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1  Introduction
In recent years, the status of water transportation has been continuously improved in 
the field of transportation. As the main tool of water transportation, ships have received 
extensive attention from all walks of life for their safe, green and efficient operations. 
The development of emerging technologies such as artificial intelligence, the Internet, 
and big data has set off a research boom in smart ships [1]. As an important compo-
nent of intelligent ship environment perception, surface object detection technology is 
the prerequisite and foundation for unmanned and intelligent ships, and has gradually 
become a new hot spot in the current intelligent ship research field. In ocean navigation, 
the automatic detection of surface objects is of great significance for the distribution of 
surface vessels, effective management of ship parking, identification of information on 
passing vessels, and realization of automatic collision avoidance.

With the continuous development of deep learning technology, object detection 
algorithms based on convolutional neural networks (CNN) have been proposed one 
after another, CNN is a kind of deep feedforward neural network, which has many 
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successful applications in image classification, object detection, object segmentation 
and many image and video domains.Water surface object detection technology is 
starting to adopt this method with high accuracy, fast speed and strong generaliza-
tion ability. Surface object detection requires high real-time performance and recog-
nition accuracy, and the monitored object needs to be detected at a long distance. 
Although the actual length of the long distance water surface object can reach tens 
of meters or even hundreds of meters, it only occupies dozens or even fewer pixels 
on the imaging plane. Among the current various object detection algorithms, the 
Single-shot Multibox Detector (SSD) algorithm has a good performance in detection 
speed and detection accuracy. However, its detection accuracy for small objects is 
not as satisfactory as expected, when the SSD algorithm is applied to the detection of 
water surface objects, it is difficult to detect small objects in the long distance water 
surface. Water surface object detection technology is starting to adopt this method 
with high accuracy, fast speed and strong generalization ability. Surface object detec-
tion requires high real-time performance and recognition accuracy, and the moni-
tored object needs to be detected at a long distance. Although the actual length of 
the long distance water surface object can reach tens of meters or even hundreds of 
meters, it only occupies dozens or even fewer pixels on the imaging plane. Among the 
current various object detection algorithms, the Single-shot Multibox Detector(SSD) 
algorithm has a good performance in detection speed and detection accuracy. How-
ever, its detection accuracy for small objects is not as satisfactory as expected, when 
the SSD algorithm is applied to the detection of water surface objects, it is difficult to 
detect small objects in the long distance water surface.

Currently, object detection is mostly based on traditional vision. Traditional vision 
detection system have many deficiencies, such as limited vision, existence of non-
detection zones, and the failure to acquire global information. A panoramic visual 
image is a composite image with high resolution and a wide viewing angle obtained 
by processing a few overlapped images. It has advantages such as a fast generation 
rate, high resolution, high fidelity of scene restoration, and low hardware require-
ments [2]. The unique advantages of the panoramic vision system can solve the view-
ing angle limitations of the traditional vision system, and more effectively meet the 
needs of large field of view, large range, and long distance. It is widely used in the field 
of intelligent navigation of ships [3].

In this work, a panoramic camera that generates a panoramic image will be used as 
a detection tool, use an improved SSD algorithm to detect water surface objects.

The main contributions of the work are as follows:

(1)	 Preprocess the panoramic image to obtain a rectangular panoramic image.
(2)	 Design a new SSD algorithm backbone network to obtain rich small object seman-

tic information.
(3)	 Adopt Feature Pyramid Network (FPN) structure and add deconvolution operation 

to solve the problem of the lack of semantic information in the shallow feature map 
and the lack of detailed information in the deep feature map of the SSD model.

(4)	 Construct a water surface object dataset to verify the effectiveness of the method.
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The remainder of this paper is organized as follows. Section 2 describes previous work 
in object detection. Section 3 introduced the improvement method we proposed. Sec-
tion 4 describes dataset, training environment and evaluation indicators of the system. 
Section 5 reports and discusses the experimental results. Section 6 presents the conclu-
sions of this paper.

