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1  Introduction
The Internet of Things (IoT) involves many aspects and can be applied in some fields 
such as energy, transportation, and manufacturing [1, 2]. It can effectively promote 
the intelligent development of these areas, and make the limited resources more 
reasonable to use [3]. With the development of the IoT, the millimeter wave radar 
sensing [4] has been received widespread attention. In recent years, the automotive 
millimeter wave radar [5, 6] has been rapidly penetrated and developed in the fields of 
internet of vehicles [5], Artificial Intelligence (AI)-based autonomous driving [6], etc. 
The automotive millimeter wave radar with multiple transmitting antennas and mul-
tiple receiving antennas can reasonably allocate resources according to the different 
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With the development of radar technology, the automotive millimeter wave radar is 
widely applied in the fields including internet of vehicles, Artificial Intelligence (AI)-
based autonomous driving, health monitoring, etc. Eye blink, as one of the most com-
mon human activities, can effectively reflect the person’s consciousness and fatigue. 
The contacted eye blink detection often leads to uncomfortable experience and 
the camera-based eye blink detection has privacy issues. As an alternative, the non-
contacted eye blink detection based on automotive millimeter wave radar resolves the 
aforementioned issues and has been received much attention. This paper proposes 
an eye blink detection method using the frequency modulated continuous wave 
radar. Firstly, the position of the person’s head is estimated by carrying out fast Fourier 
transform on the intermediate frequency signal, and the signals of the range bins at 
the head are extracted. Then, the complete ensemble empirical mode decomposition 
with adaptive noise algorithm is applied to decompose the eye signals into a series of 
intrinsic mode functions (IMFs), and the singular value decomposition is adopted to 
constrain the selection and reconstruction of the useful IMFs related to the eye blink 
signal. Finally, the short-time Fourier transformation and cell average constant false 
alarm rate are applied to detect the eye blink behavior. Experiments are carried out to 
validate the effectiveness of the proposed eye blink detection method.

Keywords:  Millimeter wave radar, Eye blink detection, CEEMDAN, SVD, STFT

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Shu et al. 
EURASIP Journal on Advances in Signal Processing          (2022) 2022:9  
https://doi.org/10.1186/s13634-022-00841-y

EURASIP Journal on Advances
in Signal Processing

*Correspondence:   
yongwang@cqupt.edu.cn 
School of Communication 
and Information 
Engineering, Chongqing 
University of Posts 
and Telecommunications, 
Chongqing, China

http://orcid.org/0000-0001-5061-8173
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00841-y&domain=pdf


Page 2 of 18Shu et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:9 

requirements, so as to realize corresponding functions [7, 8]. And with the increasing 
demand for health monitoring [9, 10], physiological signs detection based on automo-
tive millimeter wave radar has been received a lot of attention. Physiological signals, 
such as heart signal, breath signal, blink signal, etc., can reflect the fatigue, attention, 
stress, or consciousness level of the person [11, 12]. Since the eye blink motion is one 
of the most natural and frequent human activities, the eye blink detection is an effec-
tive way to measure fatigue and concentration. Hence, the eye blink detection has 
been researched widely [13, 14]. Electro-Oculogram [15], as a common blink detec-
tion method, mainly relies on the contacted devices. The eye blink motion is detected 
by attaching electrodes to the human skin near the eyes to measure potential changes 
between the electrodes. However, attaching electrodes to the skin causes abrasion, 
leading to uncomfortable user experience.

On the other hand, non-contacted eye blink detection usually relies on vision devices 
[16, 17]. It applies the camera to capture the image sequences that contain eye blink 
motion, and achieves eye blink detection by using computer vision technology. AL-Gaw-
wam et al. [17] use facial feature trackers to localize the contours of the eyes and eyelids. 
They measure the range between the eyelids to obtain the opening state of the eyes, and 
the rapid change of the range between the eyelids is detected as an eye blink. Although 
the vision-based eye blink detection method improves user’s natural experience, the 
expensive cost, light sensitivity and privacy issues should be addressed.

