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1  Introduction
Visual object tracking (VOT) can be described as the process of confirming the 
target defined in the first frame and estimating its motion trajectory in the subse-
quent frames, under the condition that the state information (position, size, etc.) of 
the target is given in the first frame of tracking sequence [1–6]. VOT is the product 
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Correlation filter tracking requires little prior knowledge of the tracking target (e.g., the 
shape, and the posture) but has a fast-tracking speed. The deep features extracted by 
the deep convolutional neural network have strong representation ability, so the track-
ing method based on the combination of correlation filter and deep convolutional 
neural network, named as deep correlation filter tracking, is a hot issue in the field of 
target tracking at present. However, the deep convolutional neural network largely 
restricts the real-time performance of the deep correlation filter tracking because of 
its complex network structure and heavy computation burden. To balance the contra-
diction between tracking speed and tracking accuracy, a new channel importance is 
defined and the channel importance based method of how to select the important 
channels is given in this paper. And then, a deep correlation filter tracking method 
based on channel importance is proposed to lighten the feature network, reduce the 
computation load and improve the tracking speed under the premise of ensuring the 
tracking accuracy. In the process of tracking, the structural similarity index measure-
ment (SSIM) of the predicted tracking target in two consecutive frames is calculated 
in real-time. Based on the SSIM, determine whether the feature network needs to be 
updated, and decide whether the tracking fails. If the feature network needs to be 
updated, the feature network will be updated online while the tracking is on. If the 
tracking fails, the target will be searched again, and the tracking is recovered from the 
failure. The tracking algorithm proposed in this paper is tested on the OTB2013 data 
set, and the experiment shows that the tracking algorithm designed in this paper 
can improve the real-time performance while meeting the requirement of tracking 
accuracy. The online update of the feature network can make the network adapt to the 
complex background and target changes to improve tracking accuracy; In the case 
of tracking failure, the re-tracking module can search for the target again and resume 
tracking given that the target is always present.
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of multi-domain cross fusion, mainly involving image processing, machine learn-
ing, optimization, and other fields. Furthermore, VOT is the premise and basis for 
completing higher-level image understanding tasks [1, 2, 7, 8]. At present, it has 
been successfully applied in many fields, such as intelligent video surveillance [9, 10], 
unmanned driving [11, 12], human–computer interaction [13], intelligent robot [14], 
unmanned aerial vehicle [15], ocean detection [16], and etc. It is no doubt that VOT 
is an interdisciplinary, widely used, open, and attractive research field of computer 
vision.

The early work was mainly focused on the traditional visual object tracking algo-
rithms, such as Mean Shift [17], Lucas Kanade [18], Particle filter [19], and so on. In 
2010, Minimum Output Sum of Squared Error filter (MOSSE) [20] is introduced to the 
visual tracking for the first time. Since then, a large number of improved studies from 
different perspectives have been performed on the correlation filter based visual track-
ing algorithms to generate many kinds of variant algorithms, such as Circulant Structure 
of Tracking-by-Detection with Kernels (CSK) [21], Kernelized Correlation Filters (KCF) 
[22], Scale Adaptive Multiple Feature (SAMF) [23], Discriminative Scale Space Tracker 
(DSST) [24], etc. Compared with the traditional tracking algorithm, the tracking accu-
racy and speed of these variant algorithms have been significantly improved.

With the successful application of deep learning (especially deep convolutional 
neural network) in image classification and object detection, deep learning has also 
begun to be widely used in target tracking algorithms, and various target track-
ing algorithms based on deep convolutional neural networks have been developed, 
such as deep convolutional neural network + correlation filter (DCNN + CF), deep 
convolutional neural network + particle filter, Siamese neural network-based meth-
ods, and etc. Especially, DCNN + CF is the most typical one among them. On the 
one hand, DCNN + CF takes the deep convolutional neural network as the feature 
extractor, which plays its powerful feature representation ability to extract the deep 
features that can fully represent the target from the sequential images to ensure the 
tracking accuracy. On the other hand, it makes full use of the speed advantage of cor-
relation filter to carry out feature association, and predicts the target position from 
the response of correlation filter to ensure real-time tracking. Because of these two 
remarkable characteristics (powerful feature representation ability and real time abil-
ity), DCNN + CF has become one of the hot research issues of visual tracking, mean-
while many successful applications have been achieved [25].

Although DCNN + CF visual tracking theory has made a lot of progress and has 
been successfully applied in related fields, there are still many challenges to be solved, 
which are manifested in:

i)	  Deep convolutional neural network gives full play to its powerful feature representa-
tion ability and extracts deep features that can fully represent the target from sequen-
tial images. Although it improves the tracking accuracy, it also increases the com-
plexity of the algorithm and the computational burden at the same time, which will 
inevitably aggravate the real-time performance of the tracking algorithm. Therefore, 
how to balance tracking accuracy with real-time tracking is one of the challenges to 
implement DCNN + CF algorithm.
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ii)  �Generally, the deep convolutional neural network of DCNN + CF is pre-trained 
offline, the structure and parameters of the deep convolutional neural network are 
kept unchanged, and the correlation filter is updated online during the real tracking 
process. In practice, however, video frames that do not appear in the training sample 
set are often encountered, such as illumination variation, scale variation, occlusion, 
deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-
of-view, background clutters, low resolution [5], and etc. These factors will greatly 
decrease the tracking accuracy and affect the tracking performance. One of the 
effective methods to solve this problem is to update the deep convolutional neural 
network online. Although some researchers suggested solutions using dynamic net-
works [26, 27], most of them only focus on specific interference factors. Therefore, 
completely considering these interference factors and updating the kernels of the 
deep convolution neural network in real time to improve the tracking performance is 
also one of the challenges to realize the DCNN + CF algorithm.

iii)	 �The interference factors mentioned above will greatly decrease the tracking accuracy 
and affect the tracking performance and the most extreme case is tracking failure. 
How to detect the tracking failure and how to restore normal tracking from tracking 
failure are other challenge to implement the DCNN + CF algorithm.

In this paper, we propose a deep correlation filter tracking algorithm based on chan-
nel importance to solve problems mentioned above, which mainly includes the following 
three parts:

•	 According to the Gaussian output response of the visual tracking system, the impor-
tance score of each channel of the last layer of the feature network is defined (in the 
Sect. 3.2.1), and the importance score of each channel is calculated. Under the con-
dition of maintaining tracking accuracy, we only reserve the channels with a larger 
importance score, and clip off the other channels with a smaller importance score in 
the last layer of the feature network during the tracking progress, which can reduce 
the network complexity, alleviate the computational burden, and improve the real-
time performance of the tracking.

