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1 Introduction
High-dimensional and irregularly structured data are generated from emerging appli-
cations such as neural, energy, transportation, social and sensor networks. Graph sig-
nal processing (GSP) techniques have been developed to efficiently deal with such data 
samples on the network nodes by regarding them as graph signals on the vertices of the 
graph and by describing similarity between data samples on two nodes by the weight 
of the edge linking the nodes [1, 2]. Among the GSP techniques, sampling a subset of 
vertices or nodes of the graph is of utmost importance to process such high-dimensional 
network data.

It should be noticed that the problem of finding an optimal set of nodes of networks 
in noisy situations is combinatorial, requiring a prohibitive cost of computation [3, 4]. 
Heuristic approaches such as convex relaxation [3] and cross-entropy optimization [4] 
were presented to achieve the reduced complexity which is still unfeasible especially 
for large-scale networks. To ensure good performance with feasible complexity, greedy 
approach has been adopted for many practical applications and various greedy sampling 
algorithms have been presented in [5–13]: Greedy selection methods were developed 
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such that the worst case of the reconstruction error is iteratively minimized [5–7] and 
the uncertainty principle for graph signals was derived and sampling strategies based 
on the uncertainty principle were suggested in [8]. Algorithms without eigendecompo-
sition were presented to show fast and comparable performance [9, 10]. Greedy sam-
plers were proposed to focus on reconstruction of the second-order statistics of graph 
signals from sampled graph signals since the second-order statistics (i.e., graph power 
spectrum) provides critical information in inference applications such as inpaining and 
prediction [11]. To evaluate the reconstruction performance of sampling methods, uni-
versal bounds were presented and greedy approaches minimizing the reconstruction 
error were shown to achieve a near-optimality by the concept of approximate supermod-
ularity [12]. Recently, a QR factorization-based method that greedily selects one node at 
each iteration so as to directly minimize the reconstruction error was developed with a 
competitive complexity and reconstruction performance [13].

The sampling set can be also constructed by the greedy solutions to the sensor selec-
tion problem in which a subset of nodes in sensor networks is selected in a greedy man-
ner such that the reconstruction error for parameter estimation or a well-defined proxy 
related to the reconstruction error is optimized [14, 15]: The log-determinant of the 
inverse estimation error covariance matrix is maximized to find the sampling set with 
a guaranteed near-optimality [14] and the frame potential as a proxy for the reconstruc-
tion error was introduced as a metric and a greedy removal algorithm was proposed to 
achieve near-optimality [15]. An efficient greedy technique was presented to find the 
least number of sensor nodes and their sensing locations by employing a new criterion 
with maximum projection onto the minimum eigenvalue of the dual observation matrix 
[16]. Quantization of graph signals at nodes before transmission is inevitable since nodes 
or vertices in physical networks operate with energy constraint and limited communica-
tion bandwidth. Hence, the effect of quantization of graphs signals on the selection pro-
cess should be addressed while the previous work [17] derived an analytic solution to 
the problem of allocating optimal rate to each node in the sampling set where uniform 
quantization at nodes are assumed.

In this work, we consider a graph sampling problem formulated in previous work 
[5–15] for network applications such as social, energy, neural and sensor networks. We 
aim to devise an efficient sampling set selection algorithm for bandlimited graph signals 
which are uniformly quantized by using optimal rate. Specifically, we incorporate quan-
tization into the selection process and seek to greedily select one node at each iteration 
that minimizes the average reconstruction error computed from quantized signal values 
with optimal rate allotted into the nodes in the sampling set. Note that the previous work 
[17] focused on optimal rate allocation to the sampling set after the set is constructed 
by selection methods. To the best of our knowledge, this is the first to take into account 
quantization to determine the best sampling set that minimizes the average reconstruc-
tion error. We first apply the QR factorization to formulate the reconstruction error and 
present a simple criterion to select the next minimizing node at iterations by using the 
analytic results proved in [13] and the optimal rate solution derived in [17]. Specifically, 
we show that the reconstruction error is iteratively minimized by selecting the next node 
minimizing the geometric mean of the row vectors of the inverse upper triangular matrix 
R−1 in the QR factorization. We also discuss the complexity of the proposed algorithm in 
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comparison with different novel sampling methods. Finally, we investigate through exper-
iments the performance of the proposed algorithm, demonstrating a performance gain 
over previous selection methods for quantized signals on various graphs.