As an alternative, the non-contacted eye blink detection based on radar resolves the 
aforementioned issues. The Doppler sensors are widely applied for eye blink detection 
[18–20]. Specifically, Tamba et al. [18] apply the Doppler sensor with setting the thresh-
olds of the blink width and height for each person to reduce the influence of individual 
differences. Kim [19] adopts the principal component analysis to distinguish conscious 
and unconscious eye blink using a 5.8 GHz Doppler sensor radar. Yamamoto et al. [20] 
estimate the eye blink duration time by analyzing the eyelids, closing and opening 
behavior on the spectrograms. Compared to Doppler sensors, the frequency modu-
lated continuous wave (FMCW) radar at the millimeter frequency range has significant 
advantages in the fields of target detection [21], vital signs detection [22], driver’s behav-
ior detection [23], hand gesture recognition [24], and so on. Cardillo et al. [25] apply a 
120 GHz FMCW radar to realize the head motion and eye blink detection. However, the 
authors only use the range information of the eye blink motion, the Doppler information 
is not mentioned.

Therefore, in this paper, we focus on the non-contacted eye blink detection and 
propose an eye blink detection method based on complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) with singular value decomposition 
(SVD) denoising using FMCW radar. The main contributions of this paper are con-
cluded as follows:

Firstly, the intermediate frequency (IF) signal is obtained by mixing and filtering the 
eye blink data. Then, the person’s head position is estimated by performing fast Fourier 
transform (FFT) on the IF signal, and the signals in the position interval are extracted.

Secondly, we propose an eye blink signal reconstructed method by the CEEMDAN algo-
rithm combining with the SVD. The extracted signal is decomposed into a series of intrinsic 
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mode functions (IMFs) by CEEMDAN algorithm. Then, SVD is applied to constrain the 
selection and reconstruction of the useful IMFs for eye blink signal reconstruction.

Thirdly, the short-time Fourier transformation (STFT) is performed on the reconstructed 
eye blink signal, and the eye blink detection is realized by the cell average constant false 
alarm rate (CA-CFAR).

Finally, we carry out a series of experiments to verify the effectiveness of the proposed eye 
blink detection method. Experimental results show that the proposed method can success-
fully detect the eye blink motion.

The rest of this paper is organized as follows. In Sect. 2, the principle of FMCW radar 
is described. In Sect. 3, the proposed eye blink detection method is introduced in detail. 
The experimental results are analyzed and discussed in Sect. 4. The conclusion is drawn in 
Sect. 5.

2 � FMCW radar principle
In this section, the principle of FMCW radar is first described (shown in Fig. 1). The radar 
system mainly contains several parts such as signal source, transmitting antenna (TX), 
receiving antenna (RX), mixer, low-pass filter (LPF), ADC sampler (A/D), etc. The signal 
source is responsible for generating the FMCW signal. The TX and RX are responsible for 
the transmission and reception of the signal. The received echo signal and the transmitted 
signal are mixed by the mixer, and passed through a LPF to obtain the IF signal. Finally, the 
IF signal is sampled by A/D sampler for further processing.

In this paper, we adopt sawtooth modulation and the transmitter transmits modulated 
sawtooth microwave (shown in Fig. 2) [23], which is expressed as

where fc is the carrier frequency, fT(τ ) = S · τ indicates that the frequency of the trans-
mitted signal within a period of time, S = B

/

Tc is the slope of the chirp signal, B is the 
maximum bandwidth of the signal, Tc is the pulse width of the chirp signal, and AT is the 
amplitude of the transmitted signal.

Let R be the range from the FMCW radar to the person’s head. The received echo signal 
can be expressed as

(1)ST(t) = ATe
j2π

(

fct+
∫ t
0 fT(τ )dτ

)

,

(2)SR(t) = ARe
j2π

[

fc(t−td)+
∫ t
0 fR(τ )dτ

]

,

Fig. 1  The system structure of FMCW radar



Page 4 of 18Shu et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:9 

where AR is the amplitude of the received signal, td = 2R
/

c is the signal delayed time 
from transmission to reception, c is the light speed, fR(t) = S · (t − td)+�fd , and �fd is 
Doppler shift.