•	 Structural similarity index measurement (SSIM), a measure of the similarity of two 
images [55], is selected to represent the similarity of targets in two consecutive 
frames of the video sequence, because it has global statistical distribution character-
istics, which can work well for a variety of interference factors and conforms to peo-
ple’s visual habits. It is indicated normal tracking when SSIM is higher than the pre-
set threshold range. No matter what the reason is, if the similarity SSIM of the target 
in successive two frames falls within the pre-set threshold range, it indicates that the 
adaptability of the feature network decreases and the feature network can still work 
normally, but training is needed to improve the adaptability of the network. At this 
point, the feature network online update module is activated to train the feature net-
work online with the current frame data. Meanwhile, real time tracking is continued. 
The feature network is updated in time to adapt to the changes of the target and envi-
ronment, which enable the tracking system to improve the tracking accuracy under 
the constraint of ensuring real-time performance.
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•	 No matter what the reason is, if the SSIM of the target in two consecutive frames is 
lower than the pre-set threshold range, it indicates that the tracking has failed. At 
this point, the re-tracking module is activated to re-search for the target in the given 
area of the current frame until the search in the given area is completed. If the target 
is found, then the tracking is recovered, and the next frame tracking is continued 
after the recovery. Otherwise, the next frame tracking is continued directly.

2 � Related work
Object tracking has always been a hot research topic in the field of computer vision. The 
comprehensive reviews can be found in [3, 4]. In this section, some works highly associ-
ate with DCNN + CF is presented to highlight our motivation.

2.1 � Correlation filter

In the field of signal processing, correlation filter is used to measure the degree of simi-
larity between signals. The higher the signal similarity, the higher the correlation value 
of the filter output. The application of this method to tracking is to find the maximum 
value correlated with the tracking target in the output response of the filter. Combining 
correlation filter in signal processing with object tracking, Bolme et  al. [20] proposed 
MOSSE algorithm to convert time domain calculations to frequency domain calcula-
tions, which greatly reduces computational complexity and enables tracking speeds to 
exceed 600  fps. Henriques et  al. [21] introduced circular matrix and kernel function 
estimation into MOSSE algorithm, and proposed CSK algorithm by employing gray-
scale features as used in the original MOSSE; Henriques et al. [22] further improved the 
CSK tracking algorithm by using the Histogram of Oriented features, and proposed the 
kernel correlation filter (KCF); The cyclic matrix is introduced to avoid matrix inver-
sion, which reduces the computational complexity and improves the tracking speed; In 
addition, the tracking is taken as classification. By introducing kernel function, the non-
linear classification problem is transformed into linear classification problem [8], which 
makes the algorithm more adaptable and the performance is further improved. Besides 
of the research works mentioned above, some researchers try to improve the correlation 
filter based tracking algorithms from different aspects. For example, SAMF [23], DSST 
[24] and ASRCF [28] (adaptive spatially regulated correlation filters) improved the cor-
relation filter based tracking algorithm from the aspect of scale adaptation by setting 
the scale factor, the scale filter, and introducing the adaptive space regularization into 
objective function respectively. SRDCF [29] (spatially regulating discriminative correla-
tion filters) effectively solved the boundary effect problem of correlation filter algorithm. 
MTCF (visual object multimodality tracker based on correlation filters) proposed by 
Yang et al. [30] can adapt to the changes of target translation, scale, and rotation at the 
same time.

Correlation filter has obvious advantages in tracking speed. However, due to the limi-
tation of feature representation, the tracking accuracy is not satisfactory. Therefore, for 
correlation filter, improving tracking accuracy has become one of the important issues of 
visual tracking based on correlation filter.
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2.2 � Correlation filter tracking based on deep learning

Deep learning has strong feature representation ability, while the correlation filter 
algorithm has significant advantages in tracking speed. Therefore, the combination of 
both methods has become a potential research direction in the field of visual tracking.

2.2.1 � Off‑line training of feature network

Danelljan et  al. [31] replaced the HOG (histogram of oriented gradient) feature in 
SRDCF with a single-layer convolution feature. Although the accuracy of the tracking 
is improved, the computational complexity is also increased, and the tracking speed is 
reduced as a result.

Ma et  al. [32] proposed hierarchical convolutional features for visual tracking 
(HCFT). Considering the characteristics of different layer features, three-layer net-
works were used to train correlation filters respectively. The weighted sum of the out-
puts of the three associated filters is taken as the final output of the tracking system, 
corresponding to position of the target. Although the tracking accuracy is improved, 
the tracker is not effective in dealing with occlusion problems, and the robustness of 
long-term tracking is not high.

C-COT [33] (continuous convolution operator tracker) proposed a method of con-
tinuous convolution filter. The feature maps with different resolutions are interpo-
lated into the continuous space domain through cubic interpolation, and then the 
Hessian matrix is applied to obtain the target position. This algorithm significantly 
improves the tracking accuracy and robustness, but it is difficult to ensure real-time 
performance due to the complexity of the calculation.

In addition to using the deep network as feature extraction, some researchers 
have tried to use a neural network to simulate the whole process of correlation fil-
ter based tracking. Bertinetto et al. [34] proposed SiamFC (fully continuous siamese 
networks) tracking algorithm based on the Siamese network structure. SiamFC has 
two branches. One branch is for extracting the target feature, while the other one 
is used to extract the detection window feature. The two kinds of features are cor-
related to obtain the corresponding predicted target position. A large number of 
subsequent Siamese network models are improved based on SiamFC. Siammask [35] 
(siamese network with mask) induced a Mask branch on SiamFC for direct target seg-
mentation. A more accurate target box can be obtained through combining the track-
ing task with the semi-supervised segmentation task. Consequently, the accuracy of 
the tracker is largely improved. SiamDW [36] (deep and wider siamese networks) 
improved the tracking accuracy by designing a residual module to eliminate the nega-
tive impact of pooling layer the deep network.

Although the above methods use the deep features to more completely represent 
the target, most of the models are based on off-line training, which is difficult to adapt 
to the target changes (for example, appearance, scale, rotation, and etc.) and complex 
environmental changes.
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2.2.2 � Feature network slimming

The powerful feature representation capabilities of deep learning methods can greatly 
improve tracking accuracy, but the complexity of deep neural networks also increases 
the computational burden and restricts real-time tracking. Because the features of 
different layers of the convolutional neural network have different characteristics, and 
their effects on tracking performance are also different. Some researchers began to 
pay attention to the feature network module and improved the real-time performance 
of the tracking by only selecting the features with more contributions to the tracking 
in order to simplify the network structure.

