-component LFM signals, for which there is more than one 
absolute value term found in the objective function. To overcome this shortcoming, it 
might be feasible to replace the optimization model with the inequality model as solv-
ing the inequality model does not need to use Lagrangian multiplier method.

The main purpose of this paper is to study weak signal detection problem through 
the output SNR inequality modeling and solving of the ICFWD. We first propose an 
output SNR inequality model of the ICFWD. We then solve the inequality model in 
regard to both single component and bi-component LFM signals under a zero-mean 
stationary noise background. We also compare the detection accuracy of ICFWD, 
CICFWD, ACWD, KFWD, CRWD and WD, as well as the computing speed of 
ICFWD, CICFWD, ACWD, KFWD and CRWD. The main notations are summarized 
in Table 1.

The main contributions of this paper are summarized below:

Table 1 Summary of main notations

Notation Description

f , f1, ĝ, g̃ ; n Deterministic signals; random noise

A = (a, b; c, d),A1 = (a1, b1; c1, d1),A2 = (a2, b2; c2, d2) Parameter matrices

KA ,KA1
Linear canonical domain kernel functions

FA , FA1
, FA2

 ; ĜA1
 ; G̃A1

LCTs of f; LCT of ĝ ; LCT of g̃

∗ Complex conjugate

f
(
t + τ

2

)
f ∗
(
t − τ

2

)
Instantaneous autocorrelation function

FA1

(
t + τ

2

)
f ∗
(
t − τ

2

)
, ĜA1

(
t + π

2

)
g̃∗
(
t − π

2

)
, G̃A1

(
t + π

2

)
ĝ∗
(
t − π

2

) Linear canonical domain ICFs

FA1

(
t + τ

2

)
F∗
A2

(
t − τ

2

)
Linear canonical domain CICF

Wf , Wn WDs of f, n

W
A1,A2,A
f , WA1,A2,A

n , W
A1,A2,A
f+n

CICFWDs of f , n, f + n

W
A1,A
f , W

A1,A

ĝ
, W

A1,A

g̃
, WA1,A

n , W
A1,A
f+n

ICFWDs of f , ĝ, g̃, n, f + n

W
A1,A

ĝ,g̃
, W

A1,A

g̃,ĝ
Cross ICFWDs of ĝ and g̃

ESNRWD, ESNR
A1,A
ICFWD, ESNR

A1,A2,A
CICFWD

Expectation‑based output SNRs of WD, 
ICFWD, CICFWD

max ; argmax Maximum; arguments of the maximum

Mean Arithmetic mean or integral average

E[·] ; Var[·] Expectation operator; variance operator

δ(·) Dirac delta operator

α, α̂, α̃ ; β , β̂ , β̃ Initial frequency; frequency rate

h1, ĥ1, h̃1
1

2βb1+a1
, 1

2β̂b1+a1
, 1

2β̃b1+a1

˜̂
l,
̂̃
l

a
2b

+ d1−ĥ1
8b1

−
β̃
4
, a
2b

+ d1−h̃1
8b1

−
β̂
4

D Power spectral density of the noise
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• It formulates the expectation-based output SNR of ICFWD for pure deterministic 
signal embedded in additive zero-mean random noise.

• It establishes the expectation-based output SNR inequality model between the 
ICFWD and WD on the noisy signal.

• It deduces the solutions of the inequality model for single component and bi-compo-
nent LFM signals added with zero-mean stationary noise, respectively.

• It demonstrates the advantages of ICFWD in maintaining/improving detection accu-
racy and saving computing time.

The remainder of this paper is structured as follows. Section 2 reviews the definitions of 
LCT and ICFWD. Section 3 investigates the expectation-based output SNR inequality 
modeling and solving of the ICFWD. Section 4 derives the solutions of the inequality 
model for noisy LFM signals. Section 5 conducts numerical experiments. Section 6 con-
cludes the paper.

2  Preliminaries
2.1  Linear canonical transform (LCT)

From the view point of geometry, the FT and FRFT are rotation transformations with 
the angles of π2  and α in the time-frequency plane, respectively. The LCT, a generalization 
of the FRFT or known as extended FRFT, can be regarded as an affine transformation 
in the time-frequency plane [39–42]. The LCT of a signal f(t) relevant to the parameter 
matrix A = (a, b; c, d) is defined by [43–48]

where

denotes the linear canonical domain kernel function. The parameters a, b, c, d are real 
numbers satisfying the affine condition ad − bc = 1.

Two special cases of LCT are worth emphasizing as follows. Firstly, the LCT with 
A = (1, 0; 0, 1) reduces to a unit transformation, that is F(1,0;0,1)(u) = f (u) . Secondly, the 
LCT with A = (0, 1;−1, 0) turns into the conventional FT, regardless of an extra con-
stant factor 1√

j
 , that is F(0,1;−1,0)(u) =

1√
j2π

∫ +∞

−∞
f (t)e−jutdt.

