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1  Introduction
Accurate object detection is a challenging problem in computer vision for many years. 
The object detection is treated as an essential kernel for many important vision-based 
technologies, such as human skeleton estimation [1, 2], face recognition [3, 4] and object 
segmentation [5–7]. The traditional feature extractions, such as histogram of oriented 
gradient (HOG) [8], shift invariant feature transform (SIFT) [9], or deformable parts 
model (DPM) [10, 11] can help to achieve an acceptable detection performance by using 
either AdaBoost [12] or support vector machine (SVM) [13] classifier. Deformable mod-
els with multi-scale deformable features can detect a large number of object classes to 
win the triumph for years on PASCAL visual object classes (VOC) challenge [15]. After 
2012, the CNN-based algorithms in various structures [15–19] won the contests in Ima-
geNet large scale visual recognition challenge (ILSVRT) [20]. Thus, the convolutional 
neural network (CNN) systems quickly dominated the object detection area. The CNN-
based object feature extractors are also adopted for many other computer vision tasks 
successfully.
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For real-time object detection, we not only need to perform object classifications and 
draw their bounding boxes. In earlier approaches, the detection algorithms use multi-
ple-size sliding windows, which slide across the whole image to classify the presence of 
the object within the regions of interest with considerably large computation cost. To 
achieve real-time detection, object detection has achieved significant advances with the 
CNN frameworks. We can simply divide the state-of-the-art CNN-based object detec-
tors into two categories: two-stage approaches [21–23] and one-stage approaches [24–
28]. The two-stage approaches include region convolutional neural network (R-CNN) 
[21], fast R-CNN [22] and faster R-CNN [23] models to classify the objects and find their 
bounding boxes. The R-CNN approaches use a selective search algorithm to generate 
regions of interest to reduce the computation from the sliding window approaches. The 
candidate region proposals are warped into a square and go through the CNN model to 
extract feature vectors for the classifiers to detect the objects and show their bounding 
boxes. The fast R-CNN receives each region of interest (ROI) and uses ROI pooling to 
resize all regions to a fixed size for selective search. Thus, the fast R-CNN, which need 
not perform convolutions for all region proposals, only performs once to reduce the 
computation effectively. The faster R-CNN replaces the selective search by the region 
proposal network (RPN) [23], which will produce the regions of interest from the feature 
retrieved by the CNN backbone network. With the different sizes of the anchor boxes, 
the whole network detection can detect the objects much more accurately. The single 
shot detection (SSD) method [24] first trained the model with end-to-end fashions that 
can perform independently on target detection from multiple feature maps to detect all 
large and small objects. Recently, the famous one-stage approaches including you only 
look once (YOLO) [25].

Generally, for most vision-based networks, we could further improve their perfor-
mances by including temporal data information. However, the batch data array including 
T frames will heavily increase the computation burden of the networks. Instead of batch 
data arrays, the enhanced detection and tracking networks try to retrieve from temporal 
feature maps to raise the importance of 2D features of the networks [26–28]. By includ-
ing temporal information, it is noted that the object detection networks should also 
consider the practical issue of implementation for real-time applications. In this paper, 
we suggest that the object detection system can combine the long short-term memory 
(LSTM) modules [29] to improve its detection performance. In Sect. 2, we first review 
the basics of the LSTM modules. Then, we suggest the combinations of the YOLO net-
work and LSTM modules to become an effective object detection and tracking system in 
Sects. 3 and 4. In Sect. 5, we then exhibit the performances of the combined YOLO and 
LSTM modules by simulations. Finally, we conclude the main contributions and future 
work of this paper in Sect. 6.

2 � Related work
The YOLO approaches have higher speed performance than the SSD method. Recently 
the improved accuracy and speed versions of YOLO methods, namely YOLOv2, 
YOLOv3 and YOLOv4 have been proposed in [30–32]. The LSTM technique, which is 
evolved from the recurrent neural network (RNN) for speech and language modeling 
[33, 34], can solve the vanishing gradient problem and model the self-learned context 
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information. By using the temporal information, the LSTM module has been effectively 
used for precision 3D pose estimation [35] and single object tracking [36, 37].