The received signal SR(t) and the transmitted signal ST(t) are sent to the mixer and 
passed through a LPF, then the IF signal can be expressed as

where fIF = S · td . Specifically, the eye blink signal is contained in the IF signal. There-
fore, to detect the eye blink, the IF signal needs to be processed and analyzed.

3 � Methods
In this section, we present the proposed eye blink detection method in detail. The flow-
chart of the proposed method is shown in Fig. 3. Firstly, the range FFT is performed on 
the IF signal to determine the position interval of the human head, and the signals in this 
position interval are extracted. Then, the extracted signal is decomposed into a series 
of IMFs by CEEMDAN algorithm. Next, the SVD is applied on each IMF signal to con-
strain the selection and reconstruction of the useful IMFs to reconstruct the eye blink 
signal. Finally, the STFT is performed on the reconstructed eye blink signal and the CA-
CFAR is applied to detect the eye blink.

3.1 � Signal extraction

We place the FMCW radar directly in front of the person’s head and eyes, so the received 
signals mainly include the eye blink signal, the signals from other facial parts and noise 
signals. Therefore, we need to obtain the all signals located at the distance R for extract-
ing the eye blink signal. Then, we firstly need to estimate the position information of the 
head. According to td = 2R

/

c and fIF = S · td , the corresponding relationship between R 
and fIF is

(3)SIF(t) =
1

2
ATARe

j2π[fctd+(fIF−�fd)t],

Fig. 2  The schematic diagram of the radar signal
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Therefore, to obtain the range information of the head, it is necessary to analyze the IF 
signal and estimate the frequency fIF . Firstly, the IF signal is sampled by A/D and the 
FFT is performed on sampling points of each chirp to obtain range information of the 
head. We assume for simple calculation, the sampled signal and transformed signal after 
FFT are [24]

where M is the number of transmitted chirps, N is the number of sampling points, 
p = 0, 1, . . . ,N − 1 , the Ts is the sampling time and Tc = NTs . Therefore, when the 
absolute value |S1| wants to reach the maximum, it needs to satisfy p =

(

fIF −�fd
)

NTs . 

(4)R =
c · fIF

2S
=

c · Tc

2B
fIF.

(5)SIF(n) =

M−1
∑

m=0

N−1
∑

n=0

ej2π[fctd+�fdmTc+(fIF−�fd)nTs],

(6)S1(p) =

M−1
∑

m=0

N−1
∑

n=0

ej2π{fctd+�fdmTc+[(fIF−�fd)Ts−
p
N ]n},

Fig. 3  The flowchart of the proposed method
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Because of fIF ≫ �fd , we can roughly obtain fIF ≈ p
/

NTs after FFT and the range value 
of the head can be obtained according to Eq. (4). Then, the signals located at the esti-
mated range are extracted as the signal x(t) that includes the eye blink signal, the signals 
from other facial parts and noise signals.

where t = mTc , m = 0, 1, . . . ,M − 1 , and p = n1 while |S1| reaches the maximum.
In addition, considering the sampling of FMCW radar signal, the maximum measur-

ing range can be expressed as

The maximum measuring range is 8.55 m when the parameters of FMCW radar are 
adopted in the experiments.

3.2 � CEEMDAN algorithm

Due to the interference of the face and the environmental noise, the eye blink signal is 
too weak to be detected. Therefore, it is necessary to remove the interference and the 
noise to enhance the eye blink signal. The empirical mode decomposition (EMD) algo-
rithm [26] is usually applied to denoise the weak vital signals. EMD decomposes the raw 
signal into several IMFs, and it realizes denoising by removing the noisy IMFs [26]. How-
ever, the EMD algorithm usually leads to the problem of the modal aliasing. Towards 
this end, the ensemble empirical modal decomposition (EEMD) algorithm [27] adds dif-
ferent white noises into the raw signal, and performs multiple EMD on the noisy signal 
and averages the IMFs of multiple EMD to obtain the final IMFs. Furthermore, the SVD 
is often used in conjunction with EEMD for constraining the selection and reconstruc-
tion of the useful IMFs [28]. However, the EEMD algorithm cannot completely eliminate 
the influence of white noise on the decomposition results. The CEEMDAN algorithm 
[29] adds a finite number of adaptive white noises at each stage of the decomposition 
process of EMD, which effectively solves the problems of EEMD. Therefore, we apply the 
CEEMDAN algorithm to decompose the extracted signal for signal denoising.