Li et al. [37] proposed a tracking model based on target-aware which means that the 
target with significant appearance variations is perceived. It defined the importance 
of filters as the GAP (global average pooling) of the gradient of the regression loss 
function. According to the output results of GAP, the most effective filter is selected 
to generate target perception features, which reduces the amount of calculation and 
improves the accuracy of tracking. Che et  al. [38] proposed a response evaluation 
mechanism, AFER (average feature energy ratio), which calculated the ratio between 
the target area of each channel and the average feature value of the entire search area. 
The channels with AFER greater than the threshold were reserved, which enhanced 
the tracking speed. He et al. [39] proposed a two-step algorithm. The first step is to 
find representative channels based on LASSO (least absolute shrinkage and selection 
operator) regression to minimize the reconstruction error of the output feature map. 
Another step is to reconstruct the output of the remained channels using linear least 
squares. This method reduces the computational burden and ensures that the output 
difference between before and after channel change is minimal.

Liu et al. [40] proposed a network slimming method. It introduced a scaling factor γ 
for each channel. The scaling factor was trained along with the network weights. The 
channels whose scaling factors were close to 0 were clipped out directly. This method 
simplifies the model and reduces the calculation cost without an obvious loss of pre-
cision. Ye et al. [41] proposed an OT (optimal thresholding) method that calculated 
the global optimal threshold by calculating the sum of the cumulative squares of the 
scaling factors in the BN layer. The training time of the model is shortened while the 
accuracy is guaranteed.

These methods simplify the network structure and reduce the computational bur-
den while ensuring accuracy. But most of the above methods are to establish an 
abstract optimization function from a mathematical point of view (such as L1 norm) 
for optimization which needed a lot of adjustment parameters. Adjustment and opti-
mization are more complex and not very practical. At the same time, the physical 
concepts are not easy to be understand. Moreover, retraining is generally required 
after being lightened, which adds additional computational cost. From the perspective 
of the nature of correlation filter (Gaussian response), this paper defines the impor-
tance of channels based on the proportional relationship between the total Gaussian 
distribution of the target response and the target response Gaussian distribution of 
the single-channel. According to the importance of channels, the important channels 
were selected to lighten the feature network, and enhance the tracking speed while 
the tracking accuracy is guaranteed. The method is simple, consumes less resources, 
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requires less computation, is easy to understand the physical concept, and does not 
require retraining after being lightened.

2.2.3 � On‑line training feature network

Once the pre-training of the feature network is completed, it generally does not change 
in the actual tracking. If there are instances that do not appear in the training set in the 
actual tracking application, the performance of the network will be degraded and the 
generalization is not strong. One of the effective ways to solve this problem is to opti-
mize the parameters of the feature network by online adjustment.

Nam et al. [42] used historical samples at regular intervals to make long-term updates 
to the network and use recent samples to make short-term updates to the network when 
tracking failures are detected, which greatly improved the tracking accuracy. Song et al. 
[43] proposed the CREST (convolutional residual learning scheme for visual tracking) 
algorithm to generate training blocks based on the target location of each frame predic-
tion. The training blocks are input into the network every 2 frames for an online update, 
which improves the robustness and tracking accuracy of the model. Qiu et al. [44] pro-
posed a method to update the network in real time. In their method, the first frame was 
used to make the network initially learn the characteristics of the current target. During 
the tracking process, high score samples with several frames interval are used to update 
network parameters. When tracking fails, the high score sample is used for updating. By 
introducing online updates to the network, the network’s discriminant power for spe-
cific targets is effectively strengthened and the tracking accuracy is enhanced. Liu et al. 
[45] recorded the frames with tracking scores greater than the threshold as successful 
frames. The few frames that were recently tracked successfully is used for adaptive short-
term update, while more frames were used for the long-term update. Combining the two 
online update methods can help the network to better adapt to the changes of target and 
scene and improve the tracking accuracy.

The above methods can improve the robustness and tracking accuracy of the model 
through the online update of the network. But, in most methods, multi-frame samples 
at fixed time interval are used to update the feature network online. Thus such as meth-
ods have poor flexibility and also increases the computing burden of the network. Con-
sequently, it is difficult to ensure the flexibility and the real-time tracking. In addition, 
when the feature network needed to be trained on line is not clear. In this paper, SSIM, 
being consistent with human visual perception and comprehensively considering the 
interference factors that cause the tracking accuracy to decline, is used to judge the simi-
larity of the target box in two consecutive frames. When the similarity SSIM decreases 
to a certain range, it indicates that the current network cannot adapt to the change of the 
target. The current frame is used to update the feature network to ensure the robustness 
of the model.

2.2.4 � Tracking failure detection

Occlusion, distortion, motion blurring, rotation, and other interference factors restrict 
the tracking accuracy. In extreme cases, they may even cause tracking failure. Detection 
of tracking failures and how to quickly resume normal tracking are also one of the major 
issues to be solved in the field of visual object tracking.
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Ma et al. [46] set a stable threshold to learn a long-term filter, and the maximum out-
put response value of the long-term filter was used as the confidence. When the confi-
dence is below the threshold, it indicates the tracking fails. The target is recovered from 
the tracking failure by the SVM (support vector machines) re-detection module. Walsh 
et al. [47] used the mean and entropy of the response to determine the tracking state of 
the current frame. When both of mean and entropy are lower than the pre-set threshold, 
it is determined that the tracking failed and the target search area needed to be updated 
in order to recover the tracking. The model improves the reliability of the tracker in 
terms of fuzzy motion and abrupt occlusion, but it is strongly influenced by the back-
ground and has low robustness. Wang et  al. [48] defined the ratio of the difference 
between the maximum and minimum response values and the standard deviation as the 
response stability, which was used to judge the tracking status. The average value of the 
response stability of all historical frames is regarded as the threshold. If the response sta-
bility is lower than the threshold, the re-tracking module is started to resume tracking. 
This method solves the problem of tracking failure effectively and improves the robust-
ness of the tracker. Shin et al. [49] determined whether a tracking failure has occurred 
by calculating the correlation between the maximum output response of the target 
predicted box and the one of the adjacent area of the predicted box in current frame. 
When tracking failure is detected, the target is re-searched in the adjacent area of the 
current frame to recover the tracking. This method makes up for the defects of the origi-
nal model in occlusion and fuzzy motion. Li et al. [50] determined whether a tracking 
failure occurs by calculating the PSR (peak to sidelobe ratio) ratio of the current frame 
output response to the first frame output response. When the ratio is less than a pre-set 
threshold, the tracking is determined to fail, and the SVM detector searches for the tar-
get again to recover the tracking. This algorithm effectively improves robustness of the 
tracker for occlusion problems.