The long short-term memory (LSTM) extends the RNN by adding forget, input and 
output gates. To catch the details of the LSTM module, as shown in Fig. 1, the cell state 
vector ct and output hidden state vector ht can be respectively computed by:

and

where ft, it and ot are the activations of the tth forget, the tth input and the tth output 
gates, which are respectively given as

and the update cell state vector is obtained by

In (3)–(6), the weights, wρ and the offsets, bρ for ρ = f, i, o and g need to be trained for 
the best connections of the previous hidden vector, ht−1 and current input vector,xt . As 
stated in (3)–(4), the gating activations are squashed into a range between 0 and 1 by a 
sigmoid function. The gating activation describes the ratio of the multiplied vector com-
ponents being passed through the gate. If it is “0”, the gate will control “nothing passes”, 
while “1” means “all pass”. As exhibited in (4), the updated cell state vector, c′t is regulated 
by tanh function. As shown in (5), the current cell state vector, ct is a combination of the 
previous cell state vector controlled by the forget gate and the updated cell state vector 

(1)ct = ft ∗ ct−1 + it ∗ c
′
t ,

(2)ht = tanh(ct) ∗ ot ,

(3)ft = σ(wf [ht−1, xt ] + bf ),

(4)it = σ(wi[ht−1, xt ] + bi),

(5)ot = σ(wo[ht−1, xt ] + bo),

(6)c′t = tanh(wg [ht−1, xt ] + bg ).

Fig. 1  Long short term memory (LSTM) module
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controlled by the input gate. Finally, as stated in (2) and (6), the vector component is 
regulated by tanh function in a range between − 1 and + 1.

To include temporal information, the LSTM modules can be added in any layer of 
detection networks. In order to track the multiple vehicles better, we adopt a modi-
fied version of long short-term memory (LSTM) module with a dual-layer and multi-
stage structure. Instead of inner layers, which have larger feature maps, we suggested 
that the LSTM modules to directly track the object detection outputs to simplify the 
computation. It is noted that the proposed LSTM modules can be applied to any of the 
latest detection methods. Without loss of generality, we choose the YOLOv2 as the ini-
tial object detector, which will be improved step-by-step to accomplish the performance 
improvements in this paper.

3 � The proposed methods
Figure  2 exhibits the conceptual diagram of the proposed object detection and track-
ing system, which includes two subsystems, improved YOLO (iYOLO) object detector 
and double-layer LSTM (dLSTM) object refiner. After the iYOLO detector, the dLSTM 
refiner takes T consecutive outputs of the iYOLO to refine the final prediction. Before 
the dLSTM refiner, however, we need to spatially order the iYOLO outputs, which are 
the bounding boxes and confidences of the detected objects, to correctly characterize 
their spatial associations. After the spatial association, the dLSTM object refiner then 
performs the final refinement of the iYOLO outputs. As shown in the top part of Fig. 2, 
the detailed descriptions of the iYOLO object detector, the multi-object spatial associa-
tion, and the dLSTM refiner are addressed in the following subsections.

Fig. 2  Flow chart of the proposed object detection system
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3.1 � The iYOLO object detector

The proposed object detection system, as shown in the top part of Fig. 2, first resizes 
the images to 416 × 416 or 448 × 448 size as the inputs of the improved YOLO 
(iYOLO) object detection network. For performance improvement and computa-
tion reduction, the proposed iYOLO object detector is designed to classify 30 on-
road moving objects with one combined-vehicle class, including car, bus, and truck 
classes together. The iYOLO also combines low and high level features to detect the 
objects. The details of data representation, network structure, and loss functions of 
the iYOLO are stated as follows.

For moving object detection, we not only need to predict the locations and box sizes 
of the detected objects but also need to detect their classes. Therefore, in the iYOLO, 
the output data is a three-dimension array, which is with the size of 14 × 14 × D , 
where D denotes the channel number of the information for representation of detec-
tions and classifications. The 14 × 14 array is considered as the grid cells of the image. 
Thus, there are 196 grid cells in total. Each grid cell, as shown in Fig. 3, contains five 
bounding boxes, which are called as “anchor boxes”.

Each grid cell contains D elements, which carry the positions, confidences and class 
information, where D usually is given by:

where M is the number of classes and B denotes the number of the anchor boxes in 
a single grid cell for detecting. As shown in Fig. 4, each grid cell contains B bounding 
boxes while each bounding box comprises (5 + M) parameters. For the bth box, we have 

(7)D = B× (5+M),

Fig. 3  Anchor boxes of iYOLO object detector

Fig. 4  Outputs of the proposed iYOLO object detector
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5 parameters including its bounding box, {xb, yb,wb, hb} and the occurrence probability, 
Pb = P(ob) . The bounding box is defined by the center with coordinates xb and yb and 
the width and the height the box with wb and hb, respectively. In Fig. 4, Cb

i  denotes the 
conditional probability of the bth box that contains ith class as:

for 1 ≤ i ≤ M . Therefore, we can find the probability of the ith object in the bth box is 
given by:

where Pb denotes the occurrence probability of the bth box. If Cb
i P

b passes a pre-defined 
threshold, we will consider the ith class object being existed in the bth bounding box and 
detected by the proposed iYOLO detector.

