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1  Introduction
Antenna array processing with spatial filtering has been shown to be effective in canceling 
interference in received signals such as in the global navigation satellite system (GNSS) 
and radar systems [1]. This approach employs weights on the signals received by the 
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array elements to form nulls in the directions of the interference while steering the array 
response toward the desired signals. These weights can be changed adaptively [2]. Space–
time adaptive processing (STAP) is based on spatial filtering [3]. In STAP, each array ele-
ment is followed by a time domain finite impulse response (FIR) filter. STAP has been 
used to adaptively process radar signals using both space and time sampling [4, 5]. This 
solves the problem of ground clutter suppression in radar signals. STAP has also been 
applied for anti-interference in GNSS [6, 7]. An adaptive antenna array was employed for 
interference reduction which increases the number of degrees of freedom for signal pro-
cessing. However, if the interference directions are close to those of the desired signals, 
STAP will degrade the desired signals when nulling the interference. Thus, polarization 
domain information is utilized to distinguish and suppress the interference.

In [7–12], space-polarization adaptive processing (SPAP) was introduced to sup-
press interference in the joint space-polarization domain. Further, STPAP was pro-
posed in [13] to mitigate interference. The polarization information of a signal can 
be obtained using a dual-polarization sensitive array (DPSA). Compared with tra-
ditional antenna arrays, DPSA has several advantages such as strong interference 
suppression, robust detection, high resolution, and polarization multiple access 
[14, 15]. Consequently, DPSA has been widely employed in radar, remote sensing, 
seismic signal processing, and wireless communication systems [16]. However, the 
complex structure and resulting implementation difficulties limit the use of polar-
ization-sensitive arrays. Thus, the alternating polarization sensitive array (APSA) 
was proposed [17]. A DPSA is composed of electric dipoles along the x and y axes 
which can receive electric field information from the x and y directions [17–19]. 
The APSA structure has half the complexity of DPSA, but the polarization informa-
tion is also reduced by half. However, APSA and DPSA have similar filtering perfor-
mance [19].

In this paper, space–time-polarization adaptive processing is employed with APSA, 
and an alternating polarization-sensitive array space–time polarization adaptive pro-
cessing (APSA-STPAP) algorithm based on the linear constraint minimum variance 
(LCMV) criterion is proposed. The joint steering loss of the desired and interference sig-
nals in the spatial, time, and polarization domains is used as the constraint matrix, and 
the "set 1" and "set 0" conditions are taken as the constraint conditions to effectively sup-
press the interference signals and enhance the desired signals.

The remainder of this paper is organized as follows: Section 2 presents the polari-
zation model, APSA structure, and signal model. The proposed APSA-STPAP fil-
tering algorithm based on the LCMV criterion is given in Sect. 3. Simulation results 
are presented in Sect. 4 to evaluate the performance and effectiveness of the pro-
posed algorithm. Moreover, the proposed APSA-STPAP algorithm is compared 
with the DPSA-STPAP algorithm. Finally, Sect. 5 concludes the paper.

2 � Alternating polarization‑sensitive array and the received signal model
2.1 � Polarization model

Figure  1 illustrates a transverse electric (TE) wave incident from direction (θ ,ϕ) with 
respect to the reference point O, where θ ∈ [−90◦, 90◦] is the pitch angle and ϕ ∈ [0◦, 360◦] 
is the azimuth angle [20]. The pitch angle refers to the acute angle between the direction 
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of the incoming signal and the normal of the antenna. The azimuth angle refers to the 
angle between the projection of the incoming signal on the antenna and the reference 
direction. Denote the transient electric field vector at point P as 

→

E . This can be written 
as 

→

E = Eθ
→
eθ +Eϕ

→
eϕ where (

→
eθ ,

→
eϕ) is a pair of orthonormal vector and Eθ and Eϕ denote 

the transient projections in the 
→
eθ and 

→
eϕ directions, respectively. The magnitudes of the 

electric field components are Eθ = sin γ ejη and Eϕ = cos γ where (γ , η) are the polariza-
tion parameters which describe the polarization mode of the TE wave. γ ∈ [0◦, 90◦] is the 
amplitude ratio between the horizontal and vertical components of the electric field and 
η ∈ [−180◦, 180◦] is the phase difference between the horizontal and vertical components 
of the electric field. According to the orientation of the endpoint of the transient electric 
field vector, the TE wave can be classified as linear polarization, circular polarization, or 
elliptical polarization (EP) [21]. Moreover, linear polarization can be classified as horizon-
tal polarization (HP) or vertical polarization (VP). Circular polarization can be classified as 
right-hand circular polarization (RHCP) or left-hand circular polarization (LHCP). These 
modes can be defined by the polarization parameters given in Table  1. The polarization 
vector of the received signal at the array can be expressed as [22, 23]
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Fig. 1  Transverse electric wave
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2.2 � lternating polarization‑sensitive array structure