The above methods can solve the problem of tracking failure to a certain extent, 
but most of them judge the current tracking state from the perspective of an output 
response. The output corresponding is the result of the correlation between the target 
feature and the filter, which reflects the position information of the target. The nature of 
the tracking failure is that the real features of the target can not be extracted because of 
the various interference factors. Thus, one of the good ways to detecting tacking failure 
is proceeded from the target features. From the global statistical perspective of target 
features, SSIM is used to judge the similarity of the target box in two consecutive frames 
in this paper. When SSIM is less than a pre-set threshold, the tracking is determined to 
fail, and the recovery module is started to recover the tracking.

3 � Methodology
DCNN + CF makes full use of the obvious advantages of correlation filter and deep 
neural network. On the one hand, it can give play to the speed advantage of cor-
relation filter and ensure the real-time tracking; on the other hand, the deep con-
volutional neural network has powerful feature representation ability, which can 
better represent the features of the target and ensure the tracking accuracy. How-
ever, the introduction of deep learning into correlation filter inevitably increases the 
calculation burden, and it is difficult to balance the tracking accuracy and speed. 
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In addition, in the actual tracking process, due to the influence of environmental 
illumination, target scaling, target rotation and other interference factors, the tar-
get features extracted by the pre-offline training network are difficult to accurately 
describe the disturbed target. In other words, the feature network of pre-offline 
training is not robust enough. In such a case, it is difficult to accurately predict the 
position of the target, when the extracted features are associated with the subse-
quent tracking filter, and it is inevitable to result in target position drift in different 
degrees. As a result, the tracking accuracy is degraded in some extent. In the case of 
severe drift, the predicted position of the target is likely to move out of the tracking 
window, resulting in tracking failure. To address such issues, inspired by the docu-
ments[37, 51, 52], we think that the channel of the feature network with more con-
tributions to the output response of the tracking system is taken as the important 
channel which plays a decisive role in the output response of the tracking system. 
All of the important channels are reserved while the other channels are pruned off 
to lighten the feature network and decrease the computational load and enhance the 
real time performance. To do so, channel importance is defined as decision criterion 
for selecting important channels. Based on such a motivation, firstly we define the 
importance score of a channel from the perspective of the nature of correlation filter 
(Gaussian output response), and then take the importance score of the channel as a 
decision criterion for selecting important channels to generate a lightened feature 
network, enhancing the tracking speed under the condition of meeting the tracking 
accuracy. Furthermore, because of the global statistical distribution characteristics, 
SSIM can work well for many kinds of interference factors. More importantly, SSIM 
conforms to people’s visual habits. So SSIM is employed to calculate the similarity of 

Fig. 1  The overall framework of deep correlation filter tracking based on channel importance
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two consecutive frames of the video sequence in this paper, and is taken as a deci-
sion criterion to make decisions on the update of feature network, the failure detec-
tion and recovery of the tracking network.

In summary, we propose a deep correlation filter tracking model based on the 
importance of the channel, and its overall structure is shown in Fig. 1.

The overall structure is divided into five functional modules. The first module 
named as initializing filter and computing channel has two functions. One is respon-
sible for initializing the tracking filter by use of the first frame of video sequence; 
the other is for calculating the importance score of the channel by use of the output 
response of the filter correlated with the target feature maps of the second frame 
of sequence, and then selecting the important channels based on the importance 
score to generate the lightened feature network. The second module named as nor-
mally tracking is in charge of normal tracking. The third module named as updating 
filter is responsible for tracking filter updating online. The fourth module named 
as online training is responsible for training the feature network online. The fifth 
module named as recovery is in charge of tracking failure detection and tracking 
recovery.

To complete these functions, two thresholds TH1 and TH2 are set to define differ-
ent tracking states. During the tracking process, the SSIM value of the target boxes 
of two consecutive frames is calculated. When SSIM is greater than the threshold 
TH1 , normal tracking is performed. When SSIM is within the range of (TH1,TH2) , 
the network is updated while tracking. When SSIM is less than the threshold TH2 , 
tracking failure is judged and re-tracking is performed. A detailed description of 
each functional module will be given in the following sections.

3.1 � Correlation filter tracking

3.1.1 � Initialize the filter

Suppose the size and the tracking box T centered on the target is given in the 
first frame, and the ideal Gaussian response corresponding to this tracking box is 
G ∈ RM×N  , with its peak point corresponds to the position of the tracking target. 
Furthermore, suppose that the feature network has been trained offline. The num-
ber of convolution kernels (or the number of channels) of the output layer is D, the 
size of the convolution kernel is m× n , and the output feature map is represented by 
ϕ(T ) , and its size is M × N  , i.e., ϕ(T ) ∈ RM×N×D . According to the literature [24, 29, 
33, 53, 54], the tracking filter can be initialized as:

Here, ⊙ denotes Hadamard product, * represents complex conjugate, ∧ means 
Fourier transform, Wl refers to the correlation filter of the lth feature channel. ϕ̂l

(T ) 
represents the Fourier transform of the feature output by the lth feature channel. Ĝ∗ 
represents the complex conjugate of the Fourier transform of the ideal Gaussian G. 
And the constant � ≥ 0 is regularization coefficient.

(1)Wl =
ϕ̂
l
(T )⊙ Ĝ∗

∑D
l=1 ϕ̂

l(T )⊙ (ϕ̂l(T ))
∗ + �

(l = 1, 2, . . .D)
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3.1.2 � Target location prediction

In the tracking process, a search box S centered on target with the same size as T 
is constructed. The feature network is applied to S, and the extracted features are 
expressed as ϕl

(S)(l = 1, 2, . . . ,D) . Then the tracking response 
(
ri,j

)
M×N

 can be calcu-
lated by the following equation [54]:

Here, gl represents the frequency output response of the lth tracking filter, F−1 
represents the inverse Fourier transform, ri,j ∈ RM×N  represents the total output 
response of all channels. Based on Eqs.  (2) and (3), the coordinates 

(
x, y

)
 of the pre-

dicted position of the target can be obtained as:

3.1.3 � On‑line filter update

During tracking process, the feature map ϕl
t−1(S) of the target in the t − 1 frame and 

the Wl−1 are employed to predict the position 
(
xt , yt

)
 of the target in the tth frame 

by using Eqs. (2), (3), and (4). In the tth frame, construct a search box St centered on (
xt , yt

)
 with the same size as T. The ideal Gaussian response corresponding to this 

tracking box St is configured as Gt ∈ RM×N  . The feature network is applied to St , and 
the extracted feature is denoted as ϕ(Sl)l . The filter Wl

t  is updated online by the fol-
lowing equation [54].