The white noise ng (t) , g = 1, 2, . . . , G with a standard normal distribution is added 
to the extracted signal x(t) , and the EMD is applied on the added signal to obtain the 
IMF

g
1(t) . Then, IMF1(t) can be computed as

where IMF1(t) represents the first IMF component, and the first remaining component 
r1(t) can be derived as

 Then, the white noise is continuously added the remaining component r1(t) for obtain-
ing IMF2(t) . This step is repeated until the remaining component is a monotonic 

(7)x(t) = ej2π[fctd+�fdt+(fIF−�fd)n1Ts],

(8)Rmax =
cTc

2B
Fs.

(9)IMF1(t) =
1

G

G
∑

g=1

IMF
g
1(t),

(10)r1(t) = x(t)− IMF1(t).
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function. Finally, the extracted signal x(t) is decomposed into a series of IMFs using 
CEEMDAN algorithm, that is

where J is the number of IMFs, IMFj is the j-th IMF, and rJ (t) is the residual component 
of the signal after decomposing. The process of CEEMDAN algorithm is concluded in 
Table  1. It can be seen from Table  1 that the signal is decomposed into J IMFs and a 
residual component rJ (t) by CEEMDAN algorithm.

Each IMF represents different frequency component of the IF signals. Assuming that 
the useful signal and noise are distributed in different IMFs, the useful IMFs can be 
reconstructed by removing the noisy IMFs expressed as follows:

where x̂(t) is the denoised signal, and Ju is the number of the useful IMFs.

3.3 � Eye blink signal reconstruction using SVD

After CEEMDAN decomposing, the SVD [28] is adopted to constrain the selection and 
reconstruction of the IMFs. By applying the SVD, the IMFs related to the eye blink are 
selected and reconstructed, so as to obtain the eye blink signal from the extracted sig-
nal. In addition, the interference is removed in the selection process of IMFs, and each 
selected IMF is denoised during the reconstruction process.

Since the extracted signal is first decomposed into several IMFs by the CEEMDAN 
algorithm, and each IMF can be expressed as

where N is the temporal sampling number of the IMF.
Then, the Hankel matrix Hj of each IMF can be constructed as

(11)x(t) =

J
∑

j=1

IMFj(t)+ rJ (t),

(12)x̂(t) =

Ju
∑

j=1

IMFj(t),

(13)Mj =
[

IMFj(1), IMFj(2), . . . , IMFj(N )
]

,

Table 1  IMFs extraction with CEEMDAN algorithm

Input: the extracted signal x(t)

Decompose:

   1. Add the white noise ng(t) with a standard normal distribution to x(t): xg(t) = x(t)+ ng(t),

   g = 1, 2, . . . , G . Then, apply the EMD on xg(t) to obtain the IMF
g
1(t).

   Thus, IMF1(t) =
1
G

∑G
g=1 IMF

g
1(t) , and r1(t) = x(t)− IMF1(t).

   2. Add ng(t) with a standard normal distribution to r1(t) : r
g
1 (t) = r1(t)+ ng(t),g = 1, 2, . . . , G.

   Then, obtain the IMF
g
2(t) like step 1. Thus, IMF2(t) =

1
G

∑G
g=1 IMF

g
2(t),

   and r2(t) = r1(t)− IMF2(t).

   3. Repeat the above decomposition process, until rJ(t) is a monotonic function.

end

Output: x(t) =
∑J

j=1 IMFj(t)+ rJ(t).
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 where m =
⌊

N
/

2
⌋

+ 1 , n = N −m+ 1 , TH is the Hankel matrix construction operator, 
and └┘ means Floor operation. By applying the SVD to Hj , Hj can be expressed as

where U and V are the orthogonal matrices, � = diag(σ1, σ2, . . . , σr) , r and σi are the 
rank and the singular value of Hj , respectively.

The singular values represents the signal coherence in each IMF. The larger singular 
value represents the effective signal with better coherence. Therefore, the difference of 
the signal coherence is used as the criterion to select useful IMFs to reconstruct the eye 
blink signal.

