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1 Introduction
1.1  Background

The multisensor information fusion technology uses computer to automatically analyze 
and synthesize the data from each sensor under certain criteria, so as to complete the 
required decision-making and estimation [1]. In recent years, the multisensor informa-
tion fusion estimation has received considerable attention because it’s performance in 
accuracy and stability has a significant improvement compared to the single sensor sys-
tem. According to whether raw data are directly utilized by the system, there are two 
most frequent information fusion techniques: distributed fusion and CF [2].
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Kalman filtering method is a powerful tool in estimation field since the convenience 
to calculate on the computer. It is an algorithm that uses the linear system state equa-
tion to obtain the estimation of the state through the system input and output observa-
tion data. Since the observation data include the noise and destabilization in the system, 
the optimal estimation can also be regarded as a filtering process. For the conventional 
Kalman filtering approach to work, we should know precisely the model parameters and 
noise variances of the system [3]. However, this condition may not always hold in many 
engineering applications due to some uncertainties always appear in the system, such as 
stochastic parameters, uncertain perturbations, and unmodeled dynamics. One of the 
most well-known approach to deal the uncertainties is to introduce the robust Kalman 
filters [4], which was selected for its reliability and validity. The key characteristic of the 
robustness of the filters is that its actual filtering error variances are guaranteed to have a 
minimal upper bound when all of the permissible uncertainties are included.

State-dependent and noise-dependent multiplicative noises are the most common 
means to describe the stochastic parameter uncertainties [5–7]. Some previous studies 
have traditionally relied upon a basic fact that the state-dependent and noise-dependent 
multiplicative noises in the system model are completely different. The current study 
considers the same multiplicative noises in system parameter matrices, which allow us 
to resolve the unsettled issues.

Additionally, it is usually assumed that the noise in the uncertain systems is white 
noise. However, in engineering practice, the system is often disturbed by colored noise. 
The colored noise is also called self-correlation noise, that is, the state of noise at each 
time is not independent, but correlated with the state before this time [8, 9]. There are 
generally two methods to deal with the state estimation problem with colored noise: one 
is to transform the system into a new form with uncorrelated noise, and then obtain 
the estimator by apply the filter algorithm; the other is to directly construct a general 
estimation algorithm under the colored noise. The uncertainties of noise variances can 
be described by deterministic uncertainties. We can assume that the actual uncertain 
noise variances have the known conservative upper limits, because of the noise variance 
matrices are positive semi-definite [10, 11].

At present, the research on filtering of mixed uncertain networked systems with 
colored noises is also one of the hot fields. In the past years, too many researchers have 
been studied on the system with colored noises in observation equation or state equa-
tion, but few focuses on that the colored noises and uncertain noise variances exist 
simultaneously.

Compared with the traditional point-to-point control mode, the networked system 
reduces the system wiring, saves the system design cost, and enhances the system main-
tainability, interactivity and fault diagnosis ability [12–14]. It has been applied in many 
fields. Networked control has also become one of the core contents in the international 
control field. However, due to the limited bandwidth and energy in the communication 
process, it is inevitable to cause random uncertainties such as random sensor delays, 
PDs, and missing observations [15–18]. Using Bernoulli random variables with values of 
0 or 1 to describe the uncertainty in networked systems is one of the common methods 
[19–21].
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1.2  Related work

Over the past years, a great deal of research into robust or optimal state estimation 
has focused on the multisensor networked systems with mixed uncertainties [8, 9, 
22–29].

For uncertain multi-rate sampled-data systems with norm bounded uncertain param-
eters, stochastic nonlinearities and the colored observation noises [8], a new fusion esti-
mation scheme is proposed with the help of covariance intersection method, and the 
consistency of the proposed fusion estimation scheme is shown. However, the reference 
[8] failed to deal with the multiplicative noises and networked random uncertainties. For 
uncertain networked systems with state-dependent multiplicative noises, time-corre-
lated additive noises and PDs, on the basis of the linear minimum variance (LMV) cri-
terion, [9] designed the optimal linear recursive full-order state estimators. However, [9] 
have not been able to address the random sensor delays and the noise-dependent mul-
tiplicative noises. According the neighboring information from each sensor, [22] pro-
posed the distributed filters for the multisensor systems with fading observations and 
time-correlated observation noises. However, the random sensor delays and multiplica-
tive noises are not considered in [22]. By utilizing the Lévy–Ito theorem, for the discrete 
time-varying systems with non-Gaussian Lévy and time-correlated additive observation 
noises, [23] designed a modified recursive Tobit Kalman filter. However, [23] have not 
studied the multiplicative noises and networked random uncertainties. For linear dis-
crete time-varying stochastic systems with multiple PDs and colored observation noises 
[24], based on the estimated observation values, the optimal estimators (filter, predictor, 
and smoother) are developed via an innovation analysis approach. However, [24] have 
not considered the random sensor delays and multiplicative noises in the system models. 
In the sense of minimum mean-square error, [25] have been established the recursive 
state estimation algorithms for the systems with OSRD, PDs, and time-correlated mul-
tiplicative noises. However, [25] have failed to consider the state-dependent and noise-
dependent multiplicative noises in the system models.

Based on the transformed observations, [26] introduced the recursive distributed and 
CF estimation algorithms to solve the problem about multisensor systems with time-
correlated observation noises in both the sensor outputs and the transmission con-
nections. However, [26] have not taken the noise-dependent multiplicative noises and 
random sensor delays into account. For systems with multiplicative and time-correlated 
additive observation noises, a convergence condition of the optimal linear estimator is 
obtained in [27]. However, the studies in [27] have failed to take the noise-dependent 
multiplicative noises and networked random uncertainties into account. For multisensor 
system with random parameter matrices, colored observation noises, uncertain observa-
tions, random sensor delays, and PDs [28], the optimal linear CF estimators are obtained 
via an innovation approach. However, in [28], the uncertainties in system model do not 
contain the noise-dependent multiplicative noises.

According to the linear minimum mean square error criterion, [29] have proposed 
an optimal state estimator for the discrete-time linear systems with multiplicative 
observation noises and time-correlated additive observation noise. However, [29] 
have failed to address the multiplicative noises in the state matrix, the noise-depend-
ent multiplicative noises, and the networked random uncertainties.
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Additionally, the studies in [8, 9, 22–29] are all assume that the noise variances be 
exactly known. In many cases, however, this condition is not valid.

1.3  Innovation

The main innovation in this paper is as follows:

1. The paper gives an innovative and comprehensive multisensor networked system 
model, which considered simultaneously the colored noises, multiplicative noises, 
OSRD, PDs, and uncertain noise variances. Previous studies generally assumed that 
the noise in the systems was white noises, and few studies focused on the robust esti-
mation problem with colored noises.

2. By using the augmented method, de-randomization method and the fictitious noise 
technique, as well as defining some perturbation direction matrices, the original 
system with colored noises and multiple uncertainties is transformed into the aug-
mented CF system only with uncertain noise variances. In light of the minimax 
robust estimation principle, the robust CF steady-state Kalman estimators are pro-
posed.

3. By employing a mixed approach, which consists of non-negative definite matrix 
decomposition method and Lyapunov equation approach, the robustness of CF esti-
mators for all allowable uncertainties is proved.

4. A simulation example applied to the UPS with colored noises and mixed uncer-
tainties is given, which verifies the effectiveness and applicability of the proposed 
method.

Nomenclature

Rn n-Dimensional Euclidean space

diag(·) Diagonal matrix

�T Transpose of matrix Λ

Prob(·) Occurrence probability of event “·”
tr(�) Trace of matrix Λ

E[·] Mathematical expectation operator

Rn×n Set of n×n real matrices

⊗ Kronecker product

�−
1 Inverse of matrix Λ

In n by n identity matrix

ρ(Λ) Spectrum radius of matrix Λ

0 Zero matrix with suitable dimension

2  Problem statement

The system model to be researched is as follows:

(1)x(t + 1) =

(

�+

q
∑

k=1

ξk(t)�k

)

x(t)+

(

Ŵ +

q
∑

k=1

ξk(t)Ŵk

)

w(t)
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where x(t) ∈ Rn is the state to be estimated, zi(t) ∈ Rmi is the observation 
of ith sensor, yi(t) ∈ Rmi is the observation received by the estimator in net-
work, w(t) ∈ Rr is the colored noise, gi(t) ∈ Rmi , i = 1, . . . , L , and η(t) ∈ Rr are 
the additive white noises, ξk(t) ∈ R1, k = 1, . . . , q are the multiplicative noises. 