Here, ϕ̂l
t(St) represents the Fourier transform of the feature output ϕ(Sl)l of the lth 

feature channel, and 
(
Ĝt

)∗
 represents the complex conjugate of the Fourier transform 

of the ideal Gaussian response Gt.

(2)gl =
(
Ŵ l

)∗
⊙ ϕ̂

l
(S) (l = 1, 2, . . .D)

(3)
(
ri,j

)
M×N

= F
−1

(
D∑

l=1

gl

)
(l = 1, 2, . . .D)

(4)
(
x, y

)
= max

RM×N

(
ri,j

)
M×N

(5)Wl
t =

ϕ̂
l
t(St)⊙

(
Ĝt

)∗

∑D
l=1 ϕ̂

l
t(St)⊙ (ϕ̂

l
t(St))

∗ + �
(l = 1, 2, . . .D)

Fig. 2  Typical channel output response. a The output response of channel 7; b The output response of 
channel 13; c The output response of channel 14; d The output response of channel 18
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3.2 � Important feature channel selection

3.2.1 � Definition of channel importance

The output layer of the feature network has D output channels and outputs D feature 
maps. According to Eqs. (2) and(3), each feature map is associated with its correspond-
ing tracking filter and the output of the filter is a Gaussian response. Some typical out-
puts of all filters are shown in Fig. 2.

According to Eqs. (3) and (4), the final output response of the tracking system is the 
superposition of the output responses of all channels, and the peak value of the final out-
put response corresponds to the predicted position of the target. The intuitive explana-
tion of the whole process is shown in Fig. 3.

In terms of Eqs. (1), (2), and (3), and from Figs. 2 and 3, it can be seen that the final 
output response of the tracking system can be taken as an approximate two-dimen-
sional Gaussian response. Therefore, the peak value of the two-dimensional Gaussian 
response corresponds to the predicted position 

(
x, y

)
 of the target. According to the 

characteristics of the two-dimensional normal distribution function [60], about 95.5% 
of the data are concentrated in a rectangular box Q, with a length of 2× 2.58σx and a 

Fig. 3  Intuitive diagram of multi-channel correlation filter tracking based on deep feature

Fig. 4  Intuitive diagram of tracking target total response
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width of 2× 2.58σy , centered on 
(
µx,µy

)
 , as shown in Fig. 4. Here, µx and µy are the 

mean values of the two-dimensional normal distribution, and σx and σy are the vari-
ances of the two-dimensional normal distribution. Obviously,

(
x, y

)
=

(
µx,µy

)
.

The final output response of the tracking system is the superposition of the output 
responses of all channels. However, as can be seen from Figs. 2 and 3, the contribu-
tion of each channel to the final output response of the tracking system is completely 
different because the statistical distribution of the output response of each channel is 
different. The more the channel output response falls into this rectangular box, the 
greater the contribution to the total response. In other words, the channel is more 
important. As a result, it is natural to take the channel with more contributions as the 
important one which is reserved to lighten the feature network.

Thus, in term of contribution of the channel to the final output response of the 
tracking system, the channel importance is defined as the following.

The sum centerl of the output response of the channel l falling into the rectangular 
box Q is defined as:

The total sum aroundl of all the output response of the channel l falling inside and 
outside the rectangular box Q is defined as:

The importance of the channel is defined as:

The higher the scorel is, the more the contribution of the channel response to the 
final response is, and the more important the channel is. Arrange scorel in descending 
order, and take the channels corresponding to the first k scorel as important channels 
for follow-up tracking.

(6)
centerl =

∑
i

∑
j F

−1
(
gli,j

)

i ∈ (x − 2.58σx, x + 2.58σx), j ∈
(
y− 2.58σy, y+ 2.58σy

)

}

(7)aroundl =
M∑

i=1

N∑

j=1

F
−1

(
gli,j

)

(8)scorel =
centerl

aroundl
(l = 1, 2, . . . ,D)

Fig. 5  Schematic diagram of the projection and fitting of the total response on the YOZ plane
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3.2.2 � Computing of σx and σy
Taking computing σy as an example, describes the procedure for computing the variance of 
a two-dimensional Gaussian response.

The peak position of the target final response is 
(
x, y

)
 , which can be regarded as the mean 

value of the total response, i.e., 
(
x, y

)
=

(
µx,µy

)
 , and the variance of the final response is 

taken as 
(
σx, σy

)
 . Project the final response 

(
ri,j

)
M×N

 to the YOZ plane, as shown in Fig. 5a. 
It means that project the final response 

(
ri,j

)
M×N

 to YOZ is approximatively equivalent to ((
ri,j

)
M×N

|i = x
)
 , and the result is shown in Fig. 5b. For the projection curve shown in 

Fig. 5b, a one-dimensional Gaussian function can be used to fit the projection curve, shown 
in Fig. 5c.

Let f
(
yj
)
= ri,j|i = x, j = 1, 2, . . . ,N  . The one-dimensional Gaussian fitting function is 

f
(
yj
)
= 1√

2πσy
e
−

(
yj−y

)2

2σ2y  , where y is the known mean and σy is the parameter to be esti-

mated. First, construct the likelihood function [61]:

Take the logarithm on both sides of Eq. (9) to get:

Let the derivative of Eq. (10) for σ 2
y  be zero to get:

The estimated value of σ 2
y  can be solved by Eq. (11):

(9)L
(
σ
2
y

)
=

N∏

i=1

1√
2πσy

e
− (yi−y)

2

2σ2 =
(
2πσ 2

y

)−N
2
e
− 1

2σ2y

∑N
i=1 (yi−y)

2

(10)lnL
(
σ
2
y

)
= −N

2
ln(2π)−

N

2
ln

(
σ
2
y

)
− 1

2σ 2
y

N∑

i=1

(
yi − y

)2

(11)
∂ lnL

(
σ
2
y

)