This paper is organized as follows. The sampling set selection problem with quantiza-
tion is formulated in Sect. 2. The reconstruction error obtained from quantized graph 
signals is manipulated by using the QR factorization to produce a simplified metric, 
and an analytic result is derived to propose a simple selection criterion in Sect. 3. The 
complexity of the proposed algorithm is analyzed in comparison with different sampling 
methods in Sect. 4.1. The reconstruction performance is evaluated by extensive experi-
ments in Sect. 4.2 and conclusions in Sect. 5.

2  Problem formulation
For an undirected and weighted graph G = (V , E) with N nodes indexed by the set 
V = {1, . . . ,N } and edges E = {(i, j,wij)} , where wij represents the edge weight from 
node i to node j, we consider a graph signal f = [f1, . . . , fN ]

⊤ which is a function defined 
on V with signal values fi on the ith vertex. We employ variation operators (e.g., com-
binatorial graph Laplacian, normalized Laplacian) to describe the signal variation in a 
graph caused by the connectivity of the graph [2, 6]. Let L , N × N  matrix be a variation 
operator with eigenvalues |�1| ≤ . . . ≤ |�N | and corresponding orthonormal eigenvec-
tors u1, . . . ,uN . Noting that an arbitrary graph signal f  can be expressed as f = Uc where 
U = [u1 · · ·uN ] is the eigenvector matrix and c = [c1, . . . , cN ]

⊤ the graph Fourier trans-
form (GFT) of f  , ω-bandlimited graph signal f  (i.e., ci = 0, |�i| > ω, ∀i > r ) can be given 
by

where UVR is an N × r matrix with rows of U indexed by V and columns of U indexed 
by R = {1, . . . , r} , and cR an r × 1 column vector with its entries of c indexed by R.

We consider a situation in which a given number of nodes are selected to obtain a 
sampling set S and the sampled signal fS with the entries fi of f  indexed by S and the 
signal value fi at node i is uniformly quantized with a rate of Ri bits, given the total rate 
budget RT =

∑

|S|
i Ri . Then, we seek to find the best sampling set that minimizes the 

average reconstruction error E[� f − ˆfQ �

2
] where ˆfQ is the reconstructed signal from 

the quantized signal fQ
S

 which is obtained by uniformly quantizing the sampled signal fS . 
It is assumed that fS is corrupted by an additive measurement noise n ∈ R

|S| consisting 
of independent and identically distributed (iid) entries with zero mean and variance σ 2:

where the quantization error vector e = [e1, . . . , e|S|]
⊤ is modeled as an additive noise 

with its entry ei iid with zero mean and the variance �
2
i

12  where �i is the quantization step 
size given by �i =

I

2Ri
 with the quantization interval I  and this additive noise model for 

quantization error is commonly employed for the analysis of quantization error since it 
behaves in a similar manner to that of additive white noise [18]. In this work, we produce 

(1)f =

r

i=1

ciui = UVRcR

(2)f
Q
S

= fS + n + e,
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the uniqueness sampling set S defined as the set for ω-bandlimited signals if noise-free ω
-bandlimited signals f  can be perfectly reconstructed from the sampled signal fS , imply-
ing that every ω-bandlimited signal has its unique samples in the uniqueness set S and 
it is shown that the uniqueness set S can be constructed by choosing r independent row 
vectors of UVR (i.e., choosing the ith row vector corresponds to selecting the ith node) 
[6].

Letting USR be the |S| × r matrix with |S| independent rows of UVR indexed by S , the 
quantized noisy signal fQ

S
 can be given from (1) and (2):

To estimate cR in (3) from the quantized noisy signals fQ
S

 , we let ĉR = U+

SR
f
Q
S

 where 
U+

SR
 is the pseudo-inverse of USR . In this work, we use the notation of the pseudo-

inverse for non-invertible matrices. Then, the reconstructed signal ˆfQ is expressed by

where ˆf = UVRU+

SR
(fS + n) is the reconstructed signal from the noisy sampled signal 

fS . Now, we can obtain the average reconstruction error by using the analytic results in 
[17] as follows:

where EQ = E[ee⊤] a diagonal covariance matrix with its ith diagonal element �
2
i

12  . 
It should be noticed that in computing the average reconstruction error in (4), it is 
assumed that f ≈ ˆf  , implying the noise-free sampled graph signal fS or the case of high 
signal-to-noise ratio (SNR). This assumption ensures no prior distributions of graph 
signals required in the metric to be minimized, leading to a simplified process. How-
ever, since graph signals are typically noise-corrupted in practical applications, the pro-
posed algorithm is evaluated in comparison with different methods in noisy situations in 
Sect. 4.2.