2 � Related work
Surface object detection methods are mainly divided into traditional detection methods 
and deep learning detection methods. Traditional object detection methods are based 
on background modeling, image segmentation, feature extraction and learning, color 
features, and color space transformation, or saliency detection [4]. For instance, Wijn-
hoven et al. [5] used the histogram of oriented gradients (HOG) to extract ship object 
features, and achieve object recognition through online learning and design classifiers. 
Mirghasemi et al. [6]. used the particle swarm optimization algorithm to transform the 
color space of the object to improve the robustness of the object recognition algorithm. 
Albrecht et al. [7] achieved saliency detection by constructing regional complexity fea-
tures, regional differences features, surrounding differences features, and water and sky 
classification methods to improve the detection effect of the saliency analysis algorithm. 
These methods conduct object classification and detection for specific tasks; hence they 
are characterized by poor generalization ability and long detection times.

Object detection methods based on deep learning mainly include one-stage and 
two-stage methods. The one-stage object detection method uses the idea of regression 
analysis, omits the stage of candidate region generation, and directly obtains object clas-
sification and location information. The one-stage methods include the You Only Look 
Once (YOLO) [8–11] series and single-shot multibox detector (SSD) [12] series, which 
have fast but less accurate. The two-stage object detection method mainly generates 
candidate regions through selective search or region proposal network (RPN), and then 
perform classification and regression on the candidate regions to obtain the detection 
results. The two-stage methods include Fast-RCNN, Faster-RCNN, R-FCN, and Mask-
RCNN [13–16], which have high accuracy but slow speed. To solve the ship identifica-
tion problem in a video image, Cao et al. [17] proposed to extract object features based 
on image segmentation and convolutional neural networks and realized automatic iden-
tification of ships. Qi et al. [18] improved Faster R-CNN, and implemented ship object 
detection with image downscaling and scene narrowing methods, which shortened the 
detection time and improved the detection precision of Faster R-CNN. Lin et  al. [19] 
proposed a new network architecture based on the faster R-CNN is proposed to fur-
ther improve the detection performance by using squeeze and excitation mechanism. 
However, using squeeze and excitation mechanism will cause a decrease in the real-time 
performance of the network. According to the characteristics of ship target in the SAR 
images, Xiao et  al. [20] make several improvements such as enlarging the input, pro-
posal optimization, database target categorization, and weight balance on the basis of 
the standard Faster R-CNN. Zhang et  al. [21] used two deep learning algorithms, the 
Mask R-CNN algorithm and the Faster R-CNN algorithm to build ship target feature 
extraction and recognition models based on deep convolutional neural networks.The 
above is based on the two-stage detection method, the detection accuracy can be high 
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and satisfactory, but the real-time performance is low. Li et  al. [22] proposed a ship 
object detection algorithm based on the improved YOLOV3-Tiny, intensified and recon-
structed the shallow information based on characteristics of ship objects, and intro-
duced a residual network that greatly improved the accuracy of ship object detection 
on the sea surface. Xu et al. [23] proposed a YOLO-based multiscale object detection 
algorithm and designed an adaptive feature fusion module and new loss function. This 
algorithm has obvious advantages in terms of multiscale detection, for it improves the 
object detection precision without increasing the detection time. Li et al. [24] proposed 
a novel target detection method by fusing DenseNet in YOLOV3 to improve the stabil-
ity of detection to decrease the feature loss, while the target feature is transmitted in 
the layers of a deep neural network. Jie et al. [25] presented ship detection and tracking 
of ships using the improved YOLOv3 detection algorithm and Deep Simple Online and 
Real-time Tracking (Deep SORT) tracking algorithm.