∂σ 2
y

= −
N

σ 2
y

+
1

2

(
σ 2
y

)2
N∑

i=1

(
yi − y

)2 = 0

(12)σ
2
y =

1

N

N∑

i=1

(
yi − y

)2

Fig. 6  Schematic diagram of the projection and fitting of the total response on the XOZ plane
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Then, the one-dimensional Gaussian fitting function is f
(
yj
)
= 1√

2πσ y
e
−

(
yj−y

)2

2σ2y  , as 

shown in Fig. 5c.
For computing of σx , project the final response 

(
ri,j

)
M×N

 to the XOZ, as shown in 
Fig.  6a. It means that project the final response 

(
ri,j

)
M×N

 to XOZ is approximatively 
equivalent to 

((
ri,j

)
M×N

|i = x
)
 , and the result is shown in Fig.  6b. For the projection 

curve shown in Fig. 6b, a one-dimensional Gaussian function can be used to fit the pro-
jection curve, shown in Fig. 6c. The computing method is the same as that of σy , and the 
result is shown in Fig. 6c.

In addition, if there are similar objects in an image, but not within the current search 
window, this case will not affect the overall performance of the tracking system. If there 
are similar objects in an image, and within the current search window, there may be 
more than one peak in Figs. 5 and 6. This case will affect the overall performance of the 
tracking system. However, such a case is not discussed in this paper because we only dis-
cussed the single target tracking.

3.3 � On‑line feature network update

The design of the feature network generally adopts off-line training and on-line fine-tun-
ing strategy. In actual tracking applications, it is very possible for a target to have a vari-
ety of interference factors in the tracking video sequence, such as changes in ambient 
lighting, target scaling, target rotation, and etc. Therefore, the target features extracted 
by the off-line training network cannot accurately describe the disturbed target. It is dif-
ficult to accurately predict the position of the target, which restricts the improvement 
of the performance of the tracking system. To solve this problem, many feature network 
update strategies have been proposed around the similarity of targets in continuous 
tracking video sequences. Typical strategies mainly include similarity learning methods 
based on full convolution, peak signal-to-noise ratio (PSNR) method, SSIM method, and 
etc. The similarity learning method based on full convolution takes the learned similar-
ity function as the similarity criterion, traverses all possible positions of the target, and 
takes the candidate position with the largest similar function value as the final predicted 
position of the target [34]. This method affects the real-time tracking performance 
because of the traversal calculation. In addition, another limitation to this method is that 
the candidate target with the largest similarity value is not necessarily the most similar 
(for example, the maximum similarity value with normalization is not greater than 0.5). 
PSNR is a widely used objective evaluation index based on error-sensitive images. How-
ever, since the visual characteristics of the human eyes are not taken into consideration, 
it is difficult to ensure that the evaluation results are completely consistent with the vis-
ual quality seen by the human eyes. Natural images are highly structured, and there are 
strong correlations among the pixels of the image. These correlations carry important 
information about the structure of objects in the visual scene. The Laboratory for Image 
and Video Engineering of the University of Texas at Austin proposed SSIM to meas-
ure the structural similarity of two images [55]. Taking into account the fuzzy changes 
of image structure information in human perception, SSIM measures image similarity 
from brightness, contrast, and structure respectively, and is better than PSNR in the 
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evaluation of image similarity [56]. In addition, SSIM has global statistical distribution 
characteristics, which can work well for a variety of interference factors and conforms 
to people’s visual habits. Therefore, SSIM is selected as the criterion to calculate the 
similarity of two consecutive frames of the video sequence, and make decisions on the 
update of the decision feature network, the failure detection and tracking recovery of the 
tracking network in the paper.

3.3.1 � SSIM similarity criterion

Assuming that the two input images are a and b respectively, define SSIM as [55]:

Here, α > 0 , β > 0 and γ > 0 . l(a, b) represents brightness comparison, c(a, b) repre-
sents contrast comparison, and s(a, b) represents structure comparison. µa and µb repre-
sent the mean value of image a and image b respectively. σa and σb represent the standard 
deviation of image a and image b respectively. σab represents the covariance of image a 
and image b. C1 , C2 and C3 are constants, in order to avoid zero in the denominator.

In actual calculations, generally take α = β = γ = 1 , and C3 = C2/2 . Substitute these 
parameters into Eqs. (13)–(16), reduce and merge to get[55]:

Choose an appropriate threshold TH1 , the SSIM similarity criterion is:

3.3.2 � Strategy for updating feature network

Suppose the position of the tracking target in frame t − 1 is 
(
xt−1, yt−1

)
 , and the predicted 

position of the target in frame t is 
(
xt , yt

)
 . Construct two rectangular boxes St−1 and St 

centered at 
(
xt−1, yt−1

)
 in frame t − 1 and centered at 

(
xt , yt

)
 in frame t respectively, all 

of them with the same size as T. Use Eq. (17) to calculate the SSIM of St−1 and St , and 
determine the similarity of St−1 and St according to Eq. (18). To end this, two thresholds 
TH1 and TH2 are respectively set for SSIM, and TH1 > TH2 . When TH1 < SSIM , it indi-
cates that the similarity between St−1 and St is high, the tracking effect is better, and the 
tracking is kept as normal. In such a tracking process, the correlation filter is updated 

(13)SSIM(a, b) = [l(a, b)]α[c(a, b)]β [s(a, b)]γ

(14)l(a, b) =
2µaµb + C1

µ2
a + µ

2
b + C1

(15)c(a, b) =
2σab + C2

σ 2
a + σ

2
b + C2

(16)s(a, b) =
σab + C3

σaσb + C3

(17)SSIM(a, b) =
(2µaµb + C1)(σab + C2)(

µ2
a + µ

2
b + C1

)(
σ 2
a + σ

2
b + C2

)

(18)
SSIM(a, b) ≥ TH1, a similar to b
SSIM(a, b) < TH1, anot similar to b

}
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but the feature network is not updated. When TH2 < SSIM < TH1 , it indicates that 
the similarity between St−1 and St is reduced because of the various interference factors 
such as illumination changes, occlusion, target zoom, target rotation, and etc. Although 
the tracking can be maintained, the tracking accuracy is reduced. It means that it is nec-
essary for the feature network to be updated to increase the tracking accuracy. At this 
time, the parameters of the feature network of the t − 1 frame are used as initial values, 
and the feature network is iteratively updated using the feature of the current frame tar-
get. The specific update process is as follows:

Step 1: Calculate the ideal Gaussian response graph corresponding to the predicted 
target position 

(
xt , yt

)
 , denoted as GM×N =

(
gi,j

)
M×N

;
Step 2: Let the feature network of the t − 1 frame perform on St , and extract the feature 

map of St as ϕ(St);
Step 3: Use Eqs.  (2) and  (3) to get the predicted response 

(
ri,j

)
M×N

 to the target at 
frame t − 1;

Step 4: Construct the loss function loss as:

Step 5: Let ∂loss
∂ϕ

= 0 , calculate the gradient, and back propagate to update the convo-
lutional core parameters of each channel layer by layer. Finally obtain the update param-
eters of the feature network.