The LCT with b = 0 is just a combination of a scaling operation 
√
df (du) and a chirp 

multiplication operation ej
cd
2 u2 . The LCT with a = 0 is none other than a combination of 

a scaling FT operation 1√
b
F(0,1;−1,0)

(
u
b

)
 and a chirp multiplication operation ej

d
2b
u2 . Then, 

the linear canonical domains with b = 0 and a = 0 become the ordinary time and fre-
quency domains, respectively. Without loss of generality, this paper therefore discusses 
merely on the LCT with b  = 0 and a  = 0 . The three free parameters of LCT are a, b, d or 
a, b, c, because it derives from ad − bc = 1 and b  = 0 or a  = 0 that c = ad−1

b
 or d = bc+1

a

.

(1)FA(u) =

{ ∫ +∞

−∞
f (t)KA(u, t)dt, b �= 0

√
dej

cd
2 u2 f (du), b = 0

,

(2)KA(u, t) =
1√
j2πb

e
j
(

d
2b
u2− 1

b
ut+ a

2b
t2
)
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2.2  ICF type of WD (ICFWD)

Let FA1

(
t + τ

2

)
f ∗
(
t − τ

2

)
 denote the linear canonical domain ICF, where FA1

 stands 
for the LCT of f(t) relevant to the parameter matrix A1 = (a1, b1; c1, d1) , and the 
superscript ∗ is complex conjugate. Then, the ICFWD of f(t) is defined by the LCT of 
FA1

(
t + τ

2

)
f ∗
(
t − τ

2

)
 relevant to the parameter matrix A , i.e. [27],

Two parameter matrices A1,A implies that the ICFWD has six LCT free parameters.
Let FA2

 denote the LCT of f(t) relevant to the parameter matrix A2 = (a2, b2; c2, d2) . 
By replacing the linear canonical domain ICF FA1

(
t + τ

2

)
f ∗
(
t − τ

2

)
 with the lin-

ear canonical domain CICF FA1

(
t + τ

2

)
F∗
A2

(
t − τ

2

)
 , it follows the definition of the 

CICFWD of f(t) [28–32]

It is none other than the LCT of FA1

(
t + τ

2

)
F∗
A2

(
t − τ

2

)
 relevant to the parameter matrix 

A . There are three parameter matrices A1,A2,A so that the CICFWD has nine LCT free 
parameters.

The ICFWD exhibits less computational complexity than the CICFWD due to no 
calculations for FA2

 . This is the main reason why the paper use the ICFWD to improve 
the efficiency of weak signal detection. Moreover, the ICFWD is not a special case of 
the CICFWD because of an assumption of b2  = 0 . Then, the ICFWD maybe could 
share the same level of detection accuracy in comparison with the CICFWD.

The ICFWD with A1 = (1, 0; 0, 1) and A = (0, 1;−1, 0) becomes the conventional 
WD [13]

regardless of an extra constant factor 1√
j2π

 . Compared with the WD, the ICFWD 

achieves more degrees of freedom to improve the accuracy of weak signal detection.

3  Mathematical model
In this section, we first define the expectation-based output SNR of ICFWD for a gen-
eral noisy signal modeled by a pure deterministic signal f(t) added with a zero-mean 
random noise n(t). We then establish the expectation-based output SNR inequality 
model between the ICFWD and WD. Finally, we study how to solve the inequality 
model from the perspective of signal forms including synthetic signals and real-world 
signals.

(3)W
A1,A
f (t,u) =

∫ +∞

−∞

FA1

(
t +

τ

2

)
f ∗
(
t −

τ

2

)
KA(u, τ )dτ .

(4)W
A1,A2,A
f (t,u) =

∫ +∞

−∞

FA1

(
t +

τ

2

)
F∗
A2

(
t −

τ

2

)
KA(u, τ )dτ .

(5)Wf (t,ω) =

∫ +∞

−∞

f
(
t +

τ

2

)
f ∗
(
t −

τ

2

)
e−jωτdτ ,
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3.1  Expectation‑based output SNR of ICFWD

Let the noisy signal be f (t)+ n(t) , where f(t) and n(t) denote a pure deterministic sig-
nal and a zero-mean random noise, respectively. Then, the expectation-based output 
SNR of CICFWD is reproduced here as [29], Eq. (32)]

where ‘Mean’ would be the arithmetic mean if arg max
(t,u)

∣∣∣WA1,A2,A
f (t,u)

∣∣∣ were a countable 

set, while the integral average if it were an uncountable set.
Note that the expectation-based output SNR of CICFWD is well-defined thanks to 

an important relation E
[
W

A1,A2,A
f+n (t,u)

]
= W

A1,A2,A
f (t,u)+ E

[
WA1,A2,A

n (t,u)
]
 [31, Eq. 

(5)]. Similarly, this relation can be reduced to 
E
[
W

A1,A
f+n (t,u)

]
= W

A1,A
f (t,u)+ E

[
WA1,A

n (t,u)
]
 for the ICFWD. Thus, the expectation-

based output SNR of ICFWD is well-defined [36, 37]:

3.2  Inequality modeling of ICFWD

Since the value of the expectation-based output SNR of ICFWD depends only on the 
parameter matrices A1,A for given signals and noises, our latest work formulated an 
optimization model [37]

and then solved it to obtain the optimal LCT free parameters of ICFWD. However, it 
seems very complicated to solve the optimization model because there exists an inner 
optimization problem max

(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ embedded in it. Indeed, our latest work dem-

onstrated that the solution of the optimization model for multi-component LFM signals 
does not seem to be feasible because there are many absolute value terms found in the 
objective function need to be taken partial derivatives.