� ∈ Rn×n,�k ∈ Rn×n,Ŵ ∈ Rn×r ,Ŵk ∈ Rn×r ,Hi ∈ Rmi×n,Hik ∈ Rmi×n,Ci ∈

Rmi×r ,Cik ∈ Rmi×r  
and D ∈ Rr×r are known constant matrices with suitable dimensions, q is the number of 
multiplicative noises, L is the number of sensors.

Hypothesis 1 The probabilities of mutually uncorrelated scalar Bernoulli white noises 
ζi(t) ∈ R1, i = 1, . . . , L is.

where ςi, i = 1, . . . , L are known and 0 ≤ ςi ≤ 1 , and ζi(t) are uncorrelated with other 
stochastic signals.

The following results can be got from Hypothesis 1:

The aims of (4) are to describe the uncertainties in the networked system, including 
OSRD and PDs. If ζi(t) = 1 , then yi(t) = zi(t) , (no OSRD and PDs); if ζi(t) = 0 and 
ζi(t − 1) = 0 , then yi(t) = zi(t − 1) (OSRD); if ζi(t) = 0 and ζi(t − 1) = 1 , then yi(t) = 0 
(PDs).

Hypothesis 2 η(t), gi(t), i = 1, . . . , L and ξk(t), k = 1, . . . , q are mutually uncorrelated 
white noises with zero means. E

[

η(t)ηT(u)
]

= Rηδtu, E
[

gi(t)g
T
j (u)

]

= Rgiδijδtu and 

E
[

ξk(t)ξ
T
h (u)

]

= σ 2
ξk
δkhδtu are, respectively, their covariances, where the unknown 

uncertain actual (true) variances are, respectively, Rη,Rgi and σ 2
ξk

 . The Kronecker delta 
function δkj is defined as δkk = 1, δkj = 0(k �= j).

Hypothesis 3 x(0) is uncorrelated with η(t), gi(t), ξk(t) , and ζi(t) , and 
E[x(0)] = µ0, E

[

(x(0)− µ0)(x(0)− µ0)
T
]

= P0.

Hypothesis 4 Rη,Rgi , σ
2
ξk

 and P0 have, respectively, known conservative upper bounds 
Rη,Rgi , σ

2
ξk

 , and P0, that is

(2)

zi(t) =

(

Hi +

q
∑

k=1

ξk(t)Hik

)

x(t)+

(

Ci +

q
∑

k=1

ξk(t)Cik

)

w(t)+ gi(t), i = 1, . . . , L

(3)w(t + 1) = Dw(t)+ η(t)

(4)yi(t) = ζi(t)zi(t)+ (1− ζi(t))(1− ζi(t − 1))zi(t − 1)

Prob(ζi(t) = 1) = ςi, Prob(ζi(t) = 0) = 1− ςi

(5)
E[ζi(t)] = ςi, E

[

ζ 2i (t)
]

= ςi, E
[

(ζi(t)− ςi)
2
]

= ςi(1−ςi), E
[

(ζi(t)− ςi)
(

ζj(t)− ςj
)]

= 0, i �= j

(6)Rη ≤ Rη,Rgi ≤ Rgi , σ
2
ξk

≤ σ 2
ξk
,P0 ≤ P0
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If the noise variances in system (1)–(4) take Rη,Rgi , σ
2
ξk

 , and P0, then the system (1)–(4) 
is called “worst-case” system. The minimax robust estimate principle means that, for the 
“worst-case” system, proposing the “minimum” variance estimator. The purpose of this 
paper is to introduce a estimators with robustness for state x(t) via the “minimax robust 
estimate principle”.

The meaning of robustness is that there are the minimal upper bounds Pc(N) for the 
actual CF steady-state estimation error variances Pc(N ) , i.e., Pc(N ) ≤ Pc(N ).

3  Methods
3.1  Augmented CF system

To begin this process, a new vector δi(t) is introduced, which is defined as follows:

combining (2) and (7), we get that

meanwhile, combining (2), (4), and (7), the local observations yi(t) given by (4) can be 
converted into the following form:

The corresponding CF observations can be obtained by, respectively, combining the 
local observations given by (8) and (9)

where

Combining (1), (3), (10), and (11), the following augmented CF system can be obtained

(7)δi(t) = (1− ζi(t))zi(t)

(8)

δi(t) = (1− ζi(t))

(

Hi +

q
∑

k=1

ξk(t)Hik

)

x(t)+(1− ζi(t))

(

Ci +

q
∑

k=1

ξk(t)Cik

)

w(t)+(1− ζi(t))gi(t)

(9)
yi(t) =ζi(t)

(

Hi +

q
∑

k=1

ξk(t)Hik

)

x(t)+ ζi(t)

(

Ci +

q
∑

k=1

ξk(t)Cik

)

w(t)+ ζi(t)gi(t)+ (1− ζi(t))δi(t − 1)

(10)

δ(c)(t) =(Im − ζ(t))

(

H (c)
+

q
∑

k=1

ξk(t)H
(c)
k

)

x(t)+ (Im − ζ(t))

(

C(c)
+

q
∑

k=1

ξk(t)C
(c)
k

)

w(t)+ (Im − ζ(t))g (c)(t)

(11)
y(c)(t) =ζ(t)

(

H (c)
+

q
∑

k=1

ξk(t)H
(c)
k

)

x(t)+ ζ(t)

(

C(c)
+

q
∑

k=1

ξk(t)C
(c)
k

)

w(t)+ ζ(t)g (c)(t)+ (Im − ζ(t))δ(c)(t − 1)

(12)

δ(c)(t) =
[

δT1 (t), . . . , δ
T
L (t)

]T
, y(c)(t) =

[

yT1 (t), . . . , y
T
L (t)

]T
, g (c)(t) =

[

gT1 (t), . . . , g
T
L (t)

]T
,

ζ(t) = diag(ζ1(t)Im1 , . . . , ζL(t)ImL ), Im = diag
(

Im1 , . . . , ImL

)

, m =

L
∑

i=1

mi , H (c)
=

[

HT
1 , . . . ,H

T
L

]T
,

H
(c)
k =

[

HT
1k , . . . ,H

T
Lk

]T
, C(c)

=

[

CT
1 , . . . ,C

T
L

]T
, C

(c)
k =

[

CT
1k , . . . ,C

T
Lk

]T
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where

By means of the de-randomization method, the system (13) and (14) with random param-
eter matrices can be transformed into the following system with constant parameter matri-
ces and multiplicative noises

where

(13)xa(t + 1) = �a(t)xa(t)+ Ŵa(t)wa(t)

(14)y(c)(t) = Ha(t)xa(t)+ Ca(t)wa(t)

(15)

xa(t) =









x(t)

w(t)

δ(c)(t − 1)









, �a(t) =















�+

q
�

k=1

ξk (t)�k Ŵ +

q
�

k=1

ξk (t)Ŵk (0)n×m

(0)r×n D (0)r×m

(Im − ζ(t))

�

H (c)
+

q
�

k=1

ξk (t)H
(c)
k

�

(Im − ζ(t))

�

C(c)
+

q
�

k=1

ξk (t)C
(c)
k

�

(0)m×m















,

wa(t) =

�

η(t)

g (c)(t)

�

, Ŵa(t) =









(0)n×r (0)n×m

Ir (0)r×m

(0)m×r Im − ζ(t)









,

Ha(t) =

�

ζ(t)

�

H (c)
+

q
�

k=1

ξk (t)H
(c)
k

�

ζ(t)

�

C(c)
+

q
�

k=1

ξk (t)C
(c)
k

�

Im − ζ(t)

�

, Ca(t) =
�

(0)m×r ζ(t)
�

(16)

xa(t + 1) =

(

�m
a +

q
∑

k=1

ξk(t)�
ξk
a +

L
∑

i=1

ζiz(t)�
ζ i
a +

L
∑

i=1

ζiz(t)

q
∑

k=1

ξk(t)�
ki
a

)

xa(t)+

(

Ŵm
a +

L
∑

i=1

ζiz(t)Ŵ
ζ i
a

)

wa(t)