The normalized singular spectrum energy p
(

j
)

 of the j-th IMF is

where E
(

Hj

)

=
∑r

i=1 σ
2
i  is the singular spectrum energy.

Based on the energy probability theory [28], the energy probability of the singular 
spectrum q

(

j
)

 is defined as follows:

Since the singular spectrum energy of the useful IMFs is different with the noisy IMFs 
[28], it can be regarded as the criterion for selecting the useful IMFs.

Moreover, due to the influence of white noise, the selected IMFs may retain the noise 
which may have the same frequency as the useful signals. In generally, the r singular 
values are sorted in descending order, and the k largest singular values are remained to 
reconstruct the Hankel matrix, that is

where the rank of � is k.
Then, the new Hankel matrix Ĥj can be reconstructed as

where Tk represents the reconstruction operator of the new Hankel matrix Ĥj.
Therefore, the final reconstructed eye blink signal s(t) after denoising can be written as

where T−1
H  is the inverse of the Hankel matrix construction operator.

(14)Hj =









IMFj(1) IMFj(2) · · · IMFj(n)
IMFj(2) IMFj(3) · · · IMFj(n+ 1)

...
...

...
...

IMFj(m) IMFj(m+ 1) · · · IMFj(N )









= THMj ,

(15)Hj = Um×m�m×nV
T
n×n,

(16)p
(

j
)

=
E
(

Hj

)

∑J
j=1 E

(

Hj

)
,

(17)q
(

j
)

= −p
(

j
)

lg
[

p
(

j
)]

.

(18)� = diag(σ1, σ2, . . . , σk),

(19)Ĥj = Um×m�m×nV
T
n×n = TkHj ,

(20)s(t) =

Ju
∑

j=1

T
−1
H TkTHMj ,
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Furthermore, the process of the selection and reconstruction of IMFs using SVD is shown 
in Table 2. It can be seen from Table 2 that the SVD is applied to all IMFs, and the useful 
IMFs related to the eye blink are selected through the energy probability of the singular 
spectrum q(j) . The eye blink signal is finally reconstructed.

3.4 � Eye blink detection by STFT combining with CA‑CFAR

Although the eye blink signal has been reconstructed, it is still difficult to detect the eye 
blink in the time domain. Fortunately, the time-frequency analysis is usually performed for 
achieving the eye blink detection [30–32].

In this paper, the STFT is applied on the reconstructed eye blink signal s(t) , that is

where h(τ − t) is the window function.
After performing STFT, the time-frequency spectrum can be obtained. The Doppler fea-

ture of eye blink can be observed on the time-frequency spectrum, but it does not mean 
that the eye blink detection has been realized. Therefore, to achieve the eye blink detection, 
the CA-CFAR algorithm [33] is adopted to perform on the time-frequency spectrum.

For the CA-CFAR detector, noise samples are extracted from both leading and lagging 
cells around the cell under test (CUT). The noise power can be estimated as [34]

where Pn is the estimated noise power, I is the number of training cells and yi is the sam-
ple in each training cell.

Then, the detection threshold can be given by

(21)S
(

t, f
)

=

∫ ∞

−∞

s(τ )h(τ − t)e−2π f τdτ ,

(22)Pn =
1

I

I
∑

i=1

yi,

(23)T = αPn,

Table 2  IMFs selection and reconstruction using SVD

Input: The IMFs Mj , j = 1, 2, · · · , J

Process:

   1.  For each IMF, constructing the Hankel matrix Hj , and applying SVD to Hj , that is,

   Hj = Um×m�m×nV
T
n×n , and � = diag(σ1, σ2, . . . , σr).

   2.  According to the � , calculate E
(

Hj

)

 , p(j) and q(j) of each IMF.

   3. According to q(j) , select the Ju useful IMFs to be reconstructed.

   4. Remain the k largest singular values to reconstruct the Hankel matrix, that is

   � = diag(σ1, σ2, . . . , σk) , and the new Hankel matrix is reconstructed as

   Ĥj = Um×m�m×nV
T
n×n = TkHj

   5.  Obtain the reconstructed IMFs.

end

Output: Reconstructed eye blink signal s(t) =
∑Ju

j=1 T
−1
H TkTHMj.