Compared with Faster R-CNN and YOLO, the SSD algorithm has integrated grid 
thinking from the YOLO algorithm and an anchor mechanism from Faster R-CNN. As 
a result, the SSD algorithm can quickly detect objects without decreasing the detection 
accuracy. Li et al. [26] applied the SSD algorithm to a railway scene with UAV surveil-
lance, designed a three-step, multi-block SSD mechanism, and conducted sample detec-
tion with the shift learning method, which overall accuracy increased by 9.2% over 
traditional SSD. Yin et al. [27] formulated an object detection algorithm classifying and 
extracting the multiscale feature graph, dividing feature graphs with different scales in 
the SSD algorithm into low- and high-level feature graphs. The low-level feature graph 
extracts features of a shallow feature enhancement (SFE) module, and the high-level fea-
ture graph adopts two-stage deconvolution, which increases mAP by 2.4% compared to 
the SSD algorithm. Zhang et al. [28] proposed a lightweight feature optimizing network 

Table 1  Comparison of various water surface object detection algorithms

Object detection algorithm Algorithm characteristics Advantage Limitation

Improve Faster-RCNN[18–20] Image downscaling and scene nar-
rowing [18]
Squeeze and excitation echa-
nism[19]
Enlarging the inputproposal optimi-
zation, database target categoriza-
tion, and weight balance [20]

High accuracy Low real-time

Mask-RCNN [20] Instance segmentation [21] High accuracy Low real-time

Improve YOLO [22–25] Reconstructed the shallow informa-
tion and introduced a residual 
network [22]
Designed an adaptive feature fusion 
module and new loss function [23]
Fused DenseNet in YOLOV3 [24]
Improved YOLOv3 and Real-time 
tracking [25]

High real-time Low accuracy

Improve SSD [28] Lightweight feature optimizing net-
work and feature fusion module [28]

High accuracy 
and real-time

No object classification

our FPN structure, deconvolution opera-
tion and panoramic vision

Wider range,
High accuracy

Real-time declined slightly
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(LFO-Net) based on popular single shot detector (SSD) model for single polarization 
SAR image ship detection.For ship detection, this method designed a simple lightweight 
network, proposing a bidirectional feature fusion module including semantic aggrega-
tion and feature reuse blocks, and used an attention mechanism to optimize features.

Compared with the above, the water surface target dataset constructed in this work 
contains five different targets and can be used for object classification. In addtion,this 
work uses a panoramic camera as a tool for object detection with a wider range com-
pared to ordinary visual sensors. A comparison is shown in Table 1 below.

Fig.1  Coordinate conversion diagram
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Fig.2  SSD algorithm structure diagram
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3 � Method
3.1 � Panorama image preprocessing

The generation of a panoramic image relies on the processing of multiple photographs 
and mapping them on the geometric surface, forming an image by analyzing the picture 
seams and a seamless mosaic with image mosaic technology. Based on different pro-
jection modes, panoramic images can be classified as plane, cylindrical, spherical, and 
cubic. According to practical task requirements, this study adopts spherical projection.

A spherical panoramic image has a 360-degree horizontal view angle and 
180-degree vertical view angle, and is shot by a fisheye lens. When identifying an 
object, three-dimensional spherical coordinates must be converted to two-dimen-
sional plane coordinates. One common method is longitudinal and latitudinal map-
ping [29]. It is expanded based on the projection of spherical longitude and latitude 
on the surface of a circumscribed cylinder. The closer it gets to the two poles, the 
more apparent is the distortion. Set any point on the sphere as M(φ, θ) and convert it 
to plane coordinates N(x, y) through formula (1).

(1)
x = W ∗ (φ/2π)

y = L ∗ (θ + π/2)/π

ResNet-50 backbone network Extra feature layer

Conv5_X
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300*300

Fig. 3  The backbone structure diagram of the improved SSD network

Table 2  Backbone network parameters after modification

Name of convolutional 
layer

Input size Kernel Stride Output size

Conv1_x 300*300 7*7, 64 2 150*150*64

Conv2_x 150*150*64 3*3 max pool 2 75*75*256




1 ∗ 1 64

3 ∗ 3 64

1 ∗ 1 256





*3

1

Conv3_x 75*75*256




1 ∗ 1 128

3 ∗ 3 128

1 ∗ 1 512





*4

2 38*38*512

Conv4_x 38*38*512




1 ∗ 1 256

3 ∗ 3 256

1 ∗ 1 1024





*6

1 38*38*1024
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 where φ and θ are the longitude and latitude, respectively, and W and L are the width 
and length, respectively, of the plane image. A rectangular plane graph with a length–
width ratio of 2:1 is obtained, shown as Fig. 1.