(17)

y(c)(t) =

(

Hm
a +

q
∑

k=1

ξk(t)H
ξk
a +

L
∑

i=1

ζiz(t)H
ζ i
a +

L
∑

i=1

ζiz(t)

q
∑

k=1

ξk(t)H
ki
a

)

xa(t)+

(

Cm
a +

L
∑

i=1

ζiz(t)C
ζ i
a

)

wa(t)

(18)

� = E[ζ(t)] = diag(ς1Im1 , · · · , ςLImL
), �m

a =









� Ŵ (0)n×m

(0)r×n D (0)r×m

(Im −�)H (c) (Im −�)C(c) (0)m×m









, Ŵm
a =









(0)n×r (0)n×m

Ir (0)r×m

(0)m×r Im −�









,

H
m
a =

�

�H (c) �C(c) Im −�

�

, C
m
a =

�

(0)m×r �

�

,

Ni = diag
�

(0)m1×m1 . . . (0)mi−1×mi−1 Imi
(0)mi+1×mi+1 . . . (0)mL×mL

�

, i = 1, . . . , L,

�ξk
a =









�k Ŵk (0)n×m

(0)r×n (0)r×r (0)r×m

(Im −�)H
(c)

k
(Im −�)C

(c)

k
(0)m×m









, �ζ i
a =









(0)n×n (0)n×r (0)n×m

(0)r×n (0)r×r (0)r×m

−NiH
(c)

−NiC
(c) (0)m×m









,

�ki
a =









(0)n×n (0)n×r (0)n×m

(0)r×n (0)r×r (0)r×m

−NiH
(c)

k
−NiC

(c)

k
(0)m×m









, Ŵζ i
a =









(0)n×r (0)n×m

(0)r×r (0)r×m

(0)m×r −Ni









, H
ξk
a =

�

�H
(c)

k
�C

(c)

k
(0)m×m

�

,

H
ζ i
a =

�

NiH
(c) NiC

(c)
−Ni

�

, H
ki
a =

�

NiH
(c)

k
NiC

(c)

k
(0)m×m

�

, C
ζ i
a =

�

(0)m×r Ni

�

,

ζiz(t) = ζi(t)− ςi
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Noting that the matrices Ni ∈ Rm×m , and N1 = diag
(

Im1 (0)m2×m2 . . . (0)mL×mL

)

 , 
N2 = diag

(

(0)m1×m1 Im2 (0)m3×m3 . . . (0)mL×mL

)

 , etc. In addition, utilizing (5) 
yields that the statistic properties of ζiz(t) are as follows:

Lemma 1 [10] Let Ri be the mi ×mi positive semi-definite matrix, i.e., Ri ≥ 0 , then 
the block-diagonal matrix Rδ = diag(R1, . . . ,RL) is also positive semi-definite, i.e., 
Rδ = diag(R1, . . . ,RL) ≥ 0.

From (12), and conservative variances R
(c)
g = diag

(

Rg1 , . . . ,RgL

)

 and 
R
(c)
g = diag

(

Rg1 , . . . ,RgL

)

 of g (c)(t) can be obtained. According to the Lemma 1 above, 
subtracting the actual variances R(c)

g = diag
(

Rg1 , . . . ,RgL

)

 from conservative variances 
R
(c)
g = diag

(

Rg1 , . . . ,RgL

)

 of g (c)(t) , the following inequality can be obtained:

From (15), for the white noise wa(t), we get its actual variances Qa = diag
(

Rη,R
(c)
g

)

 and 

conservative variances Qa = diag
(

Rη,R
(c)
g

)

 . Similarly, based on the Lemma 1, subtract-

ing Qa from Qa, and utilizing (6), (19), the following relationship can be obtained:

3.2  Actual and conservative state second order non‑central moments

On the basis of the form of xa(t) from (16), the actual second order non-central 
moments Xa(t) and conservative value Xa(t) can be calculated

Xa(0) = diag
(

X(0) (0)r×r (0)m×m

)

,X(0) = P0 + µ0µ
T
0  , and 

Xa(0) = diag
(

X(0) (0)r×r (0)m×m

)

,X(0) = P0 + µ0µ
T
0  are, respectively, the initial val-

ues of Xa(t) and Xa(t).

E[ζiz(t)] = 0, σ 2
ζiz

= E
[

ζiz(t)ζ
T
iz (t)

]

= E
[

ζ 2iz(t)
]

= ςi(1−ςi), E
[

ζiz(t)ζ
T
jz (t)

]

= 0, i �= j.

(19)R
(c)
g ≤ R(c)

g

(20)Qa ≤ Qa

(21)

Xa(t + 1) = �m
a Xa(t)�

mT

a +

q
∑

k=1

σ 2

ξk
�ξk

a Xa(t)�
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a Xa(t)�
ζ iT
a

+

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a Xa(t)�
kiT
a + Ŵm

a QaŴ
mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a QaŴ

ζ iT
a

(22)

Xa(t + 1) = �m
a Xa(t)�

mT

a +

q
∑

k=1

σ 2

ξk
�ξk

a Xa(t)�
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a Xa(t)�
ζ iT
a

+

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a Xa(t)�
kiT
a + Ŵm

a QaŴ
mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a QaŴ

ζ iT
a
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Lemma 2 Under the conditions of Hypothesis 4, the relationship between actual and 
conservative state second order non-central moments of the state xa(t) can be obtained.

Proof It is completely similar to the proof of Lemma 5 in [6], we can prove Lemma 2. 
The proof is completed. □

Lemma 3 Under the conditions of Hypotheses 1–4, if 

ρ(�) < 1,� = �m
a ⊗�m

a +

q
∑

k=1

σ 2
ξk
�

ξk
a ⊗�

ξk
a +

L
∑

i=1

σ 2
ζiz
�

ζ i
a ⊗�

ζ i
a +

L
∑

i=1

σ 2
ζiz

q
∑

k=1

σ 2
ξk
�ki

a ⊗

�ki
a

 , 

then we have the following convergences.

Proof If ρ(�) < 1 , similar to the proof of references [30, 31], by utilizing the practical 
application scene of the result in [32, 33], the Lemma 3 can be proved to be true. This 
completes the proof. □

Combining (23) and (24), we have that

3.3  Fictitious process and observation noises

A noise wf(t) is introduced as the fictitious process noise, which can compensate the multi-
plicative noise term in (16)

where the wf(t) is white noise with zero mean.

(23)Xa(t) ≤ Xa(t), t ≥ 0

(24)lim
t→∞

Xa(t) = Xa, lim
t→∞

Xa(t) = Xa

(25)

Xa = �m
a Xa�

mT
a +

q
∑

k=1

σ 2
ξk
�ξk

a Xa�
ξkT
a +

L
∑

i=1

σ 2
ζiz
�ζ i

a Xa�
ζ iT
a +

L
∑

i=1

σ 2
ζiz

q
∑

k=1

σ 2
ξk
�ki

a Xa�
kiT
a

+ Ŵm
a QaŴ

mT
a +

L
∑

i=1

σ 2
ζiz
Ŵζ i
a QaŴ

ζ iT
a

(26)

Xa = �m
a Xa�

mT
a +

q
∑

k=1

σ 2
ξk
�ξk

a Xa�
ξkT
a +

L
∑

i=1

σ 2
ζiz
�ζ i

a Xa�
ζ iT
a +

L
∑

i=1

σ 2
ζiz

q
∑

k=1

σ 2
ξk
�ki

a Xa�
kiT
a

+ Ŵm
a QaŴ

mT
a +

L
∑

i=1

σ 2
ζiz
Ŵζ i
a QaŴ

ζ iT
a

(27)Xa ≤ Xa

(28)

wf (t) =

(

q
∑

k=1

ξk(t)�
ξk
a +

L
∑

i=1

ζiz(t)�
ζ i
a +

L
∑

i=1

ζiz(t)

q
∑

k=1

ξk(t)�
ki
a

)

xa(t)+

(

Ŵm
a +

L
∑

i=1

ζiz(t)Ŵ
ζ i
a

)

wa(t)
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Thus, (16) will be rewritten in the following form:

From (28), the actual and conservative steady-state variances of fictitious process noise 
wf(t) are, respectively, calculated by

Define �Qf = Qf − Qf ,�Xa = Xa − Xa,�σ 2
ξk

= σ 2
ξk
− σ 2

ξk
 , then subtracting (30) from 

(31) yields

by analyzing (32) through utilizing (20) and (27), we can get that �Qf ≥ 0 , i.e.,

Similarly, the noise vf(t) is introduced as the fictitious observation noise in (17)

and the vf(t) is white noise with zero mean.
Therefore, (17) will be rewritten in the following form:

The actual and conservative steady-state variances of vf(t) are, respectively,

(29)xa(t + 1) = �m
a xa(t)+ wf (t)

(30)

Qf =

q
∑

k=1

σ 2

ξk
�ξk

a Xa�
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a Xa�
ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a Xa�
kiT
a

+ Ŵm
a QaŴ

mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a QaŴ

ζ iT
a

(31)

Qf =

q
∑

k=1

σ 2

ξk
�ξk

a Xa�
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a Xa�
ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a Xa�
kiT
a

+ Ŵm
a QaŴ

mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a QaŴ

ζ iT
a

(32)

�Qf =

q
∑

k=1

σ 2

ξk
�ξk

a �Xa�
ξkT
a +

q
∑

k=1

�σ 2

ξk
�ξk

a Xa�
ξkT
a

+

L
∑

i=1

σ 2

ζiz
�ζ i

a �Xa�
ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a �Xa�
kiT
a

+

L
∑

i=1

σ 2

ζiz

q
∑

k=1

�σ 2

ξk
�ki

a Xa�
kiT
a + Ŵm

a �QaŴ
mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a �QaŴ

ζ iT
a

(33)Qf ≤ Qf

(34)

vf (t) =

(

q
∑

k=1

ξk(t)H
ξk
a +

L
∑

i=1

ζiz(t)H
ζ i
a +

L
∑

i=1

ζiz(t)

q
∑

k=1

ξk(t)H
ki
a

)

xa(t)+

(

Cm
a +

L
∑

i=1

ζiz(t)C
ζ i
a

)

wa(t)

(35)y(c)(t) = Hm
a xa(t)+ vf (t)
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Define �Rf = Rf − Rf  , subtracting (36) from (37) yields

utilizing (20) and (27), it is easy to prove that

Next, the correlate matrices of the two fictitious noises introduced above are calculated, 
and their actual and conserved values are as follows

Define �Sf = Sf − Sf  , subtracting (40) from (41) yields

(36)

Rf =

q
∑

k=1

σ 2

ξk
H ξk
a XaH

ξkT
a +

L
∑

i=1

σ 2

ζiz
H ζ i
a XaH

ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
Hki
a XaH

kiT
a

+ Cm
a QaC

mT

a +

L
∑

i=1

σ 2

ζiz
Cζ i
a QaC

ζ iT
a

(37)

Rf =

q
∑

k=1

σ 2

ξk
H ξk
a XaH

ξkT
a +

L
∑

i=1

σ 2

ζiz
H ζ i
a XaH

ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
Hki
a XaH

kiT
a

+ Cm
a QaC

mT

a +

L
∑

i=1

σ 2

ζiz
Cζ i
a QaC

ζ iT
a

(38)

�Rf =

q
∑

k=1

σ 2

ξk
H ξk
a �XaH

ξkT
a +

q
∑

k=1

�σ 2

ξk
H ξk
a XaH

ξkT
a +

L
∑

i=1

σ 2

ζiz
H ζ i
a �XaH

ζ iT
a

+

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
Hki
a �XaH

kiT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

�σ 2

ξk
Hki
a XaH

kiT
a

+ Cm
a �QaC

mT

a +

L
∑

i=1

σ 2

ζiz
Cζ i
a �QaC

ζ iT
a

(39)Rf ≤ Rf

(40)

Sf =

q
∑

k=1

σ 2

ξk
�ξk

a XaH
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a XaH
ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a XaH
kiT
a

+ Ŵm
a QaC

mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a QaC

ζ iT
a

(41)

Sf =

q
∑

k=1

σ 2

ξk
�ξk

a XaH
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a XaH
ζ iT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a XaH
kiT
a

+ Ŵm
a QaC

mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a QaC

ζ iT
a
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Hypothesis 5 Assume that the pair 
(

�m
a ,H

m
a

)

 is completely detectable, and the pair 
(�m,ϒ) is completely stabilizable, where 
�m = �m

a − SmH
m
a , Sm = Sf R

−1
f ,ϒϒT

= Qf − Sf R
−1
f STf .

4  Results
4.1  Robust CF steady‑state Kalman predictor

The CF system (29) and (35) with known conservative noise statistics Qf, Rf, and Sf are 
called worst-case conservative system. Under the conditions of Hypotheses 1–5, apply-
ing the standard Kalman filtering algorithm [3], for the worst-case conservative system, 
yields that the steady-state one-step Kalman predictor is given as

with the initial value x̂a(0| − 1) =
[

µT
0 ((0)r×1)

T ((0)m×1)
T
]T , and �ap is stable.

The conservative steady-state prediction error variance Pa(− 1) satisfies the following 
steady-state Riccati equation

Remark 1 The local observations yi(t), produced by the “worst-case” system (1)–(4), are 
called conservative local observations and are unavailable (unknown). Thus, the con-
servative CF observations y(c)(t), consisted by conservative local observations yi(t), are 
also unavailable. The observations yi(t) generated from the actual system (1)–(4) with 
the actual variances Rη,Rgi , σ

2
ξk

 , and P0 are called actual observations and are available 
(known). Furthermore, the actual CF observations y(c)(t), consisted by actual local obser-
vations yi(t), are also available. In (43), replacing the conservative CF observations y(c)(t) 
by the actual CF observations y(c)(t), the actual CF Kalman predictor can be obtained.

(42)

�Sf =

q
∑

k=1

σ 2

ξk
�ξk

a �XaH
ξkT
a +

q
∑

k=1

�σ 2

ξk
�ξk

a XaH
ξkT
a +

L
∑

i=1

σ 2

ζiz
�ζ i

a �XaH
ζ iT
a

+

L
∑

i=1

σ 2

ζiz

q
∑

k=1

σ 2

ξk
�ki

a �XaH
kiT
a +

L
∑

i=1

σ 2

ζiz

q
∑

k=1

�σ 2

ξk
�ki

a XaH
kiT
a

+ Ŵm
a �QaC

mT

a +

L
∑

i=1

σ 2

ζiz
Ŵζ i
a �QaC

ζ iT
a

(43)x̂a(t + 1|t) = �apx̂a(t|t − 1)+ Kapy
(c)(t)

(44)εa(t) = y(c)(t)−Hm
a x̂a(t|t − 1)

(45)
�ap = �m

a −KapH
m
a , Kap =

[

�m
a Pa(−1)HmT

a + Sf

]

Q−1
εa , Qεa = Hm

a Pa(−1)HmT
a +Rf

(46)

Pa(−1) =�m
a Pa(−1)�mT

a −

[

�m
a Pa(−1)HmT

a + S
f

]

×

[

H
m
a Pa(−1)HmT

a + Rf

]−1

[

�m
a Pa(−1)HmT

a + S
f

]T

+ Qf
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The steady-state prediction error is x̃a(t + 1|t) = xa(t + 1)− x̂a(t + 1|t) , subtract-
ing (43) from (29) yields

where

the actual and conservative steady-state variances of augmented noises �f (t) are, respec-
tively, calculated by

Furthermore, the actual and conservative CF steady-state prediction error variances sat-
isfy the following Lyapunov equations, respectively,

Lemma 4 [10] If � ∈ Rm×m is the positive semi-definite matrix, i.e., � ≥ 0 , and 
�δ =

(

�ij

)

∈ RmL×mL,�ij = �, i, j = 1, 2, . . . ,L , then �δ ≥ 0.

Lemma 5 Under the conditions of Hypothesis 4, we have that.