3.2 � Network structure of iYOLO detector

The proposed iYOLO network structure as shown in Fig. 5 is composed of several stages 
of convolutional layers and max pooling layers. The convolutional layers [38] with batch 
normalization [39] are mostly with 3 × 3 or 1 × 1 convolutions. The pooling layers per-
form with stride 2 of direct down sampling. In this paper, we include car, truck and bus 
classes into vehicle class. Thus, the number of output classes of the iYOLO are reduced 
to 30. As shown in Fig. 5, we eliminate three sets of two repeated 3 × 3 × 1024 convolu-
tion layers compared to the YOLOv2. The reason for decreasing high-level layers is that 
we can reduce the computations since we use the vehicle class to represent all type of 
cars. The more high-level layers we reduce; the less complex the model becomes.

In order to enhance the performance, the proposed iYOLO further includes two low-
level features to help the final detection. As marked by the thick red lines and green-box 
functions in Fig. 5, we concatenate the outputs of 12th (after the green-boxed max-pool-
ing) and 17th features (after the green-boxed 3 × 3 × 512 convolution) layers with the 
final feature. To keep the size of low-level features the same as that of the high layer fea-
ture, we introduce two convolution layers with 3 × 3 × 128, 1 × 1 × 64 for first low-level 

(8)Cb
i = P( ith class|ob),

(9)P(ith class, ob) = Cb
i P

b,

Fig. 5  The network structure of the proposed iYOLO detection
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feature and 3 × 3 × 256, 1 × 1 × 64 convolution and reorganize their features into the half 
of the original resolution in marked functions before the concatenation.

Since the proposed iYOLO will output the information of bounding box location, 
classification and confidence results simultaneously. Therefore, the prediction of the 
module is composed of three loss functions: (1) location loss of the bounding box, 
g = {x, y,w, h} , where (x, y) denotes the center position while w and h respectively rep-
resent width and height of the bounding box; (2) classification loss defined by the 
conditional probability for specific class,ps(i) ; and (3) confidence loss related to prob-
ability Ps(o) that states an object existing in the sth grid cell. The total loss function is 
given by

where f is the input image data, c is the class confidence, g and g  denote the pre-
dicted and the ground truth boxes, respectively. As stated in (10), the total loss is 
composed of the location loss, confidence loss, and class loss functions balanced by 
weighting factors �loc , �obj , �noobj , and �cls separately. These four loss functions are 
described as follows.

The location loss, Lloc is given as:

where gs= {xs, ys,ws, hs} and gs= {xs, ys,ws, hs} are the predicted and ground truth 
bounding boxes, S and B denote the numbers of grid cells and anchor boxes, respec-
tively. In (11), �loc represents the location weighting factor and αo

s,b means the responsi-
bility for the detection of the sth grid with the bth box. If the bounding box passes the 
intersection over union (IoU) threshold 0.6, then the box specific index, αo

s,b will be 1, 
otherwise αo

s,b goes 0.
The confidence loss, Lcon is expressed as:

where the first term exhibits the bounding box confidence loss of the objects while the 
second term denotes the confidence loss without the objects. In (12), �o and �no express 
the confidence weighting factors with object and no-object cases, respectively. The loss 
values are only valid for responsible bounding boxes, αo

s,b = 1 , since that the non-respon-
sible bounding boxes don’t have truth label.

The classification loss, Lcls is given as:

where ps(i) denotes the i-class confidence in specific grid cell of the anchor box and �cls 
denotes the classification weighting factor. If the bounding box does not contain any 

(10)L(f , c, g , g) = Lloc(f , g , g)+ Lcon(f , g)+ Lcls(f , g , c),

(11)Lloc = �loc

S2
∑

s=1

B
∑

b=1

αo
s,b[

∥

∥gs − gs
∥

∥

2
],

(12)

Lcon = �obj

S2
∑

s=0

B
∑

b=0

αo
s,b[(Ps(o)− Ps(o))]

2+�noobj

S2
∑

s=0

B
∑

b=0

(1− αo
s,b)[(Ps(o)− Ps(o))]

2,

(13)Lcls = �cls

S2
∑

s=1

B
∑

b=1

αo
s,b

∑

i∈classes

[(ps(i)− ps(i))]
2,



Page 8 of 21Yang et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:7 

object, the predicted probability should be decreased to close to 0. On the contrary, if 
the box contains an object, the predicted probability should be push to near 1.

Before discussing the proposed dLSTM object refiner, we should properly associate 
the outputs of each detected object of the iYOLO according to its spatial position. The 
spatial association of the temporal information of multiple objects is designed to col-
lect all the outputs of the same physical object in a spatial-priority order to become 
the time series inputs of the dLSTM object tracking modules.