An APSA contains M dual-polarized elements as shown in Fig. 2. The polarization infor-
mation is obtained via correlation of the x and y channels, and the spatial information 
is obtained from the phase lag. For simplicity and without loss of generality a uniform 
linear array (ULA) along the y-axis is considered here, and the azimuth angle is 90°, i.e., 
ϕ = 90◦.The distance between two elements, d, is assumed to be half the wavelength of 
the desired signals d = �/2.

The APSA used here is based on a PSA and is shown in Fig. 3 [17–19]. Compared to an 
APSA, each array element is along the x-axis or y-axis of the dipole alternately.

Figure  4 illustrates the structure of the proposed alternating polarization-sensi-
tive array polarization space–time adaptive processing (APSA-STPAP) algorithm. 
This is similar to a conventional STAP with the LCMV criterion algorithm which 
has one RF chain for each antenna element [24]. However, the APSA-STPAP algo-
rithm has RF chains for the vertical or horizontal dipole components. After the RF 

Table 1  The parameters for different polarization modes

Polarization mode Amplitude ratio ( γ) Phase difference ( η)

HP 0  − 180, 0, 180

VP 90  − 180, 0, 180

RHCP 45  − 90

LHCP 45 90

EP [0, 90] [− 180, 180]

Fig. 2  Dual-polarized ULA array
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Fig. 3  ASPA ULA array

Fig. 4  APSA-STPAP structure
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front end, signals from each antenna component pass through an FIR filter with K 
taps.

2.3 � Array steering vector

The joint space–time polarization steering vector for a dual-polarized ULA can be 
expressed as

where ⊗ denotes the Kronecker product. The length M space steering vector is

where q = e−j2π d
�
sin θ is the spatial phase factor and (·)T denotes transpose. The length K 

time domain steering vector can be expressed as

where f  is the intermediate frequency after the signal passes through the RF front end 
and Ts is the sampling period of the FIR filter.

From (1), The polarization domain steering vector for a dual-polarized ULA can be 
written as

Similar to (2), the joint polarization space–time steering vector for an alternating 
polarization-sensitive array STPAP is given by

The length M2  APSA space steering vector can be written as

The distance between adjacent dipoles in each direction is assumed to be the desired 
signal wavelength. The polarization domain steering vector for an APSA can be 
expressed as

(2)sSTP(θ , f , γ , η) = sS(θ)⊗ sP(γ , η)⊗ sT (f )
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Comparing (2) and (6), the dimension of the APSA joint steering vector is half that 
of the DPSA. This reduces the number of calculations and thus the computational 
complexity.

2.4 � Array signal receiving model

The nth, 1 ≤ n ≤ L , signal block received by the array is given by

where A is the joint vector matrix, s(n) is the amplitude vector of the desired signal, J(n) 
is the interference signal matrix, and V(n) is a white Gaussian noise vector with elements 
having mean 0 and variance σ 2 . We then have

Assume the pth, p = 1, 2, . . . ,P , desired signal has intermediate frequency fp , incident 
angle θp , and polarization parameters (γp, ηp) , and the qth, q = 1, 2, · · · ,Q , interference 
signal has intermediate frequency fq , incident angle θq , and polarization parameters 
(γq , ηq) . Then from Fig. 4, the received signal model for the nth block can be written as

3 � APSA‑STPAP algorithm based on LCMV
Assuming that the direction of arrival (DOA) and polarization information of the 
desired signal is known, the LCMV criterion can be employed in the APSA-STPAP algo-
rithm. The array output can then be expressed as [25]

where w is a length M × K  weight vector and (·)H denotes Hermitian. This vector can be 
written as

(8)

sP(θ , γ , η) =
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][
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]
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− cos γ
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]

(9)X(n) = As(n)+ J(n)+ V(n)