Proof Define ��f = �f −�f  , utilizing (32), (38), and (42), we have that

(47)
x̃a(t+1|t) = �apx̃a(t|t−1)+wf (t)−Kapvf (t) = �apx̃a(t|t−1)+

[

In+r+m,−Kap

]

�f (t)

(48)�f (t) =
[

wT
f (t) vTf (t)

]T

(49)�f =

[

Qf Sf

S
T
f Rf

]

, �f =

[

Qf Sf
STf Rf

]

(50)Pa(−1) = �apPa(−1)�T
ap +

[

In+r+m,−Kap

]

�f

[

In+r+m,−Kap

]T

(51)Pa(−1) = �apPa(−1)�T
ap +

[

In+r+m, −Kap

]

�f

[

In+r+m, −Kap

]T

(52)�f ≤ �f

��f =

�

�Qf �Sf

�STf �Rf

�

=













































































q
�

k=1

σ 2

ξk
�ξk

a �Xa�
ξkT
a +

q
�

k=1

�σ 2

ξk
�ξk

a Xa�
ξkT
a

+

L
�

i=1

σ 2

ζiz
�ζ i

a �Xa�
ζ iT
a +

L
�

i=1

σ 2

ζiz

q
�

k=1

σ 2

ξk
�ki

a �Xa�
kiT
a

+

L
�

i=1

σ 2

ζiz

q
�

k=1

�σ 2

ξk
�ki

a Xa�
kiT
a

+Ŵm
a �QaŴ

mT
a +

L
�

i=1

σ 2

ζiz
Ŵζ i
a �QaŴ

ζ iT
a

q
�

k=1

σ 2

ξk
�ξk

a �XaH
ξkT
a +

q
�

k=1

�σ 2

ξk
�ξk

a XaH
ξkT
a

+

L
�

i=1

σ 2

ζiz
�ζ i

a �XaH
ζ iT
a +

L
�

i=1

σ 2

ζiz

q
�

k=1

σ 2

ξk
�ki

a �XaH
kiT
a

+

L
�

i=1

σ 2

ζiz

q
�

k=1

�σ 2

ξk
�ki

a XaH
kiT
a

+Ŵm
a �QaC

mT
a +

L
�

i=1

σ 2

ζiz
Ŵζ i
a �QaC

ζ iT
a

q
�

k=1

σ 2

ξk
H ξk
a �Xa�

ξkT
a +

q
�

k=1

�σ 2

ξk
H ξk
a Xa�

ξkT
a

+

L
�

i=1

σ 2

ζiz
H ζ i
a �Xa�

ζ iT
a +

L
�

i=1

σ 2

ζiz

q
�

k=1

σ 2

ξk
Hki
a �Xa�

kiT
a

+

L
�

i=1

σ 2

ζiz

q
�

k=1

�σ 2

ξk
Hki
a Xa�

kiT
a

+Cm
a �QaŴ

mT
a +

L
�

i=1

σ 2

ζiz
Cζ i
a �QaŴ

ζ iT
a

q
�

k=1

σ 2

ξk
H ξk
a �XaH

ξkT
a +

q
�

k=1

�σ 2

ξk
H ξk
a XaH

ξkT
a

+

L
�

i=1

σ 2

ζiz
H ζ i
a �XaH

ζ iT
a +

L
�

i=1

σ 2

ζiz

q
�

k=1

σ 2

ξk
Hki
k �XaH

kiT
a

+

L
�

i=1

σ 2

ζiz

q
�

k=1

�σ 2

ξk
Hki
k XaH

kiT
a

+Cm
a �QaC

mT
a +

L
�

i=1

σ 2

ζiz
Cζ i
a �QaC

ζ iT
a
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Partition ��f  into ��f = ��
(1)
f +��

(2)
f + · · · +��

(7)
f

 , with the definitions

Noting that ��
(1)
f ,��

(2)
f ,��

(3)
f ,��

(4)
f  , and ��

(5)
f  can equivalently be expressed in the 

following forms

where

the application of (27) and Lemma 4 yields �Xf ≥ 0 , which yields ��
(1)
f ≥ 0 , ��

(3)
f ≥ 0 , 

��
(4)
f ≥ 0 . According to the positive semi-definiteness of variance matrix, and applying 

Lemma 4 yields Xf ≥ 0 , which yields ��
(2)
f ≥ 0 and ��

(5)
f ≥ 0.

��
(1)

f =









q
�

k=1

σ 2
ξk
�

ξk
a �Xa�

ξkT
a

q
�

k=1

σ 2
ξk
�

ξk
a �XaH

ξkT
a

q
�

k=1

σ 2

ξk
H

ξk
a �Xa�

ξkT
a

q
�

k=1

σ 2

ξk
H

ξk
a �XaH

ξkT
a









,

��
(2)

f =









q
�

k=1

�σ 2
ξk
�

ξk
a Xa�

ξkT
a

q
�

k=1

�σ 2
ξk
�

ξk
a XaH

ξkT
a

q
�

k=1

�σ 2

ξk
H

ξk
a Xa�

ξkT
a

q
�

k=1

�σ 2

ξk
H

ξk
a XaH

ξkT
a









,

��
(3)

f =









L
�

i=1

σ 2

ζiz
�

ζ i
a �Xa�

ζ iT
a

L
�

i=1

σ 2

ζiz
�

ζ i
a �XaH

ζ iT
a

L
�

i=1

σ 2

ζiz
H

ζ i
a �Xa�

ζ iT
a

L
�

i=1

σ 2

ζiz
H

ζ i
a �XaH

ζ iT
a









,

��
(4)

f =











L
�

i=1

σ 2
ζiz

q
�

k=1

σ 2
ξk
�ki

a �Xa�
kiT
a

L
�

i=1

σ 2
ζiz

q
�

k=1

σ 2
ξk
�ki

a �XaH
kiT
a

L
�

i=1

σ 2

ζiz

q
�

k=1

σ 2

ξk
Hki
a �Xa�

kiT
a

L
�

i=1

σ 2

ζiz

q
�

k=1

σ 2

ξk
Hki
a �XaH

kiT
a











��
(5)

f =











L
�

i=1

σ 2

ζiz

q
�

k=1

�σ 2

ξk
�ki

a Xa�
kiT
a

L
�

i=1

σ 2

ζiz

q
�

k=1

�σ 2

ξk
�ki

a XaH
kiT
a

L
�

i=1

σ 2
ζiz

q
�

k=1

�σ 2
ξk
Hki
a Xa�

kiT
a

L
�

i=1

σ 2
ζiz

q
�

k=1

�σ 2
ξk
Hki
a XaH

kiT
a











,

��
(6)

f =

�

Ŵm
a �QaŴ

mT
a Ŵm

a �QaC
mT
a

Cm
a �QaŴ

mT
a Cm

a �QaC
mT
a

�

��
(7)

f =









L
�

i=1

σ 2

ζiz
Ŵ
ζ i
a �QaŴ

ζ iT
a

L
�

i=1

σ 2

ζiz
Ŵ
ζ i
a �QaC

ζ iT
a

L
�

i=1

σ 2

ζiz
C
ζ i
a �QaŴ

ζ iT
a

L
�

i=1

σ 2

ζiz
C
ζ i
a �QaC

ζ iT
a









��
(1)
f =

q
∑

k=1

σ 2
ξk
Bξk
a �Xf B

ξkT
a , ��

(2)
f =

q
∑

k=1

�σ 2
ξk
Bξk
a Xf B

ξkT
a , ��

(3)
f =

L
∑

i=1

σ 2
ζiz
Bζ i
a �Xf B

ζ iT
a

��
(4)
f =

L
∑

i=1

σ 2
ζiz

q
∑

k=1

σ 2
ξk
Bki
a �Xf B

kiT
a , ��

(5)
f =

L
∑

i=1

σ 2
ζiz

q
∑

k=1

�σ 2
ξk
Bki
a Xf B

kiT
a

Bξk
a =

[

�
ξk
a (0)(n+r+m)×(n+r+m)

(0)m×(n+r+m) H
ξk
a

]

, Bζ i
a =

[

�
ζ i
a (0)(n+r+m)×(n+r+m)

(0)m×(n+r+m) H
ζ i
a

]

Bki
a =

[

�ki
a (0)(n+r+m)×(n+r+m)

(0)m×(n+r+m) Hki
a

]

, �Xf =

[

�Xa �Xa

�Xa �Xa

]

, Xf =

[

Xa Xa

Xa Xa

]
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Additionally, ��
(6)
f  and ��

(7)
f  can be expressed as

where

��
(6)
f = Dm

a �QgD
mT
a , ��

(7)
f =

L
∑

i=1

σ 2
ζiz
Dζ i
a �QgD

ζ iT
a .