Step 6: Set t → (t − 1), (t + 1) → t to continue tracking in the next frame.
In addition, When the SSIM is between TH1 and TH2 , take the parameters of the pre-

vious feature network as the initial values, and take the sum of squared errors between 
the Gaussian output response corresponding to the target predicted position and the 
ideal Gaussian response as the loss function, the feature network is trained by use of 
the stochastic gradient descent method so that it can capture the changes of target and 
environment and extract appropriate features. If there are similar objects in an image, 
but not within the current search window, the update will not lead to the tracking of an 
incorrect object. If there are similar objects in an image, and within the current search 
window, it is very possible that the update will lead to the tracking of an incorrect object. 
However, such a case is not discussed in this paper because we only focused on the sin-
gle target tracking.

3.4 � Re‑tracking of targets

When SSIM < TH2 , it is considered that the tracking target has drifted out of the field of 
view, and it is judged that the tracking has failed. At this time, the tracking target should 
be searched in the neighborhood around the rectangular prediction box in the current 
frame or the subsequent frame in order to recover tracking from the failure. The specific 
re-tracking process is as follows:

Step 1: Taking the predicted position 
(
xt , yt

)
 of the target in the t − 1th frame as the 

center, a target search area A which is n times larger than T is constructed in the tth 
frame, where n =

(
2, 3, . . . , Around

(
W×H
M×N

))
 , W  represents the width of the image, H 

represents the height of the image, and Around(.) represents rounding;

(19)loss =
M∑

i=1

N∑

j=1

�ri,j − gi,j�2
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Generally, n = Around

(
W×H
M×N

)
 is not taken. If so, it means that searching is performed 

within the entire image calculation is too heavy, which is not conducive to real-time 
tracking. In addition, during the movement of the target, the displacement between two 
consecutive frames is generally not too large. So it is not necessary to search within the 
whole image, as long as an appropriate n is selected according to the actual situation.

Step 2: Let a sliding window SW with the size of width M and height H , start the slid-
ing search with a sliding step of 1 from the upper left corner of A to the lower right cor-
ner. In the entire search process, the SSIM between SW and St−1 is calculated according 
to Eq. (17) for each sliding search. Record the maximum value of all SSIMs in the search 
process as MaxSSIM;

Step 3: If MaxSSIM > TH1 , it is considered that the target has been searched, and the 
window position corresponding to MaxSSIM is the predicted position of the target. And 
use this position to update 

(
xt , yt

)
 , jump to Step 5;

Step 4: If MaxSSIM ≯ TH1 , it means there may be no target to be tracked in the current 
frame, and we need to continue searching in subsequent frames. Let (t − 1) → (t − 1) , 
(t + 1) → t , jump to Step 6;

Step 5: Let t → (t − 1) , (t + 1) → t;
Step 6: Continue to tracking or searching in the next frame.

4 � Experiment results and analysis
4.1 � Experiment environment

To verify the effectiveness of the method proposed in this paper, special software and 
hardware experimental environment is constructed. The hardware environment consists 
of a terminal (Intel(R) Core(TM) i5-3470), a server (X10DRG-Q) and a NVIDIA Cor-
poration GP102 [TITAN Xp] GPU (video memory size is 12  GB). The software envi-
ronment is as follows: Ubuntu 18.04 is selected as the operating system, Python is used 
for programming, and Pytorch based on deep learning is used as the development plat-
form. Based on the above-mentioned software and hardware experimental environment 
and discriminant correlation filters network for tracking (DCFNet) framework [54], five 
experimental tasks are designed. It mainly includes (1) feature network pre-training with 
the training data set (VID) officially provided by the ImageNet Large Scale Visual Rec-
ognition Challenge (ILSVRC) [57] competition in 2015; (2) necessity of this work for 
tracking, with the data set OTB2013 [3]; (3) important feature selection with the data 
set OTB2013; (4) on-line update of the feature network with the data set OTB2013; (5) 
comparison study between our research work and other similar ones, with the data set 
OTB2013; (6) re-tracking, with the tracking test data set is OTB2013. The OTB2013 
dataset is a sequence of 51 tracking videos used by Wu Y, Lim J, Yang M H. et al. in their 
article [3], which contains common interferences such as Scale Variation, Occlusion, 
Deformation, Fast Motion, etc. in the tracking task.

4.2 � Feature network pre‑training

The shallow features of the deep neural network describe more target spatial informa-
tion, which is conducive to the spatial positioning of the target; while the deep fea-
tures represent more semantic information of the target, which is conducive to target 
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classification. The shallow features of deep neural network are beneficial to target vis-
ual tracking because the key problem to be solved in target tracking is the prediction 
of target spatial position. Therefore, based on the DCFNet tracking framework, 2-layers 
convolutional neural network is selected as the feature network. Each layer has 32 con-
volution kernels, and the size is 3× 3 . Each initial weight w of the convolution kernel 
obeys uniform distribution u(−

√
k ,
√
k) [59]. The value of k satisfies the Eq. (20):

Here, Cin is the number of channels of the input tensor, kernelsize[0] × kernelsize[1] is the 
dimension of the convolution kernel (3× 3).

The activation function of the first layer of the network is ReLU, as shown in the fol-
lowing Eq. (21).

In addition, to ensure that the feature information of the target is as complete as possi-
ble, the feature network does not use the PooLing layer. Instead, the local response nor-
malization (LRN) is used to replace the PooLing layer at the end of the convolutional 
layer (after the end of convolutional layer).

A video sequence is arbitrarily selected from the VID data set, and a rectangular track-
ing box with the 3 times size of the width × height of the tracking target is cropped 
centering on the determined tracking target in every frame of the video sequence. The 
rectangular box is resized to 125× 125 as the network input. The feature network is 
applied to the rectangular box, and the extracted feature map is correlated with the cor-
relation filter to get the final Gaussian output response. The overall network structure 
is shown in Fig. 7. The loss function is the sum of squared errors between the Gaussian 
output response and the ideal Gaussian response, and the training method adopts the 
stochastic gradient descent method (SGD). In the experiment, padding = 0, stride = 1, 
momentum = 0.9, learning rate = 0.01, weight decay = 0.00005, and mini-batch size set 
to 32. After 50 epoch training, the final feature network is obtained.