3.2 � Improve SSD object detection algorithm

The SSD algorithm is based on a feedforward neural network. The network structure 
shown as Fig. 2, takes a VGG16 network as the backbone, changing the last two fully 
connected layers to convolutional layers and adding four convolutional layers. There 
are six feature extraction layers with different scales. The SSD object detection algo-
rithm has the following steps:

(1)	 Add convolutional layers with decreasing scales to the basic network, generate a 
multi-scale feature graph, and extract object features;

(2)	 Set prior boxes with different scales and length–width ratios for every pixel at the 
feature layer;

(3)	 Connect feature graphs of different sizes to the ultimate detection layer to position 
and classify objects;

(4)	 Calculate and output the result with the non-maximum suppression algorithm.

The SSD algorithm has advantages in terms of detection speed and precision, but 
suffers from poor detection of small objects, mainly because of insufficient extrac-
tion of deep features and limited information about small objects. The SSD algorithm 
detects objects of different sizes by utilizing feature graphs with different scales. Shal-
low and deep feature graphs are used to detect small and large objects, respectively. 
A shallow feature graph is characterized by a large mapping size and abundant details 
and features of objects, but it has poor semantic information. A deep feature graph 
has a small mapping size and abundant semantic and abstract information, but insuf-
ficient details and features of objects. It generally detects small objects through the 
conv4_3 layer at the lowest layer, but the precision is poor in this case. Therefore, the 
detection effect for small remote objects is unsatisfactory.

Fig. 4  Deconvolution operation
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3.2.1 � Backbone network improvement

To obtain abundant semantic information of small objects, ResNet-50 [30] with residual 
learning units is used instead of VGG16 as the backbone network. ResNet-50 can solve 
the “vanishing gradient” problem caused by a deep network in the neural network. It has 
a deeper network than VGG16, can better extract feature graphs with more abundant 
semantic information, and has fewer parameters and a more prominent effect.

The improved backbone network is shown as Fig. 3. We set the conv4_x layer in the 
ResNet-50 network structure as the first feature extraction layer of SSD, remove the 
conv5_x and fully connected layers, and add five convolutional layers. Parameters for the 
backbone network after modification are shown in Table 2.
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Fig.5  Feature pyramid network structure

Table 3  Deconvolutional operation parameters

Feature layer Input size Kernel Stride Padding Output size

Conv9_x 1*1*256 3 2 0 3*3*256

Conv8_x 3*3*256 3 2 1 5*5*256

Conv7_x 5*5*256 2 2 0 10*10*256

Conv6_x 10*10*512 3 2 1 19*19*512

Conv5_x 19*19*512 2 2 0 38*38*1024

cruise ship fishing boat freight boat sailing boat warship

Fig. 6  Sample image of the dataset
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3.2.2 � Feature pyramid structure

A top-down feature pyramid network (FPN) [31] structure can be adopted to solve the 
problem of insufficient semantic information in the shallow feature graph of the SSD 
model and insufficient detailed information in the deep feature graph. It integrates infor-
mation of feature graphs in different sizes to offer sufficient semantic information of the 
shallow feature graph and detailed information of the deep feature graph and improve 
the overall detection precision.

Deconvolution can be adopted during integration of feature graphs in different sizes. 
This is the reverse of convolution. Deconvolution is similar to upsampling methods such 
as bilinear, nearest neighbor, and area interpolation, and can obtain a feature graph of 
high dimension. We enlarge the size of the input image by zero fill between neighboring 
elements, and then carry out a convolution operation. The deconvolution equation is

where S is the stride, K is the size of the convolution kernel, P is the padding size, I is the 
size of the input feature graph, and D is the size of the output feature graph. As shown in 
Fig. 4, a 5 × 5 feature graph is obtained from deconvolution of a 3 × 3 feature graph.