Table 1 Comparison of actual and robust accuracies

N = −1 (predictors) N = 0 (filters) N = 1 (one‑step 
smoothers)

N = 2 
(two‑step 
smoothers)

trP1(N) 0.3816 0.1249 0.1176 0.1152

trP1(N) 0.2388 0.0752 0.0709 0.0694

trP2(N) 0.5318 0.2692 0.2326 0.2264

trP2(N) 0.3351 0.1672 0.1442 0.1404

trP3(N) 0.4610 0.2022 0.1822 0.1774

trP3(N) 0.2897 0.1245 0.1121 0.1092

trPc(N) 0.3469 0.1187 0.0830 0.0816

trPc(N) 0.2058 0.0656 0.0581 0.0473
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Fig. 1 The third component of state x(t) and its actual local and CF two-step smoothers
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the application of (20) and Lemma 4 yields �Qg ≥ 0 , which yields ��
(6)
f ≥ 0 and 

��
(7)
f ≥ 0.

In conclusion, we obtain ��f = ��
(1)
f +��

(2)
f + · · · +��

(7)
f ≥ 0 , i.e., (52) holds. This 

completes the proof. □

Lemma 6 [34] Consider the following Lyapunov equation.

D
m
a =

[

Ŵm
a (0)(n+r+m)×(r+m)

(0)m×(r+m) Cm
a

]

,

D
ζ i
a =

[

Ŵ
ζ i
a (0)(n+r+m)×(r+m)

(0)m×(r+m) C
ζ i
a

]

,

�Qg =

[

�Qa �Qa

�Qa �Qa

]

.
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where U, C and V are the n × n matrices, V is a symmetric matrix, C is a stable matrix 
(i.e., all its eigenvalues are inside the unit circle). If V ≥ 0, then U is symmetric and 
unique, and U ≥ 0.

Theorem 1 For the time-invariant augmented CF system (29) and (35), on the basis of 
Hypotheses 1–5, the actual CF steady-state Kalman predictor given by (43) is robust, i.e., 
for all admissible uncertainties, we have that.

, and Pa(− 1) is the minimal upper bound of Pa(−1).

Proof Letting �Pa(−1) = Pa(−1)− Pa(−1) , from (50) and (51) one has.

Using (52) yields �f ≥ 0 . Noting that �ap is stable, accordingly, using Lemma 6 yields 
�Pa(−1) ≥ 0 , i.e., (53) holds. Taking Rη = Rη,Rgi = Rgi , σ

2
ξk

= σ 2
ξk

 , and P0 = P0 , then 
the Hypothesis 4 still holds. From Rgi = Rgi , one has R(c)

g = R
(c)
g  , further, we have that 

Qa = Qa . From X(0) = P0 + µ0µ
T
0  and X(0) = P0 + µ0µ

T
0  , we get that X(0) = X(0) , 

furthermore, we have that Xa(0) = Xa(0) . By way of recurrence, it is easy to prove 
that Xa(t) = Xa(t) . From Lemma 3, we have that Xa = Xa . Comparing (30) and (31) 
yields Qf = Qf  , comparing (36) and (37) yields Rf = Rf  , comparing (40) and (41) yields 
Sf = Sf  . Accordingly, from (49) we obtain that �f = �f  , further, we have that �f = 0 . 
Applying Lemma 6 yields �Pa(−1) = 0 , that is Pa(−1) = Pa(−1) . If P∗

a is an arbitrary 
other upper bound of Pa(−1) , then Pa(−1) = Pa(−1) ≤ P∗

a , this means that Pa(− 1) is 
the minimal upper bound of Pa(−1) . The proof is completed. □

U = CUCT
+ V

(53)Pa(−1) ≤ Pa(−1)

�Pa(−1) = �ap�Pa(−1)�T
ap +�f , �f =

[

In+r+m,−Kap

]

��f

[

In+r+m,−Kap

]T
,
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The actual CF steady-state Kalman predictor given by (43) is called robust CF steady-
state Kalman predictor. The relation given by (53) is called its robustness.

4.2  Robust CF steady‑state Kalman filter and smoother

For the worst-case time-invariant CF system (29) and (35) with conservative noise statistics 
Qf, Rf, and Sf, based on the actual CF steady-state Kalman one-step predictor x̂a(t|t − 1) , 
the actual CF steady-state Kalman filter (N = 0) and smoother (N > 0) x̂a(t|t + N ) are given 
as [35]

Similar to the derivation in [35], the steady-state filtering and smoothing errors 
x̃a(t|t + N ) = xa(t)− x̂a(t|t + N ) are given as

where �f (t + p) is defined by (48), and

Utilizing (56) yields that the actual and conservative steady-state estimation error vari-
ances are, respectively, computed by

Theorem 2 Under the conditions of Hypotheses 1–5, the actual CF steady-state Kalman 
filter and smoother given by (54) are robust, i.e.,

(54)x̂a(t|t + N ) = x̂a(t|t − 1)+

N
∑

k=0

Kap(k)εa(t + k), N ≥ 0

(55)Kap(k) = Pa(−1)�Tk
ap H

mT
a Q−1

εa , k ≥ 0

(56)x̃a(t|t + N ) = �aN x̃a(t|t − 1)+

N
∑

ρ=0

[

KNw
aρ ,KNv

aρ

]

�f (t + ρ)

�aN = I(n+r+m)×(n+r+m) −

N
∑

k=0

Kap(k)H
m
a �k

ap,

KNw
aρ = −

N
∑

k=ρ+1

Kap(k)H
m
a �k−ρ−1

ap , N > 0,

ρ = 0, . . . ,N − 1, KNw
aN = 0, N ≥ 0, ρ = N ,

KNv
aρ =

N
∑

k=ρ+1

Kap(k)H
m
a �k−ρ−1

ap Kap − Kap(ρ), N > 0,

ρ = 0, . . . ,N − 1, KNv
aN = −Kap(N ), N ≥ 0, ρ = N

(57)Pa(N ) = �aNPa(−1)�T
aN +

N
∑

ρ=0

[

KNw
aρ ,KNv

aρ

]

�f

[

KNw
aρ ,KNv

aρ

]T
, N ≥ 0

(58)Pa(N ) = �aNPa(−1)�T
aN +

N
∑

ρ=0

[

KNw
aρ ,KNv

aρ

]

�f

[

KNw
aρ ,KNv

aρ

]T
, N ≥ 0
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, and Pa(N) is the minimal upper bound of Pa(N ).

Proof Letting �Pa(N ) = Pa(N )− Pa(N ) , from (57) and (58) one has.

utilizing (52) and (53) yields �Pa(N ) ≥ 0 , i.e., (59) holds. In a similar way to the proof of 
Theorem 1, we can prove that Pa(N) is the minimal upper bound of Pa(N ) , the details are 
omitted. The proof is completed. □

Corollary 1 From the definition xa(t) =
[

xT(t) wT(t) δ(c)T(t − 1)
]T , the robust 

CF steady-state Kalman estimator of the original system (1)–(4) can be obtained as 
x̂c(t|t + N ) =

[

In (0)n×r (0)n×m

]

x̂a(t|t + N ),N = −1,N ≥ 0 , and their actual and 
conservative CF steady-state estimation error variances are, respectively, given as.

the robust CF steady-state Kalman estimators x̂c(t|t + N ) are robust, i.e.,

, and Pc(N) is the minimal upper bound of Pc(N ).