The inequality model is simpler than the optimization model due to no calculations 
for the inner optimization problem. Then, as an alternative to the expectation-based 
output SNR optimization model of ICFWD, the expectation-based output SNR ine-
quality model between the ICFWD and WD might be suitable for the case of multi-
component LFM signals.

Let the expectation-based output SNR of WD be [29], Eq. (33)]

(6)ESNR
A1,A2,A
CICFWD =

max
(t,u)∈R2

∣∣∣WA1,A2,A
f (t,u)

∣∣∣

Mean
argmax

(t,u)

∣∣∣WA1,A2,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A2,A

n (t,u)
]∣∣} ,

(7)ESNR
A1,A
ICFWD =

max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣

Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A

n (t,u)
]∣∣} .

(8)max
A1,A

ESNR
A1,A
ICFWD,



Page 7 of 24Qiang et al. EURASIP Journal on Advances in Signal Processing        (2021) 2021:122  

It is a constant for given signals and noises. Then, the value of the expectation-based 
output SNR of ICFWD can be larger than that of the expectation-based output SNR of 
WD for appropriate parameter matrices A1,A . Thus, the expectation-based output SNR 
inequality model between the ICFWD and WD is well-established:

3.3  Inequality solving of ICFWD

The inequality (10) can be rewritten as

There are two optimization problems max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ and max
(t,ω)∈R2

∣∣Wf (t,ω)
∣∣ need to 

be solved firstly. It is clear that the solving methods are different for synthetic signals and 
real-world signals.

Synthetic signals. The ICFWD WA1,A
f (t,u) can be expressed as a function with the vari-

ables t, u and the parameters a1, b1, d1, a, b, d . As for the WD Wf (t,ω) , it can be expressed 
as a function with the variables t,ω . Thanks to the classical extreme value theory [49], there 
is an analytic solution to the optimization problem max

(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ , as well as the opti-

mization problem max
(t,ω)∈R2

∣∣Wf (t,ω)
∣∣ . The former is an algebraic formulation with the 

parameters a1, b1, d1, a, b, d , while the latter is an algebraic formulation without any param-
eters. Substituting them into (11) yields an algebraic inequality with the parameters 
a1, b1, d1, a, b, d . In a word, the solution of the inequality model is an algebraic inequality 
for the case of synthetic signals.

Real-world signals. Due to peak detection algorithms [50], there is an arithmetic solu-
tion to the optimization problem max

(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ for given parameters 

a1, b1, d1, a, b, d . Similarly, it follows an arithmetic solution to the optimization problem 
max

(t,ω)∈R2

∣∣Wf (t,ω)
∣∣ . Traversing all parameters and checking the inequality (11) gives a point 

set of parameters a1, b1, d1, a, b, d . In order to narrow down the range of parameters tra-
versal, the technique of uniform design [51] can be used to obtain a set of representative 
experimental points. In brief, the solution of the inequality model is a point set of parame-
ters for the case of real-world signals.

(9)ESNRWD =

max
(t,ω)∈R2

∣∣Wf (t,ω)
∣∣

Mean
argmax

(t,ω)

∣∣Wf (t,ω)
∣∣
{|E[Wn(t,ω)]|}

.

(10)ESNR
A1,A
ICFWD > ESNRWD.

(11)

max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣

Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A

n (t,u)
]∣∣} >

max
(t,ω)∈R2

∣∣Wf (t,ω)
∣∣

Mean
argmax

(t,ω)

∣∣Wf (t,ω)
∣∣
{|E[Wn(t,ω)]|}

.
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4  Methods
This section focuses on solving the well-established inequality model for a kind of impor-
tant synthetic signals, i.e., the LFM signals, including the single component and bi-compo-
nent cases.

We first explore the solutions of the optimization problem max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ for single 

component and bi-component LFM signals respectively. We then obtain the solution of the 
mean problem Mean

argmax
(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A

n (t,u)
]∣∣} for zero-mean stationary noise. 

Finally, we formulate the solutions of the inequality model for single component and bi-
component cases respectively.

4.1  ICFWD of single component LFM signal

This subsection revisits the optimization problem max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ for single compo-

nent LFM signal given by

where the initial frequency α is arbitrary, and the frequency rate β  = 0.
Let δ denote Dirac delta operator. Then, the amplitude of ICFWD of the single compo-

nent LFM signal f(t) can yield an impulse which is reproduced here as [27]

where h1 = 1
2βb1+a1

 . Here the LCT free parameters have to satisfy 2βb1 + a1 �= 0 and 
a
2b +

d1−h1
8b1

−
β
4 = 0.