Hence the adoption of deconvolution for feature graphs at the intermediate and upper 
layers of the SSD feature pyramid can obtain feature graphs with higher dimensions. 
This is integrated with corresponding original feature graphs with consistent dimen-
sions to integrate the shallow feature graph in the feature pyramid with deep semantic 
information. Figure 5 shows the network structure of the feature pyramid adopting the 
deconvolution operation. We carry out deconvolution for Conv9_x, Conv8_x, Conv7_x, 
Conv6_x, and Conv5_x, and integrate these with the next neighboring layer. The param-
eters are shown in Table  3. Six feature graphs of different sizes are generated after 
integration.

(2)D = S ∗ (I − 1)+ K − 2P
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Fig. 7  Data distribution
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3.3 � Default boxes adjustment

The SSD algorithm locates objects of different sizes by setting a series of a default boxes 
of different scales on different layer feature maps. Suppose we want to use m feature 
maps for prediction. The scale of the default boxes for each feature map is computed as:

where Smin is 0.2 and Smax is 0.9, meaning the lowest layer has a scale of 0.2 and the high-
est layer has a scale of 0.9. Through the analysis of data samples, in order to meet the 
requirements of small object size, we will adjust the values of Smin and Smax to 0.1 and 
0.8.

4 � Experimental analysis
4.1 � Experimental data set and platform

To realize the quick detection of a water surface object, a dataset of network learning 
must be built. We built five common ship image datasets through connection, shoot-
ing, crawler search, and other methods, as shown in Fig. 6. We obtained 1757 images 
by expanding them through data enhancements such as flip and color adjustment. The 
distribution of target numbers for each type is shown in Fig. 7. All images were manu-
ally annotated with the LabelImg tool, and they adopted the VOC format. The hardware 
environment was an AMD Ryzen 7 4800H CPU and Nvidia GeForce RTX 2060 graphics 
card, and the software environment was a 64-bit Windows 10 operating system and Ten-
sorFlow deep learning framework.

(3)Sk = Smin +
Smax − Smin

m− 1
(k − 1), k ∈ (1,m)

Fig. 8  Loss change

Table 4  Test Results

Classification Precision(%) Recall(%) AP(%)

Cruise ship 83.10 80.73 86.96

Fishing boat 85.32 91.17 92.50

Freight boat 95.08 93.93 96.59

Sailing boat 90.50 75.13 82.01

Warship 95.34 91.90 96.55
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4.2 � Evaluation and training

Advantages and disadvantages of the performance of object detection models can be 
evaluated from the aspects of detection precision and speed. Detection speed has units 
of frames per second (FPS) as the evaluation index, i.e., the number of images the model 
can detect per second.

For single-category detection, we take precision, recall, and average precision as evalu-
ation indexes for detection precision. These are defined as

where TP, FP, and FN are the numbers of accurately detected, wrongly detected, and 
undetected objects, respectively. The area of the graph encircled by the precision rate 
and recall rate is considered the average detection precision (AP) of this kind of object.

In the case of multiple categories of detection, detection precision generally takes the 
mean average precision,

as an evaluation index, where N is the number of object categories in the dataset.
The entire model basically adopts training strategies of the original SSD, including 

data enhancement, dimension, and scale setting of the prior frame, loss function, and 
non-maximum suppression. The dataset is divided into training and testing sets in an 8:2 
ratio, and 10% of the training set data is taken as a certification set. The training speed 
can be accelerated by using the trained ResNet50 pre-training weight and freezing the 
universal part of the backbone network based on transfer learning. We input the reso-
lution ratio image of 300 × 300, and set the batch size as 16. The initial learning rate of 
training is 0.0005. We adopt the early stopping function to prevent the training from 
overfitting, and end the training when the loss value does not decrease after 500 times. 
The changing curve of the loss function during the training process is shown as Fig. 8. 