Corollary 2 It is completely similar to the derivation of (7)–(62), we easily obtain the 
robust local steady-state Kalman estimators x̂i(t|t + N ),N = −1,N ≥ 0, i = 1, . . . , L , of 
the original system (1)–(4), and their actual estimation error variances Pi(N ) have the 
corresponding minimal upper bounds Pi(N), i.e.,

Remark 2 Applying the projection theory, it can be proved that

Taking the trace operations to (62)–(65) yields the accuracy relations with the matrix 
trace inequalities as

(59)Pa(N ) ≤ Pa(N ), N ≥ 0

�Pa(N ) = �aN�Pa(−1)�T
aN +

N
∑

ρ=0

[

KNw
aρ ,KNv

aρ

]

��f

[

KNw
aρ ,KNv

aρ

]T

(60)Pc(N ) =
[

In (0)n×r (0)n×m

]

Pa(N )
[

In (0)n×r (0)n×m

]T

(61)Pc(N ) =
[

In (0)n×r (0)n×m

]

Pa(N )
[

In (0)n×r (0)n×m

]T

(62)Pc(N ) ≤ Pc(N ), N = −1, N ≥ 0

(63)Pi(N ) ≤ Pi(N ), N = −1, N ≥ 0, i = 1, . . . , L

(64)Pc(N ) ≤ Pi(N ), N = −1, N ≥ 0, i = 1, . . . , L

(65)Pc(N ) < Pc(N − 1) < · · · < Pc(1) < Pc(0) < Pc(−1), N ≥ 1

(66)
trPc(N ) ≤ trPc(N ), trPi(N ) ≤ trPi(N ), trPc(N ) ≤ trPi(N ),

N = −1, N ≥ 0, i = 1, . . . , L

(67)trPc(N ) < trPc(N − 1) < · · · < trPc(1) < trPc(0) < trPc(−1), N ≥ 1
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Remark 3 In Remark 2, trPc(N ) and trPi(N ) are defined as the actual accuracies of the 
corresponding robust Kalman estimators, while trPc(N) and trPi(N) are defined as their 
robust accuracies (or global accuracies). The smaller trace means the higher accuracy. 
The robust accuracy of CF is higher than that of each local estimator.

5  Discussion
This section is to verify the effectiveness of the estimators produced by Sect. 4. We select 
the uninterruptible power system (UPS) [30] to complete the simulation experiment by 
MATLAB R2018a. Let the UPS with 1KVA and sample time 10 ms at half-load operating 
point, then the system with colored noises and multiple uncertainties is given as follows:

In the simulation experiment, we take Rη = 0.2,Rη = 0.3,Rg1 = 0.16,Rg1 = 0.2,

Rg2 = 0.13,Rg2 = 0.25,Rg3 = 0.5,Rg3 = 0.8, σ 2

ξ1
= 0.02, σ 2

ξ1
= 0.03, σ 2

ξ2
=

0.03, σ 2

ξ2
= 0.04  , 

Rg1 = 0.2,Rg2 = 0.13,Rg2 = 0.25 , ς1=0.9, ς2=0.7, ς3=0.8 , D = 0.405. In the follow-up 
phase, the significant simulation results are given.

Table 1 below presents the comparison of actual and robust accuracies of local and CF 
robust steady-state estimators. By comparing the values in the table, the accuracy rela-
tions given by (66) and (67) are cleared, which meet our expectations.

The tracking results of x̂(3)i (t|t + 2), i = 1, 2, 3 and x̂(3)c (t|t + 2) are, respectively, shown 
in Fig. 1. In order to show the best results, we select the third component of state x(t). 
Apparently, compared with the local smoothers, the CF smoother has better tracking 
performance.

To illustrate the robustness of CF steady-state one-step smoother x̂c(t|t + 1) , we take 
any three groups of different actual noise variances x(t) , h = 1, 2, 3 satisfying (6), such 
that

(68)

x(t + 1) =









0.9226 −0.633 0
1 0 0
0 1 0



+ ξ1(t)





0.1 0.3 0.02
0.1 0.2 0.1
0.1 0.2 0.05



+ ξ2(t)





0.15 0.2 0.01
0.15 0.1 0.1
0.15 0.1 0.04







x(t)

+









0.5
0.7
0



+ ξ1(t)





1
0
0



+ ξ2(t)





0
0
1







w(t)

(69)
zi(t) =

([

23.737 20.287 0
]

+ ξ1(t)
[

1 0 0
]

+ ξ2(t)
[

0 1 0
])

x(t)

+ (0.55+ 0.87ξ1(t)+ 0.76ξ2(t))w(t)+ gi(t), i = 1, 2, 3

(70)w(t + 1) = Dw(t)+ η(t)

(71)yi(t) = ζi(t)zi(t)+ (1− ζi(t))(1− ζi(t − 1))zi(t − 1), i = 1, 2, 3

(1) (Rη)
(1)

= 0.06, (Rg1
)(1) = 0.04, (Rg2

)(1) = 0.05, (Rg3
)(1) = 0.16, (σ 2

ξ1
)(1) = 0.006, (σ 2

ξ2
)(1) = 0.008

(2) (Rη)
(2)

= 0.15, (Rg1
)(2) = 0.1, (Rg2

)(2) = 0.125, (Rg3
)(2) = 0.4, (σ 2

ξ1
)(2) = 0.015, (σ 2

ξ2
)(2) = 0.02

(3) (Rη)
(3)

= 0.24, (Rg1
)(3) = 0.16, (Rg2

)(3) = 0.2, (Rg3
)(3) = 0.64, (σ 2

ξ1
)(3) = 0.024, (σ 2

ξ2
)(3) = 0.032
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We easily get the corresponding three robust CF smoothers x̂(h)c (t|t + 1), h = 1, 2, 3 , 
as well as the steady-state one-step smoothing error variances P(h)

c (1) and Pc(1). The 
corresponding three actual smoothing error curves of the third component of 
x̂
(h)
c (t|t + 1), h = 1, 2, 3 and their 3-standard deviation bounds are shown in Fig.  2, 

where the actual standard deviation σ (h)(3)
c (1) are computed via the actual CF smooth-

ing error variances P(h)
c (1) given by (60), whose (3, 3) diagonal element is 

(

σ
(h)(3)
c (1)

)2
 , 

and the robust standard deviation σ (3)
c (1) is computed via conservative CF smoothing 

error variances Pc(1) given by (61), whose (3, 3) diagonal element is 
(

σ
(3)
c (1)

)2
 . We see 

from Fig. 2 that for each error curve, over 99 percent of CF smoothing error values lie 
between −3σ

(h)(3)
c (1) and +3σ

(h)(3)
c (1) , and also lie between −3σ

(3)
c (1) and +3σ

(3)
c (1) , 

this verifies the robustness of the third component of x̂c(t|t + 1) , and the correctness 
of the actual standard deviations σ (h)(3)

c (1).
Figure 3 gives the influence of multiplicative noises ξk(t), k = 1, 2 on the robust accu-

racy of x̂c(t|t) . In other words, the changing trend of trPc(0) with respect to σ 2
ξ1

 and σ 2
ξ2

 
is illustrated in Fig. 3. Obviously, when the variances σ 2

ξ1
 and σ 2

ξ2
 increase, the values of 

trPc(0) increase, i.e., the robust accuracy of x̂c(t|t) decrease.

6  Conclusions
This study set out to explore the robust CF steady-state Kalman estimators (predictor, 
filter, and smoother) for multisensor networked systems with colored noises and multi-
ple uncertainties. The OSRD and PDs are described by a Bernoulli distributed random 
variable with known probability, and random parameter uncertainties are described by 
multiplicative noises. The original system model has been converted into a CF system 
only with uncertain noise variances via using the augmented approach, de-randomiza-
tion approach, and fictitious noise technique. The process and observation noises in the 
CF system are same, which avoids solving the correlation matrix between them. Based 
on the minimax robust estimation principle, the target estimators have been proposed. 
Their robustness has been proved by using decomposition approach of non-negative 
definite matrix and Lyapunov equation approach. The results of this study indicate that 
the robust accuracy of CF estimator is higher than that of each local estimator. Finally, 
a simulation example with application to UPS with mixed uncertainties has been pro-
posed, which shows the applicability and correctness of the introduced estimators.
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Acknowledgements
This work is supported by Heilongjiang Provincial Natural Science Foundation of China under Grant No. LH2019F035, by 
National Natural Science Foundation of China under Grant NSFC-61803148, by Scientific Research Fund of Zhejiang Pro-
vincial Education Department under Grant Y202147323, by the Zhejiang Gongshang University General Project of Gradu-
ate Research and Innovation Fund in 2021, and is granted from Zhejiang Gongshang University, Zhejiang Provincial Key 
Laboratory of New Network Standards and Technologies (No. 2013E10012).