Page 10 of 18Shu et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:9 

where T represents the detection threshold and α is a scaling factor. Then, we compute 
the power result for each CUT. If the calculation result of one CUT exceeds the thresh-
old T, this CUT is considered as an eye blink motion [35].

4 � Experimental results and discussion
In this section, we first introduce the FMCW radar and radar parameters used in the 
experiment. We carry out a series of experiments to verify the effectiveness of the pro-
posed eye blink detection method.

4.1 � Experimental specification

The experimental scene is shown in Fig. 4, where the person’s head and eyes are located 
at R ( R ≈ 20 cm) directly in front of the FMCW radar. The radar adopted in the experi-
ment is Texas Instruments AWR1642 as shown in the red device in Fig.  4, and it has 
two transmitting and four receiving antennas. The green equipment behind AWR1642 is 
DCA1000 and it is used for data acquisition.

The central frequency of the FMCW radar is 77 GHz, and the bandwidth is 4 GHz. 
The sampling frequency of the A/D sampler is set to 2 MHz. The pulse width of chirp 
is set to 114 microseconds ( µ s) and the time of one frame is set to 100 milliseconds 
(ms). We use 30 frames to collect the data of eye blink motion and the collection time 
is 3 seconds (s). Moreover, each frame contains 255 chirps and each chirp contains 200 
sampling points. The parameters of FMCW radar used in the experiments are listed in 
Table 3.

Fig. 4  The experimental scene
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4.2 � Experimental results and discussion

During the eye blink data collection stage, the head of the person is located stably in 
front of the FMCW radar, and the eyes are looking at the antennas of the radar. In the 
experiment, the IF data of eye blink in 3 s is collected. Then, by performing FFT on the IF 
signal, the range between the head and FMCW radar is estimated. The estimated result 
of range is shown in Fig. 5. It can be seen from Fig. 5 that the head is approximately 20 
cm in front of the radar, and keeps stable, which is consistent with the set conditions.

Since the signals at the range bin with strongest spectrum contain the eye blink 
motion, they are extracted for eye blink detection. In order to reduce the time complex-
ity of CEEMDAN decomposition, the extracted signal is averaged on every continuous 
five chirps. It should be noted that the time of one chirp is 114 μs, so the time of five 
chirps is 570 μs. The signals remain relatively stable in a short time. Then, the processed 
signal is decomposed by the CEEMDAN algorithm. The decomposition result is shown 
in Fig. 6. It can be seen from Fig. 6 that the IF signal is decomposed into seven IMFs and 
one residual signal. These IMFs are sorted from high frequency to low frequency.

Subsequently, the Hankel matrix of each IMF is constructed and SVD is applied to 
obtain the corresponding singular values, and the singular values of each IMF are as 

Table 3  Parameters setting for eye blink detection

Item Value

Carrier frequency 77 GHz

Bandwidth 4 GHz

Sampling frequency 2 MHz

Pulse width of chirp 114 µs

One frame time 100 ms

Collecting time 3 s

Number of frames 30

Number of chirps 255

Sampling points 200

0 0.5 1 1.5 2 2.5 3
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0

0.1

0.2

0.3

0.4
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0.6
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R
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m
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Fig. 5  The result of range estimation
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shown in Fig. 7. We also show the energy probability of the singular spectrum of each 
IMF in Fig. 8. It can be observed from Figs. 7 and 8 that the singular values and the sin-
gular spectrum energy probability of IMF5 to IMF7 are larger than other IMFs, and the 
respective frequencies of IMF5 to IMF7 are calculated which are close to 0 Hz. This is 
because the low frequency signals reflected from the face are more intense and the eye 
blink is so weak that the singular spectrum energy probability caused by the eye blink 
motion is small. Therefore, according to the principle of the CEEMDAN algorithm, we 
want to remove IMF5 to IMF7 for removing interference from the other facial parts, 
and select IMF1 to IMF4 as the useful IMFs to reconstruct the eye blink signal. In fact, 
the IMFs are selected for reconstruction with the rule that the energy probability of 
the singular spectrum is less than the threshold, where the threshold is set as the aver-
aged value of the sum of the energy probabilities of the singular spectrum of all IMFs. In 
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addition, it is noted that in the reconstruction process, the k largest singular values are 
selected for each useful IMF reconstruction. The selected IMFs are denoised during the 
reconstruction process.