As it is seen, the solution of the optimization problem reads [37]

4.2  ICFWD of bi‑component LFM signal

This subsection studies the optimization problem max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ for bi-component 

LFM signal given by

where β̂ , β̃  = 0 and β̂  = β̃ .
The bilinearity of the ICFWD implies that the ICFWD of the bi-component LFM signal 

f(t) can be expanded as

where WA1,A
ĝ

(t,u) and WA1,A
g̃

(t,u) are two auto terms, and

(12)f (t) = ej
(
αt+βt2

)
,

(13)
√
2π |bh1|δ

[
u− b

(
d1 − h1

2b1
+ β

)
t −

α

2
b(h1 + 1)

]
,

(14)max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ =
√
2π |bh1|.

(15)f (t) = ĝ(t)+ g̃(t) = e
j
(
α̂t+β̂t2

)

+ e
j
(
α̃t+β̃t2

)

,

(16)W
A1,A
ĝ

(t,u)+W
A1,A
g̃

(t,u)+W
A1,A
ĝ ,g̃

(t,u)+W
A1,A
g̃ ,ĝ

(t,u),
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and

are two cross terms, and where ĜA1
 and G̃A1

 denote the LCTs of ĝ  and g̃  relevant to the 
parameter matrix A1 , respectively.

The amplitudes of the auto terms WA1,A
ĝ

(t,u) and WA1,A
g̃

(t,u) can generate impulses

and

respectively, where ĥ1 = 1

2β̂b1+a1
 and h̃1 = 1

2β̃b1+a1
 , if and only if the LCT free parame-

ters satisfy 2β̂b1 + a1 �= 0 , 2β̃b1 + a1 �= 0 , a2b +
d1−ĥ1
8b1

−
β̂
4 = 0 , and a2b +

d1−h̃1
8b1

−
β̃
4 = 0

.
Due to β̂  = β̃  , a

2b +
d1−ĥ1
8b1

−
β̂
4 = 0 , and a

2b +
d1−h̃1
8b1

−
β̃
4 = 0 , it follows that 

˜̂
l � a

2b +
d1−ĥ1
8b1

−
β̃
4 �= 0 and ̂̃l � a

2b +
d1−h̃1
8b1

−
β̂
4 �= 0 . Then, the cross terms WA1,A

ĝ ,g̃
(t,u) 

and WA1,A
g̃ ,ĝ

(t,u) can not generate impulses because the amplitudes of them read

and

respectively. For the proof of the results, ones can refer to “Appendix 1”.
Taking amplitude on each terms in (16), and substituting (19)–(22) gives

(17)W
A1,A
ĝ ,g̃

(t,u) =

∫ +∞

−∞

ĜA1

(
t +

π

2

)
g̃∗
(
t −

π

2

)
KA(u, τ )dτ

(18)W
A1,A
g̃ ,ĝ

(t,u) =

∫ +∞

−∞

G̃A1

(
t +

π

2

)
ĝ∗
(
t −

π

2

)
KA(u, τ )dτ

(19)
√

2π
∣∣∣bĥ1

∣∣∣δ
[
u− b

(
d1 − ĥ1

2b1
+ β̂

)
t −

α̂

2
b
(
ĥ1 + 1

)]

(20)
√
2π

∣∣∣bh̃1
∣∣∣δ
[
u− b

(
d1 − h̃1

2b1
+ β̃

)
t −

α̃

2
b
(
h̃1 + 1

)]
,

(21)

√√√√√√

∣∣∣ĥ1
∣∣∣

2

∣∣∣∣b̃̂l
∣∣∣∣

(22)

√√√√√√

∣∣∣h̃1
∣∣∣

2

∣∣∣∣b̂̃l
∣∣∣∣
,

(23)

√
2π

∣∣∣bĥ1
∣∣∣δ
[
u− b

(
d1 − ĥ1

2b1
+ β̂

)
t −

α̂

2
b

(
ĥ1 + 1

)]

+

√
2π

∣∣∣bh̃1
∣∣∣δ
[
u− b

(
d1 − h̃1

2b1
+ β̃

)
t −

α̃

2
b

(
h̃1 + 1

)]
+

√√√√√√

∣∣∣ĥ1
∣∣∣

2

∣∣∣∣b̃̂l
∣∣∣∣
+

√√√√√√

∣∣∣h̃1
∣∣∣

2

∣∣∣∣b̂̃l
∣∣∣∣
.
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Thus, the solution of the optimization problem is

4.3  ICFWD of zero‑mean stationary noise

This subsection discusses the mean problem Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A

n (t,u)
]∣∣} for 

zero-mean stationary noise.
The stationarity of the noise indicates that E[n(t1)n∗(t2)] = Dδ(t1 − t2) , where D 

denotes the power spectral density of the noise. By using the sifting property of Delta 
function, the expectation of the ICFWD of the zero-mean stationary noise n(t) can be 
calculated as

Owing to the well-known Gaussian integral formula [52]

the amplitude of E
[
WA1,A

n (t,u)
]
 reads [37]

for b(a1 + d1 + 2)+ 4ab1 �= 0.
The noise is a uniform distribution in the time-frequency plane as 

∣∣E
[
WA1,A

n (t,u)
]∣∣ is 

independent of the variables t, u. Then, the solution of the mean problem takes

4.4  Solutions of the inequality model

This subsection deduces the solution of the inequality model for single component LFM 
signal added with zero-mean stationary noise. And on this basis, it obtains the solution 
of the inequality model for the bi-component case.