Authors’ contributions
SL contributed to editing, experiments, and data analysis, WL contributed to the theory model and partial theoretical 
derivation, GT contributed to partial theoretical derivation and proof. All authors read and approved the final manuscript.

Availability of data and materials
Data sharing does not apply to this article because no data set was generated or analyzed during the current research 
period.



Page 22 of 23Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:24 

Declarations

Ethics approval and consent to participate
This article is ethical, and this research has been agreed.

Consent for publication
The picture materials quoted in this article have no copyright requirements, and the source has been indicated.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Zhejiang Gongshang Univer-
sity, Hangzhou 310018, China. 2 College of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, 
China. 

Received: 16 January 2022   Accepted: 28 February 2022

References
 1. M.E. Liggins, D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion: Theory and Practice, 2nd edn. (CRC Press, New 

York, 2009)
 2. S.L. Sun, Z.L. Deng, Multi-sensor optimal information fusion Kalman filter. Automatica 40, 1017–1203 (2004)
 3. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, NJ, 1979)
 4. F.L. Lewis, L.H. Xie, P. Dan, Optimal and Robust Estimation with an Introduction to Stochastic Control Theory, 2nd edn. 

(CRC Press, New York, 2008)
 5. W.Q. Liu, X.M. Wang, Z.L. Deng, Robust centralized and weighted measurement fusion Kalman estimators for uncer-

tain multisensor systems with linearly correlated white noises. Inf. Fusion 35, 11–25 (2017)
 6. W.Q. Liu, G.L. Tao, Y.J. Fan et al., Robust fusion steady-state filtering for multisensor networked systems with one-

step random delay, missing measurements, and uncertain-variance multiplicative and additive white noises. Int. J. 
Robust Nonlinear Control 29(14), 4716–4754 (2019)

 7. W.Q. Liu, Z.L. Deng, Weighted fusion robust steady-state estimators for multisensor networked systems with one-
step random delay and inconsecutive packet dropouts. Int. J. Adapt. Control Signal Process. 34(2), 151–182 (2020)

 8. H.L. Tan, B. Shen, Y.R. Liu et al., Event-triggered multi-rate fusion estimation for uncertain system with stochastic 
nonlinearities and colored measurement noises. Inf. Fusion 36, 313–320 (2017)

 9. J. Ma, S.L. Sun, Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive 
noises and packet dropout compensations. Signal Process. 176, 1–12 (2020)

 10. W.J. Qi, P. Zhang, Z.L. Deng, Robust weighted fusion Kalman filters for multisensor time-varying systems with uncer-
tain noise variances. Signal Process. 99, 185–200 (2014)

 11. W.Q. Liu, G.L. Tao, C. Shen, Robust measurement fusion steady-state estimator design for multisensor networked sys-
tems with random two-step transmission delays and missing measurements. Math. Comput. Simulat. 181, 242–283 
(2021)

 12. X. Liu, X.Y. Zhang, M. Jia et al., 5G-based green broadband communication system design with simultaneous wire-
less information and power transfer. Phys. Commun. 28, 130–137 (2018)

 13. S.L. Sun, H. Lin, J. Ma et al., Multi-sensor distributed fusion estimation with applications in networked systems: a 
review paper. Inf. Fusion 38, 122–134 (2017)

 14. S.Y. Wang, H.J. Fang, X.G. Tian, Robust estimator design for networked uncertain systems with imperfect measure-
ments and uncertain-covariance noises. Neurocomputing 230, 40–47 (2017)

 15. F. Li, K.Y. Lam, X. Liu, Joint pricing and power allocation for multibeam satellite systems with dynamic game model. 
IEEE Trans. Veh. Technol. 67(3), 2398–2408 (2018)

 16. X. Liu, X.Y. Zhang, NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE 
Trans. Ind. Inf. 16(8), 5379–5388 (2020)

 17. X. Liu, X.P.B. Zhai, W.D. Lu, QoS-guarantee resource allocation for multibeam satellite industrial internet of things 
with NOMA. IEEE Trans. Ind. Informat. 17(3), 2052–2061 (2021)

 18. X. Liu, X.Y. Zhang, Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Inter-
net Things J. 6(4), 5971–5980 (2019)

 19. J. Hu, Z.D. Wang, D.Y. Chen, Estimation, filtering and fusion for networked systems with network-induced phenom-
ena: new progress and prospects. Inf. Fusion 31, 65–75 (2016)

 20. S.L. Sun, L. Xie, W. Xiao et al., Optimal linear estimation for systems with multiple packet dropouts. Automatica 44(5), 
1333–1342 (2008)

 21. N. Nahi, Optimal recursive estimation with uncertain observation. IEEE Trans. Inf. Theory 15(4), 457–462 (1969)
 22. W.L. Li, Y.M. Jia, J.P. Du, Distributed filtering for discrete-time linear systems with fading measurements and time-

correlated noise. Digit, Signal Process. 60, 211–219 (2017)
 23. H. Geng, Z.D. Wang, Y.H. Cheng et al., State estimation under non-Gaussian Lévy and time-correlated additive sensor 

noises: a modified Tobit Kalman filtering approach. Signal Process. 154, 120–128 (2019)
 24. L.J. Zhang, L.X. Yang, L.D. Guo et al., Optimal estimation for multiple packet dropouts systems based on measure-

ment predictor. IEEE Sens. J. 11(9), 1943–1950 (2011)
 25. S.Y. Wang, Z.D. Wang, H.L. Dong et al., Recursive state estimation for linear systems with lossy measurements under 

time-correlated multiplicative noises. J. Frankl. Inst. 357(3), 1887–1908 (2020)



Page 23 of 23Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:24  

 26. R.C. Águila, A.H. Carazo, J.L. Pérez, Networked fusion estimation with multiple uncertainties and time-correlated 
channel noise. Inf. Fusion 54, 161–171 (2020)

 27. W. Liu, P. Shi, Convergence of optimal linear estimator with multiplicative and time-correlated additive measure-
ment noises. IEEE Trans. Autom. Control 64(5), 2190–2197 (2019)

 28. R.C. Águila, A.H. Carazo, J.L. Pérez, Centralized filtering and smoothing algorithms from outputs with random param-
eter matrices transmitted through uncertain communication channels. Digit. Signal Process. 85, 77–85 (2019)

 29. W. Liu, Optimal estimation for discrete-time linear systems in the presence of multiplicative and time-correlated 
additive measurement noises. IEEE Trans. Signal Process. 63(17), 4583–4593 (2015)

 30. J. Ma, S.L. Sun, Distributed fusion filter for networked stochastic uncertain systems with transmission delays and 
packet dropouts. Signal Process. 130, 268–278 (2017)

 31. N. Li, S.L. Sun, J. Ma, Multi-sensor distributed fusion filtering for networked systems with different delay and loss 
rates. Digit. Signal Process. 34, 29–38 (2014)

 32. G.M. Liu, W.Z. Su, Survey of linear discrete-time stochastic controls systems with multiplicative noises. Control 
Theory Appl. 30(8), 929–946 (2013)

 33. Z.D. Wang, D.W.C. Ho, X.H. Liu, Robust filtering under randomly varying sensor delay with variance constraints. IEEE 
Trans. Circuits Syst. II Exp. Briefs 51(6), 320–326 (2004)

 34. T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation (Prentice Hall, NJ, 2000)
 35. X.J. Sun, G. Yuan, Z.L. Deng et al., Multi-model information fusion Kalman filtering and white noise deconvolution. 

Inf. Fusion 11(2), 163–173 (2010)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Centralized fusion robust filtering for networked uncertain systems with colored noises, one-step random delay, and packet dropouts
	Abstract 
	1 Introduction
	1.1 Background
	1.2 Related work
	1.3 Innovation

	2 Problem statement
	3 Methods
	3.1 Augmented CF system
	3.2 Actual and conservative state second order non-central moments
	3.3 Fictitious process and observation noises

	4 Results
	4.1 Robust CF steady-state Kalman predictor
	4.2 Robust CF steady-state Kalman filter and smoother

	5 Discussion
	6 Conclusions
	Acknowledgements
	References