We continue to formulate the constrained optimization problem to find the best sam-
pling set S∗ that minimizes the average reconstruction error:

In this work, since we construct S∗ by greedily selecting one node at a time, we aim to 
minimize the intermediate reconstruction error at the ith iteration given by 
tr[(U⊤

SiR
(Ei

Q)
−1USiR)+] , where (Ei

Q) is the i × i diagonal covariance matrix with its 

entries, 
�2

j

12 , j = 1, . . . , i and Si the set of i nodes selected. Specifically, at the (i + 1) th iter-
ation, one node is selected out of the nodes in the complement of set Si which consists of 
the remaining vertices in V denoted by SC

i  such that Si ∪ SC
i = V and Si ∩ SC

i = ∅ : in 
other words, one independent row vector (u(i+1))⊤ is selected from the remaining rows 
in U

S
C
i R

 where u(i) indicates the transpose of the row vector selected at the ith iteration. 

It should be noted that selection of the minimizing row at the ( i + 1)th iteration is 

(3)f
Q
S

= USRcR + n + e.

ˆfQ = UVRĉR =
ˆf +UVRU+

SR
e

(4)E[� f − ˆfQ �

2
] ≈ E[� ˆf − ˆfQ �

2
] = tr[(U⊤

SR
E−1
Q USR)−1

],

S∗

= arg min
S,|S|=r

tr[(U⊤

SR
E−1
Q USR)−1

],

|S|
∑

i=1

Ri ≤ RT
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conducted after the optimal rate is allotted to each node in Si+1 with the intermediate 
total rate RTi+1 assumed to be uniformly incremented by using RTi+1 = RTi +

RT
|S|

 . More 
specifically,

where U⊤

Si+1R
= [u(1) · · ·u(i+1)

] and it is assumed that u(i) ’s are independent of each 
other. The selection process in (5) and (6) is iteratively conducted r times with Si replaced 
by Si+1 at the next iteration. Note that the rate constraint includes both inequality and 
equality and all of the rate budget available at each iteration is fully used to minimize the 
reconstruction error.

3  Method: sampling set selection algorithm
We apply the QR factorization to U⊤

Si+1R
 in (5) to generate U⊤

Si+1R
= Qi+1Ri+1 where 

Qi+1 is the r × (i + 1) matrix with (i + 1) orthonormal columns q1, . . . ,qi+1 and Ri+1 
the (i + 1)× (i + 1) upper triangular matrix with columns r1, . . . , ri+1 . Note that in 
this work, the QR factorization is performed by the Householder transformation due 
to its lower complexity and more stability than the Gram–Schmidt orthogonaliza-
tion [19]. Then, we have

where (7) follows since ((Qi+1)⊤)+ has orthonormal columns.
Now, we prove a theorem that presents a simple criterion by which each row from 

UVR minimizing the intermediate reconstruction error is selected at iterations.

Theorem Let ri+1 be the (i + 1) th column vector of Ri+1 and (ai+1
j )⊤ the jth row vec-

tor of (Ri+1)−1 . Then, the selection process that iteratively minimizes the intermediate 
reconstruction error formulated in (5) can be conducted by searching the minimizing row 
u(i+1)∗, i = 0, . . . , r − 1 at each iteration:

where (u(i+1))⊤ corresponds to one of the rows of U
S
C
i R

 and d the (i + 1) th entry of ri+1.

(5)

k∗ = arg min
Si+1=Si+{k},k∈SC

i

tr[(U⊤

Si+1R
(Ei+1

Q )−1USi+1R)+]

subject to

i+1
∑

j=1

Rj ≤ RTi+1

(6)Si+1 = Si + {k∗}, i = 0, . . . , |S| − 1.