Furthermore, the reconstructed eye blink signal, the IF signal and useful IMFs are 
shown in Fig. 9. The blue line represents the IF signal and the red line represents the 
reconstructed eye blink signal. The yellow line represents the useful IMFs which is 
the summation of IMF1 to IMF4. It can be seen from Fig. 9 that the IF signal has two 
obvious changes in amplitude, which are located at about 40 chirps and 1060 chirps, 
respectively. The amplitude change may be caused by the hardware device, the noise or 
the eye blink motion. By observing the IF signal and useful IMFs, it can be found that 
CEEMDAN algorithm can effectively denoise the signal by removing the noisy IMFs. 
However, the two amplitude changes are still obvious, which means that the useful IMFs 
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still contain the noise. Compared with the useful IMFs in Fig. 9, the amplitude change 
located at about 1060 chirps can be more clearly observed in the reconstructed eye blink 
signal, while the amplitude change at about 40 chirps is weakened. This is because the 
noise contained in each selected IMF is further removed during the reconstruction of 
the selected IMFs, so as to enhance the eye blink signal. Therefore, the amplitude change 
at about 40 chirps may be affected by the hardware device and noise, while the ampli-
tude change at about 1060 chirps may be caused by the eye blink motion.

Then, STFT is performed on the reconstructed eye blink signal to obtain the time-
frequency spectrum. We denote the result of STFT performing on IF signal by IF + 
STFT. The CEEMDAN + STFT represents the result of STFT performing on the recon-
structed useful signal of IMF1 to IMF4 by CEEMDAN algorithm, and the result of STFT 
performing on the reconstructed eye blink signal by CEEMDAN algorithm with SVD is 
denoted by CEEMDAN + SVD + STFT. To validate the effectiveness of the proposed 
algorithm, we compare the time-frequency spectrum with eye blink once and twice in 
3 seconds, and the results are shown in Figs. 10 and 11, respectively. It can be observed 
from Figs. 10a and 11a that the strong static interferences with zero frequencies from 
the face cause the eye blink motion difficult to observe. Since the CEEMDAN algorithm 
can remove the noise and interference of the signal, the strong static interference from 
the face can be eliminated and the eye blink signal can be reconstructed. Therefore, the 
time-frequency spectrum of CEEMDAN + STFT can be easy to detect the eye blink 
motion as shown in Figs. 10b and 11b.

Although the zero-frequency components can be effectively removed, the noise con-
tained in each IMF cannot be eliminated. The CEEMDAN algorithm combining with 
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SVD is proposed to reconstruct the eye blink signal, so as to remove the noise in each 
selected IMF. In fact, we can see from Figs. 10c and 11c that the interference is effec-
tively eliminated, and the eye blink motion can be observed clearly.

Finally, the CA-CFAR is performed on the time-frequency map to realize the blink 
detection. The detection results are shown in Figs.  10d and 11d. It can be clearly 
observed that there is one blink motion in 3 s in Fig. 10d and there are two blink motions 
in 3 s in Fig. 11d. The experimental results show that the results of the eye blink detec-
tion are consistent with the actual situation, so as to validate the effectiveness of the pro-
posed method.

5 � Conclusion
In this paper, we proposed an eye blink detection method using 77 GHz FMCW radar. 
Firstly, the FFT was performed on the IF signal to obtain the position of the head. The 
signals located in the position were extracted and the extracted signal was averaged 
every continuous five chirps. Then, the CEEMDAN algorithm was applied to decom-
pose the averaged signal into several IMFs, and the eye blink signal was reconstructed 
by using SVD to constrain the selection and reconstruction of the useful IMFs. Finally, 
the eye blink detection was realized by performing STFT and CA-CFAR on the recon-
structed eye blink signal. Furthermore, the experimental results proved the effectiveness 
of the proposed eye blink detection method. In the future, we will combine the eye blink 
detection with machine learning to achieve eye blink classification or fatigue detection.
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