4.4.1  Single component case

Thanks to the equality a
2b +

d1−h1
8b1

−
β
4 = 0 , there is b(a1 + d1 + 2)+ 4ab1 = b (h1+1)2

h1
 . 

See “Appendix 2” for the proof of this equation. Then, (28) can be simplified to [37]

(24)max
(t,u)∈R2

∣∣∣WA1,A
f (t,u)

∣∣∣ =
√

2π
∣∣∣bĥ1

∣∣∣+
√
2π

∣∣∣bh̃1
∣∣∣.

(25)

E
[
WA1,A

n (t,u)
]
=

∫∫ +∞

−∞

E
[
n(ε)n∗

(
t −

τ

2

)]
KA1

(
t +

τ

2
, ε
)
KA(u, τ )dεdτ

=
D

2π
√
jb1

√
jb
ej

d
2b
u2e

j
a1+d1−2

2b1
t2
∫ +∞

−∞

e
j
(
a1+d1+2

8b1
+ a

2b

)
τ2

e
j
(
d1−a1
2b1

t− u
b

)
τ
dτ .

(26)
∫ +∞

−∞

ept
2+qtdt =

√
π

−p
e
−

q2

4p (p �= 0, Re(p) ≤ 0),

(27)D

√
2

π |b(a1 + d1 + 2)+ 4ab1|

(28)Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣∣E
[
WA1,A

n (t,u)
]∣∣∣
}
= D

√
2

π |b(a1 + d1 + 2)+ 4ab1|
.
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for h1 + 1 �= 0.
Substituting (14) and (29) into (7) gives the expectation-based output SNR of ICFWD 

for the single component case

The expectation-based output SNR of WD for the single component case is reproduced 
here as [29, 30]

By substituting (30) and (31) into (10), it follows the solution of the inequality model for 
the single component case

Note that this inequality implies h1 + 1 �= 0.

4.4.2  Bi‑component case

Due to the continued equality a
2b +

d1−ĥ1
8b1

−
β̂
4 = a

2b +
d1−h̃1
8b1

−
β̃
4 = 0 , there is 

b(a1 + d1 + 2)+ 4ab1 = b

(
ĥ1+1

)2

ĥ1
= b

(
h̃1+1

)2

h̃1
 . See “Appendix  2” for the proof of this 

continued equation. Then, (28) can be reduced to

for ĥ1 + 1 �= 0, h̃1 + 1 �= 0.
Substituting (24) and (33) into (7) yields the expectation-based output SNR of ICFWD 

for the bi-component case

(29)Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣∣E
[
WA1,A

n (t,u)
]∣∣∣
}
=

D

|h1 + 1|

√
2

π

∣∣∣∣
h1

b

∣∣∣∣

(30)ESNR
A1,A
ICFWD =

π

D

∣∣b(h1 + 1)
∣∣.

(31)ESNRWD =
2π

D
.

(32)
∣∣b(h1 + 1)

∣∣
2

> 1.

(33)

Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣∣E
[
WA1,A

n (t,u)
]∣∣∣
}
=

D∣∣∣ĥ1 + 1
∣∣∣

√√√√ 2

π

∣∣∣∣∣
ĥ1

b

∣∣∣∣∣ =
D∣∣∣h̃1 + 1

∣∣∣

√√√√ 2

π

∣∣∣∣∣
h̃1

b

∣∣∣∣∣

(34)

ESNR
A1,A
ICFWD =

√
2π

∣∣∣bĥ1
∣∣∣

Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A

n (t,u)
]∣∣} +

√
2π

∣∣∣bh̃1
∣∣∣

Mean
argmax

(t,u)

∣∣∣WA1,A

f (t,u)
∣∣∣

{∣∣E
[
WA1,A

n (t,u)
]∣∣}

=

√
2π

∣∣∣bĥ1
∣∣∣

D∣∣∣ĥ1+1
∣∣∣

√
2
π

∣∣∣ ĥ1b
∣∣∣
+

√
2π

∣∣∣bh̃1
∣∣∣

D∣∣∣h̃1+1
∣∣∣

√
2
π

∣∣∣ h̃1b
∣∣∣

=
π

D

[∣∣∣b
(
ĥ1 + 1

)∣∣∣+
∣∣∣b
(
h̃1 + 1

)∣∣∣
]
.
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The expectation-based output SNR of WD for the bi-component case is reviewed as fol-
lows [29]:

By substituting (34) and (35) into (10), there is the solution of the inequality model for 
the bi-component case

Here this inequality indicates ĥ1 + 1 �= 0, h̃1 + 1 �= 0.
See Table 2 for a summary of the solutions of the inequality model and the associated 

constraints on LCT free parameters.

5  Results and discussion
In order to demonstrate the usefulness and effectiveness of ICFWD in noisy LFM signals 
processing, this section designs some simulations to compare the detection accuracy of 
ICFWD, CICFWD, ACWD, KFWD, CRWD and WD, as well as the computing speed of 
ICFWD, CICFWD, ACWD, KFWD and CRWD.