(7)

tr
[

(U⊤

Si+1R
(Ei+1

Q )−1USi+1R)+
]

= tr

[

(

Qi+1Ri+1(Ei+1
Q )−1(Ri+1)⊤(Qi+1)⊤

)

+

]

= tr
[

(Ri+1(Ei+1
Q )−1(Ri+1)⊤)−1

]

(8)u(i+1)∗
= arg min

u(i+1),d �=0





i+1
�

j=1

� ai+1
j �

2





1
i+1
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Proof For each u(i+1) selected, we perform the optimal rate allocation which can be 
found by solving the constrained optimization problem:

where (9) follows from matrix multiplication and �∗

= (�∗

1, . . . ,�
∗

i+1)
⊤ is a column vec-

tor of optimal step sizes that minimize the reconstruction error and derived in [17] as 
follows:

Now, we use the optimal solution �∗ in (10) to compute the reconstruction error with 
the optimal rate:

To be concise, the selection of the next node that minimizes the intermediate recon-
struction error with optimal rate allocation can be simply determined by finding one 
of u(i+1) ’s that minimizes the geometric mean of the row vectors of (Ri+1)−1 regard-
less of the total rate budget RTi+1 . Furthermore, with the analytic results derived in [13], 
(Ri+1)−1 is just constructed from (Ri)−1 at the previous iteration and r⊤i+1 ≡ [b⊤ d] by 
appending the ( i + 1)th column vector to the last column position:

where r̃i denotes the ith column vector of (Ri+1)−1 . To guarantee the existence of the 
inverse of Ri+1 (equivalently, the independence of u(i)’s), it should be assumed that d  = 0 
(see [13] for the detail). �

Note that at the (i + 1) th iteration where (Ri)−1 with its row vectors (aij)
⊤ is 

given from the previous iteration, the geometric mean in (8) can be computed with 
� ai+1

j �

2, j = 1, . . . , i + 1 updated from ‖ aij ‖
2 and r̃i+1 by a simple addition: 

(9)

�∗

= arg min
�j ,∀j

tr
[

(Ri+1(Ei+1
Q )−1(Ri+1)⊤)−1

]

,

i+1
∑

j

Rj ≤ RTi+1

= arg min
�j ,∀j

i+1
∑

j=1

�2
j

12
� ai+1

j �

2,

i+1
∑

j

Rj ≤ RTi+1

(10)�∗

j =

[

∏i+1
m=1 � ai+1

m �

]
1

i+1

� ai+1
j �

I

2
RTi+1
i+1

, j = 1, . . . , i + 1

i+1
�

j=1

(�∗

j )
2

12
� ai+1

j �

2

=

2
−2RTi+1

/(i+1)

12
(i + 1)I2





i+1
�

j=1

� ai+1
j �

2





1
i+1

∝





i+1
�

j=1

� ai+1
j �

2





1
i+1

(11)(Ri+1)−1
=

[

(Ri)−1
−

(Ri)−1b
d

01×i d−1

]

≡ [r̃1 · · · r̃i+1]
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 where r̃i+1(j) is the jth entry of the (i + 1) th column vector of (Ri+1)−1 . Initially, we have 
Q1

=

u(1)

�u(1)�
 , R1

=� u(1) �= d . Thus, the metric (8) is reduced to

Starting with u(1)∗,Q1,R1 and R−1
=

1
�u(1)∗�

 , the criterion (8) are repeatedly evaluated 

from i = 1 to |S| − 1 until the best sampling set S with the cardinality of r is constructed. 
The proposed sampling set selection algorithm is summarized as follows:

4  Results and discussion
4.1  Complexity of proposed algorithm

With the eigenvector matrix of the variation operator computed as a preparation step, 
the proposed algorithm seeks to select the next minimizing node at the (i + 1) th itera-
tion by using (Ri)−1 with its row vectors (aij)

⊤ . The selection process is conducted by two 
main tasks: for each u(i+1) , the generation of the (i + 1) th column vector ri+1 of Ri+1 and 
the computation of r̃i+1 of (Ri+1)−1 by (11) and the geometric mean of � ai+1

j �

2 by (12a) 
and (12b). This task is repeatedly executed for each of (N − i) remaining rows, producing 
the operation count CGM ≈ (N − i)(2ri + 2i

2) flops. After finding the next row u(i+1)∗ 
that takes the minimum of the (N − i) geometric means, the second task is performed 
to generate the Householder matrix for u(i+1)∗ which needs CH ≈ 2ri2 − 4r2i + 2r3 
flops. Thus, at the ( i + 1)th iteration, the operation count spent for the two main tasks 
is Ci+1 ≈ 2Nri − 4r2i . Furthermore, this selection process is executed ( |S| − 1 ) times, 
resulting in the total operation count of the proposed algorithm given by O(Nr|S|2).