3.3 � Multi‑object association

To make a good association of a series of outputs for each detected object, we need 
to design a proper association rule to construct a detected data array as the input of 
the dLSTM object refiner. Usually, the iYOLO shows the detection results according 
to the confidence priority, which is not a robust index for object association since the 
confidences vary from time to time. Therefore, we utilize the close-to-the-car distance 
as the object association index since any on-road moving objects will physically travel 
arround their nearby areas smoothly. For the ith detected object with its bounding box, 
gi= {xi, yi,wi, hi} , the association should be based on the spatial positions in the image 
frame. If we set the frame left-upper corner of as the origin at (0, 0), the right-lower cor-
ner at (W − 1, H − 1), where W and H are the width and height of the frame, respectively. 
The position at (W/2, H), which is used to measure the closeness of the detected vehicle 
to the driving car, is set as the reference point. If the detected object is closer to the ref-
erence point, it will be more dangeous to the car. Thus, the bounding box of a detected 
object is closer to the reference point, it should be more important for the object and we 
should give it a higher priority. The priority of the detected object is spatially ordered by 
a priority-regulated distance to the critical point as

where the horizontal distance between the ith bounding box and the reference point is 
given as:

with R = {x|(xi − wi/2) ≤ x ≤ (xi + wi/2 )} and the vertical distance is expressed by

The horizontal distance, �xdi  defined in (14) finds the minimum displacement of any 
point in the bounding box to the reference point horizontally. If �xdi  is smaller, the 
bounding box will be closer to the reference point. If �ydi  is smaller, the bottom of the 
bounding box of the object is close to the bottom of the frame.

After the computation of all priority-regulared distances of the detected objects, the 
object indices are determined by the priority-regulated distances in decenting order. The 
smaller priority-regulated distances will be given a higer order, i.e., a small prioity index 
to the detected object. If ρ = 0.5, Fig. 6 shows the order of the object confidences and the 
priority orders of the prority-regulated distances between the reference point and the 

(14)di =
(

(�xdi )
2 + ρ(�ydi )

2
)1/2

,

(15)�xdi = min
x∈R

(x −W /2),

(16)�ydi = H − yi − (hi/2).
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detected objects. The order of the objects with the regulated distances is spatially sta-
ble since the spatial positions of the real objects will not change too quickly. Even if the 
object is moving horizontally to occlude some objects, the tracked objects will be still 
reasonable and stable since we don’t care about the ones which are occluded with one 
combined-vehicle class. We can then focus on the objects, which are geometrically close 
to the driving car and give them higher priorities for tracking.

3.4 � LSTM refiner

After determining the priority order of the detected objects, we collect all bounding 
boxes as a 2D data array with the same priority order. For example, the data array for the 
first priority object with g (1)t = {x

(1)
t , y

(1)
t ,w

(1)
t , h

(1)
t } , for t = 1, 2, …, T. For simplicity, we 

ignore the index of the priority order. For each detected object at instant T, we then col-
lect an array of bounding boxes as

where Xt = [xt,1, yt, xt,2, yt,2]T denotes positions of left-top corner (xt,1, yt,1) and bottom-
right corner (xt,2, yt,2) of the bounding box at the tth instant. After collection of Xt for T 
consecutive samples, Fig. 7 shows the 2D time-series data array of bounding boxes for 
each detected object.

(17)L = {X1,X2,X3 . . . ,XT },

12 345

(b)(a)

Reference
Point

2
dx∆

2
dy∆

Fig. 6  Priority orders of detected objects: a ordered in the confidences; b ordered in the regulated distance 
to the reference point with ρ = 0.5

Fig. 7  Location 2D time series data array
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With the 2D data array for each object, the double-layer LSTM (dLSTM) is designed 
to reduce unstable bounding boxes. In order to achieve better performance, we might 
use a longer LSTM module, however, it would increase some unnecessary delay of track-
ing. As shown in Fig.  8, the double-layer LSTM (dLSTM) refiner contains K-element 
hidden state vectors with T time instants. The fully connected layer take h(2)T  , the Tth 
hidden state vector of the second LSTM layer and output 4-point prediction position 
of bounding box, X̃ . As stated in (17), the dLSTM network inputs a series of bound-
ing box data Xt for for t = 1, 2, …, T. In Fig. 8, c(l)t  and h(l)t  denote the cell and the hidden 
states of the lth layer at the tth time step of the dLSTM model, respectively. To make the 
model deeper for more accurate earnings [30, 31], we stack two LSTM layers to achieve 
better time series prediction and avoid long delay simultaneously. As stated in (6), the 
first LSTM layer inputs the location data array L in chronological order. It generates the 
K-dimension hidden state h(1)t  and the K-dimension cell state c(1)t  . Then, we will output 
hidden state features of the first LSTM layer as the inputs of the second LSTM layer. In 
the dLSTM refiner, the hidden state h(l)t  is treated as the decision output and the cell 
state c(l)t  gets the updates from the output of the previous step h(l)t−1 . The second LSTM 
only returns the last step of its output sequences for dropping the temporal dimensions. 
Finally, the second LSTM layer followed by the fully connected layer interprets the K 
feature vector to the predicting location X̃ learned by the dLSTM module.