The simulated single component and bi-component LFM signals f1(t) embedded in 
additive complex white Gaussian noise n(t) are chosen as

and

respectively.
Assume that the observing interval is [−5s, 5s] , and the sampling frequency is 20 Hz 

for the single component case and 40 Hz for the bi-component case. Let the input SNR 
of the noisy signal f(t) be 10log10

∫ 5
−5 |f1(t)|

2dt

Var[n(t)]  , where the variance of the noise Var[n(t)] 
equals to the product of the power spectral density of the noise and the bandwidth of the 
noise. In the simulations, the input SNR is assumed to be −10dB for the single compo-
nent case and −8dB for the bi-component case.

Figure 1 compares the detection accuracy of ICFWD with that of CICFWD, ACWD, 
KFWD, CRWD and WD for the single component case. The ICFWD with LCT free 

(35)ESNRWD =
4π

D
.

(36)

∣∣∣b
(
ĥ1 + 1

)∣∣∣+
∣∣∣b
(
h̃1 + 1

)∣∣∣
4

> 1.

(37)f (t) = f1(t)+ n(t) = ej
(
t+0.5t2

)
+ n(t)

(38)f (t) = f1(t)+ n(t) = ej
(
0.5t+0.3t2

)
+ ej

(
0.5t+0.6t2

)
+ n(t),

Table 2 Solutions of the inequality model for single component/bi‑component LFM signal added 
with zero‑mean stationary noise

Single component case Bi‑component case

Solutions of the model |b(h1+1)|
2

> 1
∣∣∣b
(
ĥ1+1

)∣∣∣+
∣∣∣b
(
h̃1+1

)∣∣∣
4

> 1

Constraints on parameters 2βb1 + a1 �= 0, 2β̂b1 + a1 �= 0 , 2β̃b1 + a1 �= 0,
a
2b

+ d1−h1
8b1

−
β
4
= 0 a

2b
+ d1−ĥ1

8b1
−

β̂
4
= 0 , a

2b
+ d1−h̃1

8b1
−

β̃
4
= 0
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Fig. 1 The detection accuracy of ICFWD, CICFWD, ACWD, KFWD, CRWD and WD for the single component 
case. a The ICFWD with A1 = (0.2111, 0.9;−0.9, 0.9) and A = (0.5, 2; 0, 2) . b The counter picture of 
ICFWD with A1 = (0.2111, 0.9;−0.9, 0.9) and A = (0.5, 2; 0, 2) . c The CICFWD with A1 = (−1, 2;−0.5, 0) , 
A2 = (2,−1; 2,−0.5) and A = (1, 2; 0, 1) . d The contour picture of CICFWD with A1 = (−1, 2;−0.5, 0) , 
A2 = (2,−1; 2,−0.5) and A = (1, 2; 0, 1) . e The ACWD with A1 = (0.5, 0.5;−0.5, 1.5) . f The contour picture 
of ACWD with A1 = (0.5, 0.5;−0.5, 1.5) . g The KFWD with A = (0, 0.9;−1.1111, 1) . h The contour picture of 
KFWD with A = (0, 0.9;−1.1111, 1) . i The CRWD with A1 = (1.4142,−1;−3, 2.8284) . j The contour picture of 
CRWD with A1 = (1.4142,−1;−3, 2.8284) . k The WD. l The counter picture of WD
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parameters satisfying |b(h1+1)|
2 = 1.9 > 1 , 2βb1 + a1 = 1.1111 �= 0 , a2b +

d1−h1
8b1

−
β
4 = 0 

and the relevant contour picture are plotted in Fig. 1a, b, respectively. The CICFWD 
with LCT free parameters selected in [29] and the relevant contour picture are plot-
ted in Fig. 1c, d, respectively. The ACWD with LCT free parameters selected in [2] 
and the relevant contour picture are plotted in Fig. 1e, f, respectively. The KFWD with 
LCT free parameters selected in [23] and the relevant contour picture are plotted in 
Fig. 1g, h, respectively. The CRWD with LCT free parameters selected in [26] and the 
relevant contour picture are plotted in Fig.  1i, j, respectively. The WD and the rel-
evant contour picture are plotted in Fig. 1k, l, respectively.

Figure 2 compares the detection accuracy of ICFWD with that of CICFWD, ACWD, 
KFWD and WD for the bi-component case. The ICFWD with LCT free parameters 

satisfying 

∣∣∣b
(
ĥ1+1

)∣∣∣+
∣∣∣b
(
h̃1+1

)∣∣∣
4 = 1.3125 > 1 , 2β̂b1 + a1 = 2 �= 0 , 2β̃b1 + a1 = 0.5 �= 0 , 

a
2b +

d1−ĥ1
8b1

−
β̂
4 = 0 , a2b +

d1−h̃1
8b1

−
β̃
4 = 0 and the relevant contour picture are plotted 

in Fig.  2a, b, respectively. The CICFWD with LCT free parameters selected in [29] 
and the relevant contour picture are plotted in Fig.  2c, d, respectively. The ACWD 
with LCT free parameters selected in [2] and the relevant contour picture are plotted 
in Fig. 2e, f, respectively. The KFWD with LCT free parameters selected in [23] and 
the relevant contour picture are plotted in Fig. 2g, h, respectively. The WD and the 
relevant contour picture are plotted in Fig. 2i, j, respectively. It should be noted here 
that the CRWD fails to deal with general bi-component LFM signals unless the two 
components have opposite frequency rates [26].