(4)P =

TP

TP + FP

(5)R =

TP

TP + FN

(6)mAP =

1

N

∑

AP

Table 5  Results of different detection algorithms

Bold indicates the largest value in the column and the asterisk stands for multiplication

method Backbone input Cruise 
ship (%)

Fishing 
boat (%)

Freight 
boat (%)

Sailing 
boat (%)

Warship 
(%)

mAP (%) FPS

Faster-
RCNN(1)

ResNet-50 800*
800

94.82 90.30 91.58 80.49 88.18 89.07 8

SSD(2) VGG-16 300*
300

86.03 87.45 91.50 80.83 86.43 86.45 54

SSD(3) ResNet-50 300*
300

86.80 90.97 92.35 81.42 88.52 88.01 60

YOLOv3(4) Darknet53 416*
416

90.73 88.69 90.98 82.90 91.50 88.96 45

Ours(5) ResNet-50 300*
300

86.96 92.50 96.59 82.05 96.55 90.92 30
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There are 2,162 iterations in the entire training, each iteration took 62  s, and the loss 
value remains stable at 1.26.

5 � Result analysis and discussion
To verify the performance of the proposed SSD algorithm, an experiment was conducted 
on the constructed water surface object dataset. The experimental results are shown as 
Table 4.

It can be seen from the results that the proposed algorithm showed good performance 
in detection of all kinds of objects. The average detection precision was over 80%, and it 

Fig. 9  Detection comparison between algorithms
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surpassed 90% for fishing boat, cargo ship, and warship, which demonstrates the effec-
tiveness of this algorithm. The low accuracy of sailboats is mainly due to the small num-
ber of samples in the data set and the relatively small size of sailboats.

To further verify the performance of the algorithm, an experimental comparison was 
carried out with other object detection algorithms such as SSD, Faster-RCNN andY-
OLOv3, with results as shown in Table 5.

It can be seen that the network structure is complicated, with the added FPN net-
work and deconvolution operation, and the real-time performance of the algorithm was 
less than that of algorithms 2, 3 and 4, but the mAP increased by 3.8%, 2.3% and 1.6%, 
respectively. Compared with algorithm 1, the mAP increased by 1.2% and 1.6%, and the 
detection real-time performance of the proposed algorithm was clearly superior.

To show the advantages of the algorithm in this study, a picture with multiple objects 
for detection was selected. The detection result is shown in Fig. 9. It can be seen from 
Fig. 9 that algorithm 2 and 3 had missed detection for the picture on the left. All five 
algorithms had various degrees of missed detection for the middle picture, with the algo-
rithm of this study and algorithm 4 having the lowest number of missed detection, and 
algorithm  1 also had erroneous detection. For the picture on the right, only the algo-
rithm of this study could detect all ships. Through the experiments above, the improved 
SSD algorithm proposed in this study is seen to be superior to the other algorithms in 
terms of detection precision, especially for remote object detection.

To reflect the advantages of panoramic visual detection, we used the improved algo-
rithm in this work for panoramic vision detection. The detection results are shown in 
Fig. 10. It can be seen from Fig. 10 that compared to ordinary visual pictures, panoramic 
visual pictures have a wider field of view. The target on the left side of the picture is a 
cruise ship, and the right side is three freight boats.

6 � Conclusion
We carried out detection of five common ships on the sea surface based on the improved 
SSD algorithm and panoramic vision. More abundant object environmental information 
was obtained through the panoramic view. The reconstruction of the backbone network 

Fig.10  Detection result of panoramic visual picture
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with the advantages of Resnet50 improved the network depth, reduced the calculated 
number of parameters, and increased the object detection speed. We integrated feature 
graphs of different sizes and took full advantage of the semantic information of shallow 
feature graphs by integrating a feature pyramid network with deconvolution to improve 
the detection precision of remote objects. Experimental results revealed that the mean 
Average Precision (mAP) of the improved algorithm are increased by 4.03%, compared 
with the existing SSD detecting Algorithm, effectively reduce erroneous detection and 
missed detection of remote objects, and realize real-time detection. In addition, pano-
ramic visual detection has a broader field of vision than ordinary visual detection, which 
can conduct global detection. We will next study methods to simplify the network struc-
ture so as to improve the detection speed, and expand the dataset to realize the detec-
tion of more objects.
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