(10)X = [x11(n), · · · , x1K (n) , · · · , xM1(n), · · · , xMK (n)]
T

(11)

xASTP(n) =

P∑

p=1

sASTP(θp, fp, γp, ηp)sp(n)

+

Q
∑

q=1

sASTP(θq , fq , γq , ηq)jq(n)+ vASTP(n)

(12)y(n) = wHxASTP(n)

(13)w = [w11, . . . ,w1K , . . . ,wM1, . . . ,wMK ]
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The output signal power is

where R = E[xASTP(n)x
H
ASTP(n)] is the covariance matrix of the received signals and E[·] 

denotes expectation. This matrix is unknown but a sampled covariance matrix [14] can 
be obtained as

where L is the number of samples.
The constraint conditions of the weight vector to recover the desired signals from θp 

and suppress the interference from θq can be expressed as

The constraint condition in the direction of the desired signals is "set to 1," and the 
constraint condition in the direction of the interference signals is "set to 0." This is 
because the direction of the array receive beam pattern is expected to be toward the 
desired signals and the zero point is expected to point to the interference signals.

To ensure signal reception in the directions of the P desired signals and the null to 
suppress interference in the direction of the Q interfering signals, the constraints on 
the weight vector can be expressed as

where C is an MK × (P + Q) constraint matrix and f  is the response vector. These can 
be written as

The optimization problem can then be expressed as

Using Lagrange multipliers, the optimal LCMV weight vector is [25]
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(17)CHw = f

(18)
C = [sASTP(θ1, f1, γ1, η1), . . . , sASTP(θP , fP , γP , ηP),

sASTP(θP+1, fP+1, γP+1, ηp+1), . . . , sASTP(θP+Q, fP+Q, γP+Q, ηp+Q)]

(19)
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The resulting array pattern is

and the corresponding normalized array pattern is

The signal covariance matrix Rs and the interference plus noise covariance matrix 
Rj+v are

Then the output signal power after beamforming can be written as

and the output interference plus noise power at the output is

The signal to interference plus noise ratio (SINR) is defined as the ratio of signal power 
to interference plus noise power at the output and can be written as

Pseudo code for the proposed APSA-STPAP algorithm based on LCMV is given in 
Algorithm 1.

(21)w = R̂−1C(CH R̂−1C)−1f

(22)F
(
θ ,ϕ, f , γ , η

)
=wH sASTP(θ , f , γ , η)

(23)G
(
θ ,ϕ, f , γ , η

)
= 20 log10

∣
∣F
(
θ ,ϕ, f , γ , η

)∣
∣

∣
∣F
(
θ ,ϕ, f , γ , η

)∣
∣
max
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[
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H
s (n)

]
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H
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]

(26)
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[∣
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∣
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]

= E
[
wHxs(n)x

H
s (n)w

]

= wHRsw

(27)

Pj+v = E
[∣
∣yj+v(n)

∣
∣2
]

= E
[

wHxj+v(n)x
H
j+v(n)w

]

= wHRj+vw

(28)SINR =
Ps

Pj+v
=

wHRsw

wHRj+vw
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4 � Simulation results
4.1 � Array orientation comparison between the APSA‑STPAP and DPSA‑ STPAP algorithms

An eight-element APSA ULA with single wavelength spacing in each direction is 
employed. Each APSA dipole is followed by a tapped delay line with four taps. The 
desired signal has a bandwidth of 20.46  MHz and an intermediate frequency of 
46.52  MHz. The sampling frequency and number of samples are 62  MHz and 300, 
respectively. The signal-to-noise ratio (SNR) of the desired signals is − 20  dB, and the 
interference to noise ratio (INR) of the interference signals is 50  dB. Additive white 
Gaussian noise (AWGN) with mean 0 and variance 1 is considered. Since the joint polar-
ization-space–time domain has four dimensions, a four-dimensional search is required. 
To facilitate the discussion, fixed polarization phase angles and intermediate frequencies 
are used to observe the polarization-space domain pattern, and fixed polarization phase 
angles and phase differences are used to observe the space–time domain pattern.