Fig. 1 continued
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It can be observed from the sharpness of energy straight lines found in Figs. 1 and 2 
that the ICFWD maintains the same level of detection accuracy as the CICFWD. More-
over, it achieves better detection accuracy than the ACWD, the KFWD, the CRWD, and 
the conventional WD.

It is well-known that the Radon transform (RT) [53] can accumulate energy straight 
lines, giving rise to the output SNR of time-frequency distributions which seems more 

Fig. 2 The detection accuracy of ICFWD, CICFWD, ACWD, KFWD and WD for the bi‑component 
case. a The ICFWD with A1 = (3.5,−2.5; 1.2,−0.5714) and A = (0.05, 1.1667; 0, 20) . b The counter 
picture of ICFWD with A1 = (3.5,−2.5; 1.2,−0.5714) and A = (0.05, 1.1667; 0, 20) . c The CICFWD with 
A1 = (0.4, 1;−0.2, 2) , A2 = (3.2,−2;−1.1, 1) and A = (−0.5, 1.6; 0,−2) . d The contour picture of 
CICFWD with A1 = (0.4, 1;−0.2, 2) , A2 = (3.2,−2;−1.1, 1) and A = (−0.5, 1.6; 0,−2) . e The ACWD with 
A1 = (2.3333,−1.3889; 1,−0.1667) . f The contour picture of ACWD with A1 = (2.3333,−1.3889; 1,−0.1667) . 
g The KFWD with A = (0, 0.9;−1.1111, 1) . h The contour picture of KFWD with A = (0, 0.9;−1.1111, 1) . i The 
WD. j The counter picture of WD
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intuitive than the sharpness of energy straight lines. Figures 3 and 4 compare the output 
SNR of ICFWD with that of CICFWD, ACWD, KFWD, CRWD and WD for the sin-
gle component case and the bi-component case, respectively. For the single component 
case, Fig. 3a plots the k-amplitude distribution of RT-based ICFWD [37] with LCT free 
parameters satisfying |b(h1+1)|

2 = 1.9 > 1 , 2βb1 + a1 = 1.1111 �= 0 , a2b +
d1−h1
8b1

−
β
4 = 0 , 

Fig.  3b plots the k-amplitude distribution of RT-based CICFWD [29, 31] with LCT 
free parameters selected in [29], Fig. 3c plots the k-amplitude distribution of RT-based 
ACWD with LCT free parameters selected in [2], Fig. 3d plots the k-amplitude distribu-
tion of RT-based KFWD with LCT free parameters selected in [23], Fig.  3e plots the 
k-amplitude distribution of RT-based CRWD with LCT free parameters selected in [26], 
and Fig. 3f plots the k-amplitude distribution of RT-based WD [29, 31]. As for the bi-
component case, Fig.  4a plots the k-amplitude distribution of RT-based ICFWD with 

LCT free parameters satisfying 

∣∣∣b
(
ĥ1+1

)∣∣∣+
∣∣∣b
(
h̃1+1

)∣∣∣
4 = 1.3125 > 1 , 2β̂b1 + a1 = 2 �= 0 , 

2β̃b1 + a1 = 0.5 �= 0 , a
2b +

d1−ĥ1
8b1

−
β̂
4 = 0 , a

2b +
d1−h̃1
8b1

−
β̃
4 = 0 , Fig.  4b plots the 

k-amplitude distribution of RT-based CICFWD with LCT free parameters selected 
in [29], Fig.  4c plots the k-amplitude distribution of RT-based ACWD with LCT free 
parameters selected in [2], Fig. 4d plots the k-amplitude distribution of RT-based KFWD 
with LCT free parameters selected in [23], and Fig. 4e plots the k-amplitude distribution 
of RT-based WD.

Fig. 2 continued
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It is obvious from the amplitude of noises found in Figs. 3 and 4 that the ICFWD main-
tains the same level of output SNR as the CICFWD. Moreover, it achieves higher output 
SNR than the ACWD, the KFWD, the CRWD, and the conventional WD.

Tables  3 and 4 record the computing time of ICFWD, CICFWD, ACWD, KFWD 
and CRWD in four different sampling frequencies 20 Hz, 40 Hz, 80 Hz and 120 Hz 
by using MATLAB language (version R2021a) and Desktop equipped with Intel(R) 
Core(TM)i5-9400F CPU @ 2.90 GHz for the single component case and the bi-com-
ponent case, respectively. The computing time is statistically obtained by averaging 