To train dLSTM module, the IoU-location loss, which combines intersection over 
union (IoU) and position mean square error (MSE) losses as

where Xi and Xi denote the locations of the predicted and ground truth bound-
ing boxes, respectively. In (18), the IoU, which represents the ratio of intersection and 
union of the predicted and groundtruth bounding boxes, gives 0 < IoU < 1. Thus, we use 
− log(IoU) as the first loss function. In addition, the mean square error (MSE) of Xi and 
Xi is used for the coordination loss function. To balance IoU and MSE loss functions, 
we need to select α and β for a better combination. After the training process, it is noted 
that the dLSTM refiners with the same weights are used for all detected objects in this 
paper.

(18)LdLSTM = −α ·
1

n

n
∑

i=1

log(IoU(Xi,Xi))+ β ·
1

n

n
∑

i=1

∥

∥Xi − Xi

∥

∥

2
,

Fig. 8  The detailed structure of dLSTM object refiner
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3.5 � Object tracking status

For each detected object, as shown in the bottom part of Fig. 2, we need to constantly moni-
tor the object tracking condition, which could be a newly-appeared, tracked, or disappeared 
object. The tracking status will help to control the dLSTM refiner correctly. Not only the 
bounding boxes, we also need adopt the occurrence and conditional probabilities, as shown 
in the bottom part of Fig. 2, for effective object tracking. We assume that we have already 
initiated P dLSTM refiners to track P priority objects. For each detected object at instant T, 
from the iYOLO, we have collected the tracking information:

1.	 Priority Index: p,
2.	 Input Data Array: {X1,X2,X3 . . . ,XT },
3.	 Output Predict Data: X̃T ,
4.	 T sets of top five confidences given by the iYOLO: { p(i∗) , i*}, for i* = 1, 2, …, 5,

where i* carries the index of the top i class and p(i∗) = Cb
i∗p

b , which records the confidences 
of top five classes. As shown in Fig. 9, there are four possible conditions of confidence plots 
in practical applications, where Thp denotes the detection threshold of confidence. With all 
outputs of the detected object collected from the iYOLO, the status of the dLSTM refiner 
can be determined as the follows:

At T + 1 instant for a detected object, whose the confidence estimated by the iYOLO is 
higher than the threshold, we need to first distinguish that the object is a newly-appearing 
(red solid line) or stably-tracked object (red-dash line) as shown in Fig. 9. With the same 
priority index, we first check the IoU of bounding boxes of the object obtained at T and 
T + 1. If the IoU of two consecutive bounding boxes is greater than a threshold and the 
object is with the same class, we then determine this object as the stably-tracked one. In 
this case, we need to update the collected information by left-shifting data array as,

and top five confidences.
If the IoU of the current and previous bounding boxes is lower than the threshold or the 

class index is different, we then treat it as a newly-appeared object. In this case, we need ini-
tialize a new dLSTM refiner and a new set of data array with the same XT+1 as

(19)Xt = Xt+1, for t = 1, 2, . . . ,T ,

Fig. 9  Confidence plots of gradually-appearing, stably-tracked, unstably-detected and 
gradually-disappearing objects
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We store the new set of top five confidences with the same { p(i∗) , i*}, for i = 1, 2, …, 5. 
The newly-appeared object becomes the tracked object in the next iterations. For both 
tracked and newly-appeared cases, we entrust the detection ability of the iYOLO. Once the 
iYOLO decides it as the positive confidence, which is greater than the threshold, it must be 
an active object. It is noted that the dLSTM refiner will not change the detection perfor-
mance for the stably-tracked (red-dash line) and newly-appearing (red-solid line) object. 
For these two cases, the miss-detected (MD) counter will be reset to zero shown in the bot-
tom part of Fig. 2 and the dLSTM refiners are actually used to refine the tracked bounding 
boxes.

For a dLSTM refiner, we hope not only to improve the accuracy of bounding boxes but 
also to raise the detection performance for gradually-disappearing (blue-dash line) and 
unstably-tracked (blue-solid line) conditions as shown in Fig. 9 while the dLSTM refiner 
obtains the miss-detected information from iYOLO. Based on the fact of no-sudden-dis-
appeared objects, we will not turn off the dLSTM refiner at once if the miss-detection case 
happens. To improve the detection performance, we further design a miss-detected (MD) 
counter, which is reset to zero if the iYOLO actively detects the object, which possesses 
sufficient confidence with a bounding box. Once the detected object does not have large 
enough confidence at some instants, we will increase MD counter of the tracked object by 
one until MD is larger than the miss-detection threshold, Nmis. When MD ≤ Nmis, the track-
ing system will still treat the object as a tracked object but in the “unstably-detected” condi-
tion. For any unstably-detected object, the system will give the output of the dLSTM refiner 
as the compensation, i.e., X̂T+1 = X̃T . Once MD > Nmis, the tracking system will delete the 
object and stop the dLSTM refiner hereafter. In general, we can improve the detection per-
formance for unstably-detected and gradually disappeared conditions as shown in Fig. 9.