Page 11 of 18Sha et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:25 	

It is assumed that the DOA of the desired signal with RHCP polariza-
tion ((γ0, η0) = (45◦,−90◦)) is 20◦ and the DOA of the interference sig-
nals are −70◦ , −40◦ , −20◦ , 20◦ , 40◦ , and 70◦ . Further, the time of arrival (TOA) 
of the desired and interference signals is the same. Two scenarios are con-
sidered. In Scenario 1, the intermediate frequency of the interference sig-
nals is 46.52  MHz. The parameters are (γi, ηi) = (38◦,−90◦), (60◦,−90◦),

(45◦,−90◦), (18◦,−90◦), (40◦,−90◦), (85◦,−90◦), 1 ≤ i ≤ 6 . In Scenario 2, the interfer-
ence signals are RHCP with parameters (γi, ηi) = (45◦,−90◦) . The intermediate frequen-
cies are 30 MHz, 35 MHz, 40 MHz, 49 MHz, 55 MHz, and 60 MHz.

The simulation results for the DPSA-STPAP and APSA-STPAP algorithms are given 
in Figs. 5 and 6, respectively, for Scenario 1, and Figs. 7 and 8 for Scenario 2. In Scenario 
1, the directions of the interference and desired signal are the same, so the null can be 
formed in the polarization domain direction without affecting reception of the desired 
signal. In Scenario 2, the null can be formed in the frequency dimension direction with-
out affecting the reception of the desired signal. Therefore, the two algorithms have a 
three-dimensional resolution in the spatial, time, and polarization domains. When the 
information for two domains is the same, the third domain can be used to distinguish 

Fig. 5  Three-dimensional beam pattern for the APSA-STPAP algorithm a space-polarization domain null 
pattern and b top view of the space–time domain null pattern

Fig. 6  Three-dimensional beam pattern for the DPSA-STPAP algorithm a space-polarization domain null 
pattern and b top view of the space–time domain null pattern
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and identify the signals, so the anti-interference performance is improved. These 
results show that the proposed algorithm can suppress interference without affecting 
the desired signals when they have the same direction as polarization information is 
employed for joint polarization-space–time anti-interference. Thus, this is an effective 
solution for anti-interference when the desired and interference signals have the same 
DOA.

4.2 � Computational complexity

The weight vector for the APSA-STPAP algorithm is given by (21). While a solution 
can be obtained for multiple input multiple output (MIMO) systems, for computational 
complexity comparison purposes a single input single output (SISO) system is consid-
ered. Determining the optimal weight involves the following four steps.

1.	 The estimated autocorrelation matrix of the received signals, R̂ , is obtained using L 
signal samples.

2.	 The inverse matrix R̂−1 is obtained.
3.	 The joint steering vector sASTP(θ , f , γ , η) is calculated.

Fig. 7  Three-dimensional beam pattern for the APSA-STPAP algorithm a space-polarization domain null 
pattern and b top view of the space–time domain null pattern

Fig. 8  Three-dimensional beam pattern for the DPSA-STPAP algorithm a space-polarization domain null 
pattern and b top view of the space–time domain null pattern



Page 13 of 18Sha et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:25 	

4.	 The product of R̂−1 and sASTP(θ , f , γ , η) is obtained.

Tables 2 and 3 present the computational complexity of the DPSA-STPAP and APSA- 
STPAP algorithms. These results show that the number of real multiplications, real divi-
sions, and real additions is lower with the APSA-STPAP algorithm. Further, the number 
of computations is related to the number of samples L, the number of array elements M, 
and the number of time domain taps K. Fig. 9 presents the total number of computations 
for the two algorithms versus L, M, and K. These results show the effect of the three vari-
ables on the computational complexity. It is clear that the number of operations for the 
APSA-STPAP algorithm is significantly lower than for the DPSA-STPAP algorithm. This 
indicates that employing the APSA-STPAP algorithm for space–time-polarization joint 
anti-interference will reduce the required number of calculations which makes imple-
mentation easier.

4.3 � Anti‑interference performance

The simulation parameters used in Sect. 4.1 are considered here.

4.3.1 � Effect of the number of time domain taps

The effect of the number of time domain taps on the SINR is now examined. Fig-
ure 10 presents the SINR versus the number of taps with input SNR − 10 dB, − 20 dB, 
and − 30 dB. The SINR values are the average of 500 Monte Carlo trials.