Since our algorithm is developed based on the analytic results in [13], it would be 
noteworthy to discuss how quantization changes the sampling set selection process by 
comparing with the selection algorithm without quantization proposed in [13], denoted 
by the QR factorization-based method (QRM). Specifically, the reconstruction error 
without quantization at the (i + 1) th iteration is given by tr

[

(Ri+1(Ri+1)⊤)−1
]

 , the cost 
function for QRM and can be further manipulated as follows:

(12a)� ai+1
j �

2
= � aij �

2
+r̃i+1(j)

2, j = 1, . . . , i

(12b)r̃i+1(i + 1)2, j = i + 1,

(13)u(1)∗ = arg min
u(1),d �=0

1

d2
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where (14) follows since the first term 
∑i

j=1 � r̃j �
2 is irrelevant in finding the next mini-

mizing row u(i+1)∗ . Hence, the sampling set selection without quantization involves the 
arithmetic mean of � ai+1

j �

2 which in turn requires a computation of only � r̃i+1 �
2 . In 

(14)

tr
[

(Ri+1(Ri+1)⊤)−1
]

=

i+1
∑

j=1

� ai+1
j �

2
=

i+1
∑

j=1

� r̃j �
2

=

i
∑

j=1

� r̃j �
2
+ � r̃i+1 �

2
∝� r̃i+1 �

2
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contrast, the quantization-aware sampling process makes us take into account the geo-
metric mean which needs each update of row vectors of (Ri+1)−1 . It should be noted 
that with the extra complexity O(N |S|2) related to computation of the geometric means 
at iterations, the proposed algorithm offers the complexity of the same order as that of 
QRM.

For the performance evaluation, we compare with different sampling methods such as 
efficient sampling method (ESM) [6], greedy sensor selection (GSS) [14] and QRM [13]. 
ESM constructs sampling sets by simply performing a column-wise Gaussian elimina-
tion on UVR , leading to a low weight selection process. GSS iteratively selects the next 
node that maximizes the log-determinant of the inverse estimation error covariance 
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matrix. Assuming zero-mean graph signals with the covariance matrix � = UVR�U⊤

VR
 

corrupted by an iid additive measurement noise with unit variance, the inverse estima-
tion error covariance matrix is given by �−1

e = (�−1
+U⊤

SR
USR) [12, 14]. In evaluating 

the metric for GSS, the high SNR is assumed (i.e., �−1
=

1
σ 2
f

I, 1
σ 2
f

≪ 1 ) since the metric 

of the proposed algorithm is formulated under the assumption of high SNR. It is note-
worthy to examine the relation of the above-mentioned sampling methods with the sam-
pling strategies based on uncertainty principle, denoted by MaxVol and MinPinv in [8] 
where MaxVol seeks to maximize the determinant of U⊤

SR
USR and MinPinv aims at 

minimizing the reconstruction error without quantization given by tr[(U⊤

SR
USR)−1

] . 
Clearly, GSS and QRM offer simplified greedy methods for MaxVol and MinPinv, 
respectively. In Table  1, the optimality criteria and the complexity are given for 
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comparison. As expected, ESM yields a fast selection process at the cost of performance 
loss since it aims to minimize the indirect metric, i.e., the worse case of the reconstruc-
tion error. It can be also seen that the proposed algorithm provides a competitive com-
plexity in comparison with GSS and QRM, especially for |S| ≤ r . The reconstruction 
performance of the various methods is evaluated in the experiments in Sect. 4.2

4.2  Experimental results

We investigate the performance of various sampling set selection methods for four dif-
ferent graphs given below:
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Fig. 6 Complexity evaluation in terms of average execution time in second for RSG by varying the sample 
size, |S|
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Fig. 7 Performance evaluation for noisy non‑bandlimited graph signals on RSG with |S| = 50 by varying SNR
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• Random sensor graph (RSG) with N = 1000 vertices
• Random regular graph (RRG) with N = 1000 vertices and each vertex connected to 

six vertices
• Minnesota road network graph (MRNG) with N = 2642 vertices
• Community network graph (CNG) with 16 communities of random sizes