Fig. 3 The output SNR of ICFWD, CICFWD, ACWD, KFWD, CRWD and WD for the single component case. 
a The k‑amplitude distribution of RT‑based ICFWD with A1 = (0.2111, 0.9;−0.9, 0.9) and A = (0.5, 2; 0, 2) . 
b The k‑amplitude distribution of RT‑based CICFWD with A1 = (−1, 2;−0.5, 0) , A2 = (2,−1; 2,−0.5) and 
A = (1, 2; 0, 1) . c The k‑amplitude distribution of RT‑based ACWD with A1 = (0.5, 0.5;−0.5, 1.5) . d The 
k‑amplitude distribution of RT‑based KFWD with A = (0, 0.9;−1.1111, 1) . e The k‑amplitude distribution of 
RT‑based CRWD with A1 = (1.4142,−1;−3, 2.8284) . f The k‑amplitude distribution of RT‑based WD
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Fig. 4 The output SNR of ICFWD, CICFWD, ACWD, KFWD and WD for the bi‑component case. 
a The k‑amplitude distribution of RT‑based ICFWD with A1 = (3.5,−2.5; 1.2,−0.5714) and 
A = (0.05, 1.1667; 0, 20) . b The k‑amplitude distribution of RT‑based CICFWD with A1 = (0.4, 1;−0.2, 2) , 
A2 = (3.2,−2;−1.1, 1) and A = (−0.5, 1.6; 0,−2) . c The k‑amplitude distribution of RT‑based ACWD 
with A1 = (2.3333,−1.3889; 1,−0.1667) . d The k‑amplitude distribution of RT‑based KFWD with 
A = (0, 0.9;−1.1111, 1) . e The k‑amplitude distribution of RT‑based WD

Table 3 Computing time of ICFWD, CICFWD, ACWD, KFWD and CRWD in sampling frequencies 
20 Hz, 40 Hz, 80 Hz and 120 Hz for the single component case

Sampling frequency 
(Hz)

Computing time (s)

ICFWD CICFWD ACWD KFWD CRWD

20 0.0190 0.0274 0.0190 0.0104 0.0285

40 0.0557 0.0775 0.0563 0.0331 0.0792

80 0.1930 0.2595 0.1967 0.1272 0.2666

120 0.4559 0.5919 0.4674 0.3335 0.6035
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over 1000 realizations. Figures 5 and 6 plot a comparison of the computing speed of 
ICFWD, CICFWD, ACWD, KFWD and CRWD for the single component case and 
the bi-component case, respectively.

Table 4 Computing time of ICFWD, CICFWD, ACWD and KFWD in sampling frequencies 20 Hz, 
40 Hz, 80 Hz and 120 Hz for the bi‑component case

Sampling frequency (Hz) Computing time (s)

ICFWD CICFWD ACWD KFWD

20 0.0190 0.0275 0.0196 0.0102

40 0.0560 0.0788 0.0576 0.0332

80 0.1958 0.2632 0.2031 0.1274

120 0.4718 0.5978 0.4679 0.3330

Fig. 5 The computing speed of ICFWD, CICFWD, ACWD, KFWD and CRWD for the single component case

Fig. 6 The computing speed of ICFWD, CICFWD, ACWD and KFWD for the bi‑component case
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As it is seen, the ICFWD maintains the same level of computation efficiency as the 
ACWD. Moreover, it exhibits higher computation efficiency than the CICFWD and 
CRWD while lower computation efficiency than the KFWD.

6  Conclusion
Since the ICFWD has a significant benefit in the tradeoff between detection accuracy 
and computational complexity among all of the linear canonical domain WDs, the appli-
cation of ICFWD in weak multi-component LFM signals detection problem has been 
investigated. By modeling and solving the expectation-based output SNR inequality 
between the ICFWD and WD, the selecting methods of the LCT free parameters of the 
ICFWD for both the single component and bi-component cases are derived. A larger 
number of numerical experiments demonstrate the correctness of theoretical results. It 
turns out that the detection accuracy of ICFWD is similar to that of CICFWD, and it 
is better than the detection accuracy of ACWD, KFWD, CRWD and the conventional 
WD. In addition, the ICFWD has computation efficiency comparable to the ACWD, and 
it is superior to the CICFWD and CRWD in high computation efficiency while inferior 
to the KFWD.

Appendix 1: Derivation of the cross terms WA1,A

ĝ,g̃
(t,u) and WA1,A

g̃,̂g
(t,u)

The cross term WA1,A
ĝ ,g̃

(t,u) is revisited as follows:

where
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j
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)
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)
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ĥ1
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for 1
h̃1

= 2β̃b1 + a1 �= 0 and ̂̃l � a
2b +

d1−h̃1
8b1

−
β̂
4 �= 0.

Appendix 2: Derivation of the equations b(a1 + d1 + 2)+ 4ab1 = b (h1+1)2

h1
 

and b(a1 + d1 + 2)+ 4ab1 = b

(
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ĥ1
= b

(
h̃1+1

)2
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From the equality
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Abbreviations
LCT: Linear canonical transform; FT: Fourier transform; FRFT: Fractional Fourier transform; WD: Wigner distribution; ICF: 
Instantaneous cross‑correlation function; CICF: Closed‑form instantaneous cross‑correlation function; ACWD: Affine 
characteristic Wigner distribution; KFWD: Kernel function Wigner distribution; CRWD: Convolution representation Wigner 
distribution; ICFWD: ICF type of Wigner distribution; CICFWD: CICF type of Wigner distribution; SNR: Signal‑to‑noise ratio; 
LFM: Linear frequency‑modulated; RT: Radon transform.
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