For low SNRs, i.e., SNR =  − 30  dB and − 20  dB, the SINR increases with an 
increase in the number of taps, and the DPSA-STPAP algorithm is superior to the 
APSA-STPAP algorithm, but the results are similar with a larger number of taps and 
SNR =  − 20 dB. With a high signal-to-noise ratio, i.e., SNR = − 10 dB, the SINR for 
the two algorithms is similar, but the results for the APSA-STPAP algorithm with 
more than 3 taps are superior. The main reason is that the zero notch narrows with an 
increase in the number of taps which reduces the impact on the main lobe. Thus, the 
signal loss is reduced and the signal-to-interference noise ratio is increased. Further, 
an increase in the number of taps increases the order of the transverse FIR filter. This 

Table 2  Computational complexity of the DPSA-STPAP algorithm

Operation Step 1 Step 2 Step 3 Step 4 Total

Real multiplica-
tion

16(MK)2L 32(MK)3 − 8(MK)2 16MK 16(MK)2 32(MK)3 + 16(MK)2L + 8(M
K)2 + 16MK

Real division 8(MK)2 16(MK)2 0 0 24(MK)2

Real addition 16(MK)2 L− 8(MK)2 32(MK)3 − 8(MK)2 4MK + 4 M 16(MK)2 − 4MK 32(MK)3 + 16(MK)2L + 4 M

Table 3  Computational complexity of the APSA-STPAP algorithm

Operation Step 1 Step 2 Step 3 Step 4 Total

Real multiplication 4(MK)2L 4(MK)3 − 2(MK)2 8MK 4(MK)2 4(MK)3 + 4(MK)2L + 2(MK)2 + 8MK

Real division 2(MK)2 4(MK)2 0 0 6(MK)2

Real addition 4(MK)2L − 2(MK)2 4(MK)3 − 2(MK)2 2MK + 2M 4(MK)2 − 2MK 4(MK)34(MK)2L + 2M
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(a) (b) 

(c) 
Fig. 9  Computational complexity of the APSA-STPAP and DPSA-STPAP algorithms a number of operations 
versus the number of samples, b number of operations versus the number of array elements, and c number 
of operations versus the number of time domain taps

Fig. 10  SINR versus the number of time domain taps



Page 15 of 18Sha et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:25 	

improves the frequency resolution so the interference signal can be suppressed more 
effectively. However, increasing the number of taps increases the computational com-
plexity. Thus, the maximum number of taps considered here is 10.

4.3.2 � Effect of the number of samples

The influence of the number of samples on the output SINR is now consid-
ered. Figure  11 presents the SINR versus the number of samples with input 
SNR − 10  dB, − 20  dB, and − 30  dB. The SINR values are the average of 500 Monte 
Carlo trials. These results show that the SINR increases with the number of samples 
and the results for the two algorithms are similar. With a small number of samples, 
the SINR for the APSA-STPAP algorithm is better than for the DPSA-STPAP algo-
rithm. However, the output SINR of the DPSA-STPAP algorithm is higher with a 
larger number of samples. The SINR difference decreases as the SNR increases and at 
SNR =  − 10 dB the results are almost identical for more than 3 samples.

4.3.3 � Effect of the input SNR

The effect of the input SINR on the output SINR is now examined. Figure  12 pre-
sents the SINR for the two algorithms as the input SNR varies from − 40 to − 10 dB. 
The SINR values are the average of 500 Monte Carlo trials. These results show that 
the SINR for the DPSA-STPAP algorithm is higher than for the APSA-STPAP algo-
rithm. The SINR difference decreases as the SNR increases. The maximum difference 
in SINR is about 3 dB. Thus, although the dipole and degrees of freedom are half, the 
anti-interference performance of the APSA-STPAP algorithm is similar to that for the 
DPSA-STPAP algorithm when SNR ≥  − 10 dB.

Fig. 11  SINR versus the number of samples
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5 � Conclusion
In this paper, an APSA-STPAP algorithm based on the LCMV criterion was proposed. 
This algorithm improves on traditional space–time adaptive algorithms by employ-
ing polarization domain information. Simulation results were presented which show 
that it can effectively suppress interference while enhancing the desired signal. Fur-
ther, the proposed algorithm has lower computational complexity than the DPSA-
STPAP algorithm so it is easier to implement. The results presented indicate that 
the APSA-STPAP algorithm has anti-interference performance similar to that of the 
DPSA-STPAP algorithm even though the electric dipole and anti-interference degrees 
of freedom are reduced by half. There is little difference in anti-interference perfor-
mance when SNR ≥  − 10  dB. This paper provides a theoretical basis for the use of 
polarization-sensitive arrays in multi-dimensional anti-interference.
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