If the detected object is with a larger bounding box, it should not disappear in a shorter 
time. On the contrary, the object is with a smaller bounding box, it could be closer to the 
disappearing case. As shown in Fig. 2, we suggest the adaptive missed-detection counting 
(AMC) threshold as:

where AT = wThT denotes the area of the latest bounding box of the detected object by 
the iYOLO before T time instant. To terminate the dLSTM refiner, the AMC thresh-
old will set to Nmis = 10, 5, and 2 for large, middle, and small detected bounding boxes, 
respectively. With the AMC threshold, we could help to raise the detection rate and 
properly avoid the false positive rate. Since the dLSTM refiner will take 10 sets of bound-
ing boxes from iYOLO, i.e., T = 10, we choose the AMC threshold, Nmis to be 10, 5, and 2 
for large, middle, and small detected bounding boxes empirically. With the above adap-
tive confidence threshold, we could recover the miss-detected object, which could be 
frequently disturbed by various environmental changes. Since the dLSTM module needs 
the data vectors of consecutive bounding boxes of the detected object, for the miss-
detected object, we will replace the output of the iYOLO with X̂T+1 = X̃T.

(20)Xt = XT+1, for t = 1, 2, . . . ,T ,

(20)Nmis =







10, for AT ≥ Amax,
5, for Amax > AT ≥ Amin,
2, for Amin > AT .
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4 � Results and discussion
With 1280 × 720 videos, the proposed object detection and tracking system and the 
other systems are implemented in Python 3.5 and Keras 2.1.5 with Tensorflow 1.4.0 
backend as the deep learning function library. We used a personal computer with Intel 
Core i5-8400 CPU 2.8 GHz, 16 GB 2400 GHz RAM for the hardware system. The iYOLO 
and dLSTM networks utilize NVIDIA Geforce GTX 1080 8G to accelerate the testing 
and training speeds.

To evaluate detection performances, we started from COCO pre-trained weights and 
then combined the KITTI dataset [36] and a self-build dataset collected in the Taiwan-
ese highway to train the vehicle detectors. Since we focus on the vehicle detection and 
tracking on Taiwanese highway traffic roads, we labeled cars, buses and trucks as a sin-
gle vehicle class. In the KITTI dataset, we filtered out the images that don’t contain any 
vehicles to obtain 7480 images. In the self-build dataset, the testing videos, we collected 
2635 images in day and night with various conditions of tunnel, shading and weather 
conditions from the Taiwanese highway. The original resolutions of the KITTI and self-
build dataset are 1224 × 370 and 1280 × 720, respectively.

To balance the loss functions stated in (10), we set �loc = 5, �obj = 1, �noobj = 0.5 and 
�cls = 1 in training process. Table 1 shows the details of all the comparing detection net-
work models with 5 model indices. With model indices #1 and #2, the “SSD COCO” and 
“YOLOv2 COCO” models are pre-trained with the COCO database, respectively. With 
model index #3, the “YOLOv2 Re-trained” model denotes the VOLOv2 is re-trained 
by combining original automobile-related classes to one vehicle class and includes the 
“self-build dataset” collected in Taiwanese roads in training. With model index #4, the 
“YOLOv2_Reduced” model denotes that VOLOv2 has been eliminated three sets of two 
repeated 3 × 3 × 1024 convolution layers. With model index #5, the “Proposed iYOLO” 
model shown in Fig. 5, the final feature of the “YOLOv2_Reduced” model concatenates 
with two additional low-level features for object detection.

For the dLSTM refiner depicted in Fig.  8, we capture the trajectory of the moving 
objects from the video sequences for training. The trajectory is labeled by a sequence 
of (x1, y1, x2, y2) , where (x1, y1) and (x2, y2) are top-left and right-bottom corners of the 
bounding boxes of the detected object, respectively. The moving object is characterized 
by the vehicle’s trajectory. There are 27 video sequences which contain 8100 location 
sequences.

Table 1  Details of comparing detection network models

Model index Network model Self-build dataset Drop weights Low-
level 
features

1 SSD-COCO – – –

2 YOLOv2-COCO – – –

3 YOLOv2_Re-trained ✓ – –

4 YOLOv2_Reduced ✓ ✓ –

5 Proposed iYOLO ✓ ✓ ✓
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4.1 � Vehicle detector by iYOLO

For practical applications in Taiwan, the experimental results for the vehicle detections 
in the Taiwanese dataset are demonstrated. Generally, the YOLOv2 achieves an excel-
lent performance in object detection and has good speed in computation. However, it is 
not robust for detecting vehicles for some cases. In the testing phase, there are 10 vid-
eos with 3150 frames which contain 10,707 vehicles. In detection, the true positive rate 
(TPR) and false positive rate (FPR) are respectively given as:

The F1-score is defined as

where FNR denotes false negative rate. Table  2 shows the performances achieved by 
the proposed iYOLO and the other detection models enlisted in Table  1. In Table  2, 
the YOLOv2 with model index #2 trained on COCO dataset has poor detection per-
formances in Taiwanese highway dataset since the COCO dataset does not match up 
with the true scenarios in Taiwan. Since the “YOLOv2_Re-trained” model with model 
index #3 deals with one combined-vehicle class and is retrained by the self-build data-
set, it can improve the detection rate and false positive rate. The “YOLOv2_Reduced” 
with model index #4 after network reduction achieves better detection rate but performs 
worse in false positive rate. Finally, we found that the proposed iYOLO with model 
index #5 concatenated with two low-level features achieves the best performance. If we 
slightly increase the input size to 448× 448 , we can further improve the detection and 
false positive rates simultaneously. Two detected examples for YOLOv2 with COCO, 
YOLOv2_re-trained, YOLOv2_reduced and the proposed iYOLO are visually exhibited 
in Fig. 10. The results also demonstrated that the proposed iYOLO performs better than 
the others.

4.2 � Vehicle detection with dLSTM refiner

To evaluate the tracking performances achieved by the dLSTM refiner after the pro-
posed iYOLO network, we first setup the experiments and determine the parameters, {α, 

(22)TPR =
Detected Objects in Total Frames

Number of Objects in Total Frames
,

(23)FPR =
Number of False Positives

Number of Total Frames
.

(24)F1 - score = (2 · TPR)/(2 · TPR+ FNR+ FPR),

Table 2  Performance comparisons of various detection networks

Bold indicates better results

Model index Input Size Detection rate (%) False positive (%) F1-score (%)

1 300 × 300 61.83 15.49 71.13

2 416 × 416 54.40 2.52 70.94

3 416 × 416 65.28 1.09 79.97

4 416 × 416 73.77 6.95 82.34

5 416 × 416 78.30 5.19 86.09

5 448 × 448 87.08 0.75 93.62
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β}, and {Amax, Amin} stated in (18) and (21), respectively. The training dataset of dLSTM 
refiner is collected from self-build traffic trajectory dataset with sequential data arrays 
of (x1, y1, x2, y2) . With random error deviations of groundtruth, the dLSTM model is 
trained for 15,000 epoches using ADAM optimizer with a learning rate 0.0001. Unlike 
traditional classification and detection training, which involves images, the trajectory 
datasets in sequential data arrays will not take too much time. During the training, the 
many-to-one LSTM strategy is used where the time steps set to T = 10. In other words, 
for every 10 time steps of training data, there will generate a corresponding ground truth 
location. In the testing phase, we inherit the iYOLO testing videos which have 10 videos 
with 3150 frames. There are total 10,828 vehicles in these frames.

Since the loss function plays an important role in training the dLSTM refiner, we 
should first determine the weighting parameters defined in (18). We should find a bet-
ter loss function which could effectively use both MSE location loss and IoU loss. In 
the experiments, we adopted the direct object status determination with fixed with fixed 
Nmis = 30. Table 3 shows the detection performances with different sets of α and β. The 
results show that α = 1 and β = 0.5 could achieve the best performance.

With α = 1 and β = 0.5, we need to design a suitable adaptive missed-detection count-
ing (AMC) threshold to help the dLSTM refiner better. As stated in (21), we need to 
determine a better pair of {Amax, Amin}, which can help to achieve the best performance 
with a higher detection rate and a lower false positive rate. The performances of AMC 
strategy with different pairs of {Amax, Amin} are shown in Table  4. For image size of 
448 × 448, we found that the AMC strategy with Amax = 5000 and Amin = 1000 can help 

(a-1)

(b-1) (c-1) (d-1)

(a-2)

(b-2) (c-2) (d-2)

Fig. 10  Detection examples achieved by: a YOLOv2 with COCO; b YOLOv2_Re-trained; c YOLOv2_Reduced 
and d the proposed iYOLO
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the proposed dLSTM refiner to achieve the best performance. With the AMC strategy, 
we successfully reduce the false positive rate to avoid the unreasonable time extension 
for those small missing objects. With α = 1 and β = 0.5 and the AMC threshold with 
Amax = 5000 and Amin = 1000, the proposed adaptive confidence threshold can help the 
proposed dLSTM refiner to achieve the best performance.

4.3 � Vehicle detection performances with dLSTM

To evaluate the vehicle tracking performance improved by the dLSTM, Table 5 shows 
the detection rates, false positive rates and F1-scores achieved by the iYOLO and 
the iYOLO and dLSTM with/without controlling by AMC threshold. The simula-
tion results show that the dLSTM refiners significantly improve the detection rate. 