For each graph, we generate 50 graph realizations and adopt the combinatorial Lapla-
cian matrix L as a variation operator to compute UVR and cR in (1). We construct 
uniqueness sampling sets S with size |S| = r by greedily selecting one node at each 
iteration based on four different techniques: ESM, GSS, QRM and the proposed 
method. In applying GSS, we let σ 2

f = 103 . For performance evaluation, we examine 
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Fig. 8 Performance evaluation for noisy non‑bandlimited graph signals on RRG with |S| = 50 by varying SNR
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Fig. 9 Performance evaluation for noisy non‑bandlimited graph signals on MRNG with |S| = 50 by varying 
SNR
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the case of noisy bandlimited and non-bandlimited signals. We consider a random 
graph signal f  assumed to follow the Gaussian joint distribution:

where the covariance matrix K = (L+ δI)−1 with δ set to = 0.01 in the experiments to 
guarantee a proper covariance matrix. We generate the noisy signals fS residing on the 
nodes in the sampling sets S by using an iid additive Gaussian noise drawn from N (0, σ 2) 
and make uniform quantization of those signal values with the approximated optimal 
rate ˆRi obtained by adjusting the optimal rate R∗

i = log2
I
�∗

i
 to its neighboring integer 

value such that 
∑

ˆRi = RT = |S| . We compute the average reconstruction error in dB 

given by 10 log10(E
�f−ˆfQ�2

N ) where 1000 signal samples at each node are averaged for 
each of 50 graph realizations. We also provide visual demonstration of RSG and the 50 
vertices in red selected from the graph by using the four methods in Fig. 1. In the experi-
ments, we generate graphs and the attributes (i.e., L,wij ,U, �i ) with their default values 
by using the graph signal processing toolbox (GSPBox) for MATLAB [20].

p(f) ∝ exp(−f⊤K−1f) = exp(−f⊤(L+ δI)f)
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Fig. 10 Performance evaluation for noisy non‑bandlimited graph signals on CNG with |S| = 50 by varying 
SNR

Table 1 Complexity comparison for various sampling methods

Method Optimality criteria Operation count

ESM [6] � U
+

SR
�

2

2
O(Nr|S|)

GSS [14] log det ( �−1
+ U

⊤

SR
USR) O(Nr2|S|)

QRM [13] tr[(U⊤

SR
USR)−1

] O(Nr|S|2)

Proposed method tr[(U⊤

SR
E
−1

Q
USR)−1

] O(Nr|S|2)
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4.2.1  Performance evaluation with respect to sample size

We first construct the uniqueness sampling sets S with |S| = r = 30 to 100 by apply-
ing the four methods and test noisy non-bandlimited graph signals with σ = 0.1 . As 
demonstrated in Figs.  2, 3, 4 to  5, the proposed algorithm outperforms ESM, GSS 
and QRM for most of the graphs. Interestingly, the proposed method and QRM pro-
duce the similar reconstruction performance for RRG since the optimal rate for RRG 
would be almost uniform due to its regular connectivity, implying no additional gain 
achieved by the optimal rate allocation. We also evaluate the complexity of the selec-
tion methods by measuring the execution time in second in the same condition. In 
Fig. 6, the average execution time for RSG is demonstrated with respect to the size of 
the sampling set |S| = r . Note that the proposed method spends more time than QRM 
since it requires the extra computation related to the geometric mean.

4.2.2  Performance evaluation with respect to noise level

We also test noisy non-bandlimited graph signals on the sampling sets S with 
|S| = 50 by varying the SNR in dB given by 10 log10

E‖f‖2

σ 2  and plot the experimental 
results in Figs. 7, 8, 9 to 10. As compared with the different sampling methods, the 
proposed method performs well for quantized graph signals in the presence of vari-
ous noise levels. Notably, the experiments for noisy bandlimited signals provide bet-
ter reconstruction accuracy than the case of noisy non-bandlimited signals and the 
performance curves for the sampling methods show a similar trend to those for noisy 
non-bandlimited signals.

5  Conclusions
We addressed the sampling set selection problem for quantized graph signals and 
presented an analytic result by which an iterative greedy selection can be simply con-
ducted so as to minimize the average reconstruction error. Furthermore, we discussed 
the complexity of the proposed method, resulting in a simple extra computation 
needed compared with the recent algorithm in [13]. We demonstrated by experiments 
that our method offers a competitive performance with a reasonable complexity when 
graph signals are quantized.
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