Table 3  The comparison of different α and β weighted in training the dLSTM Tracker based on the 
iYOLO results

Bold indicates better results

Test case α β Detection rate (%) False positive rate 
(%)

F1-score (%)

(a) 0 1 72.67 29.23 71.98

(b) 0.25 1 91.62 6.22 92.62

(c) 0.5 1 91.86 5.81 92.94
(d) 0.75 1 91.48 6.36 92.48

(e) 1 0 91.53 6.31 92.53

(f ) 1 0.25 91.79 6.05 92.79

(g) 1 0.50 91.71 6.13 92.71

(h) 1 0.75 91.76 6.09 92.76

(i) 1 1 91.83 6.01 92.83

Table 4  The comparison of AMC threshold with different sets of {Amax, Amin} for the dLSTM refiner

Bold indicates better results

AMT strategy Amax Amin Detection rate 
(%)

False positive rate 
(%)

F1-score (%)

Direct – – 91.86 5.81 92.94

(a) 20,000 2000 91.86 5.81 92.94

(b) 10,000 2000 91.40 3.11 93.47

(c) 5000 1000 92.19 2.57 93.63

Table 5  Experimental results with dLSTM refiners with different threshold settings

Bold indicates better results
a Amax = 5000 and Amin = 1000

Network models Detection rate (%) False positive rate (%) F1-score

iYOLO-only 87.08 0.75 93.62

iYOLO + dLSTM with fixed Nmis = 14 91.86 5.81 92.94

iYOLO + dLSTM with AMC Thresholda 92.19 2.57 93.63
YOLO-v4 96.22 7.13 96.96
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The dLSTM refiner physically tries to infer the existence of the vehicle, which has 
been tracked. If the tracked vehicle becomes disappeared, the dLSTM refiner will 
not release it at once. That is why the proposed tracking method could have a larger 
false positive rate (FPR). With the help of the AMC threshold, the proposed method 
can reduce the FPR more. It is noted that all the false positive cases are the fast-dis-
appeared vehicles, which are with fast speed. For those cases, the proposed method 
actually will not cause any safety problem of driving since those vehicles in a distance 
are fast away from the target driver. It is interesting that YOLO-v4 has highest accu-
rate detection rate, however, it also has highest FPR at the same time. The blinking 
false cases in YOLO-v4 are suddenly-appeared vehicles mostly. The FPR of YOLO-v4 

(b) Results detected by iYOLO with dLSTM trackers

(a) Results detected by iYOLO

Time 

Fig. 11  Visual results of video set #1 achieved by: a iYOLO detector only; b the iYOLO with dLSTM refiners

Time 

(b) Results detected by iYOLO with dLSTM trackers

(a) Results detected by iYOLO

Fig. 12  Visual results of video set #2 achieved by: a iYOLO detector only; b the iYOLO with dLSTM refiners
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could be reduced if it conducts the same improving procedures and cooperates with 
the dLSTM refiners.

Figures 11 and 12 show two visual simulation results for video set#1 and set#2, respec-
tively. The iYOLO cannot detected small vehicles occasionally, however, the iYOLO with 
dLSTM can successfully tracked the results. In summary, the proposed dLSTM refiner 
can help to compensate the frames that the vehicles are not detected properly. The 
dLSTM refiner solves the blinking issues caused by the miss-detecting bounding boxes 
and successfully achieves the multiple objects tracking with the support of the decision 
system stated in Fig. 2. With better performances, the proposed vehicle detection and 
tracking system can achieve 21 frames per second, which reaches the nearly real-time 
requirements.

5 � Conclusion
In this paper, we proposed a robust object detection system by introduction of the dou-
ble-layer long short-term memory (dLSTM) refiner. We started from the YOLO-v2, the 
improved YOLO (iYOLO) vehicle detector is achieved by parameter reduction, com-
bined-vehicle class and concatenating two low-level features. With the training data in 
the combination of the KITTI and self-build Taiwanese highway traffic datasets, we can 
raise the vehicle detection rate much higher. Finally, we further proposed the dLSTM 
refiner, which needs the multi-object association rule and the adaptive missed-detec-
tion counting (AMC) threshold method to improve its performances. The multi-object 
association rule can help to successfully collect the time series detection results of the 
objects while the AMC threshold can help to reduce the false positive rate for tracking 
vehicles. Simulation results show that the proposed system can successfully track the 
temporal locations to compensate miss-detected bounding boxes for unstably-detected 
and gradually-disappearing objects. Since the dLSTM refiner acts as a temporally pre-
dictor in uses of past detected bounding boxes, we can obtain more precise detection 
results than those achieved by the original object detector. However, we cannot gain 
any benefits for gradually-appearing objects, which have lack of the prior information. 
The improvements of the object detector and the designs of the dLSTM refiner can be 
applied to any latest object detectors.
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