(20)k =
1

Cin × kernelsize[0] × kernelsize[1]

(21)f (x) =
{
0, x ≤ 0

x, x > 0

... ...

Conv1: 32×3×3×3

Relu LRN

Conv2: 32×3×3×3

Input: 125×125×3

Correla�on Filter:
125×125×32

Response: 125×125

Fig. 7  The overall network structure
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4.3 � Necessity of this work for tracking

Two experiments were designed to illustrate the necessity of lightweight and online 
updating feature network for deep correlation filter tracking, as described below.

4.3.1 � Necessity of network slimming

Based on the tracking network with 32-channels feature network cascading 32-chan-
nels filter network designed in Sect.  4.2, a new tracking network with 64-channels 
feature network cascading 64-channels filter network is constructed. These two track-
ing networks are respectively applied to OTB2013 data set, and the tracking results 
including tracking speed (FPS), tracking accuracy (Average Pixel Error (APE)) and 
tracking success rate (average overlap rate (AOR)) are shown in Fig. 8 and Table 1. As 
can be seen from Fig. 8 and Table 1, the tracking accuracy of the 64-channels tracking 
network does not change significantly compared with that of the 32-channels tracking 
network, while the tracking speed is greatly reduced to 23.5fps, which is lower than 
the basic requirement of real-time tracking 25fps. It can be seen that the number of 
channels in the feature network increases, but the tracking speed decreases. There-
fore, it is necessary to simplify the feature network and improve the tracking speed 
for deep correlation filter tracking.

4.3.2 � Necessity of on‑line training feature network

Two tracking video sequences (Car4 and Liquor) are randomly selected from 
OTB2013 training data set. Taking channel 28 as an example, tracking experiments 
are conducted on tracking networks with and without updating networks respec-
tively. The results (red box represents label or ground truth, green box for tracking 
result) are shown in Fig. 9, where Fig. 9a and c represent the tracking results of the 
tracking network without updating feature network, while Fig.  9b and d represent 

Fig. 8  Success and precision plots on OTB2013 datasets with different network structure

Table 1  Success and precision plots on OTB2013 datasets with different network structure

Network structure AOR APE Speed

32 channels 51.7113 0.6981 63.2

64 channels 51.2382 0.6800 23.5
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the tracking results of the tracking network with updating feature network. It can be 
clearly seen in video Car4 that the target tracking box drifts due to changes in illu-
mination and target scale after the driving car passes shadow occlusion, i.e. tracking 
fails, as shown in Fig. 9a. In the tracking network with feature updating network, the 
vehicle can be still tracked stably after passing on the shadowed road surface, and no 
target box drift occurs, as shown in Fig. 9b. Similarly, in video Liquor, due to similar 
targets and occlusion, the tracking frame drifts from the target to the occlusion and 
the tracking fails, as shown in Fig. 9c. In the tracking network with feature updating 
network, when the shielding is removed, the tracking frame does not drift and can 
still track the target correctly, as shown in Fig. 9d. Therefore, it can be concluded that, 
in the tracking process, the pre-trained network cannot adapt to the changes of tar-
get and background well, so online update of feature network should be carried out 
according to the actual situation to ensure the tracking accuracy.

4.4 � Important channel selection

A tracking video sequence is arbitrarily selected from the OTB2013 training data set, 
and a rectangular tracking box with the size of the width × height of the tracking target 
(34 × 81, the value is the Basketball sequence in the OTB2013 data set) is constructed 
centering on the determined tracking target in the first frame of the video sequence. 
By applying a pre-trained feature network to this rectangular tracking box, a 32-chan-
nel feature map is obtained at the last layer of the feature network, which is written as 
CHBUi (channel before updating), where i = 1, 2, . . . , 32 . Equations  (6)–(8) and (12) 
were used to calculate the importance of each channel scorei of each channel, and 32 
channels were rearranged in descending order according to scorei . Ablation experi-
ments were performed on the rearranged 32 channels, i.e., 32, 30, 28, 26, 24, 22, and 

(a)

(b)

(c)

(d)

#184 #201 #241 #301

#726 #731 #741#728

#184 #201 #241 #301

#726 #731 #741#728

Fig. 9  Comparison of online or non-online training the network
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20 channels were taken as the important channels respectively, and target tracking was 
implemented using Eqs. (1)–(5). Tracking results are shown in Fig. 10 and Table 2, where 
one pass evaluation (OPE) means the first frame of the tracking sequence is initialized 
with the target ground truth position, and then the tracking algorithm is run to obtain 
the average tracking accuracy and success rate.

To more clearly observe the change of tracking accuracy and tracking speed with the 
change of channel number, we draw the change trend chart of tracking accuracy and 
channel number as well as the change trend chart of tracking speed and channel number 
according to Fig. 10 and Table 2, as shown in Fig. 11, where the speed means the average 
time taken by the tracking system for all tracking sequences from the first frame to the 
last frame, and the unit is frames per second (fps).

It can be seen from Fig. 11 that the tracking accuracy increases with the increase of 
the channel, but the tracking speed decreases with the increase of the channel. This is a 

Fig.10  Success and precision plots on the OTB2013 datasets with different channels

Table 2  Success and precision as well as speed on the OTB2013 datasets with different channels

Channel numbers 32 30 28 26 24 22 20

AOR 51.7113 49.7113 49.8832 48.8603 48.0773 46.8794 46.7033

APE 0.6981 0.6784 0.6757 0.6595 0.6538 0.6313 0.6268

Speed 63.2 81.9 82.9 84.1 84.7 86.1 87.0

Fig. 11  Accuracy and speed on the OTB2013 datasets with different channels
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pair of irreconcilable contradictions, which can only be compromised in practical appli-
cations. We hope to reduce the number of channels as much as possible and increase 
the tracking speed under the premise of meeting the tracking accuracy. Based on this 
point of view, we select the 28 most important channels for follow-up tracking. It also 
can be seen from Fig. 11 and Table 2 that the tracking speed and the tracking accuracy 
of the original network are 0.6981 and 63.2 respectively, while the tracking speed and 
the tracking accuracy of our proposed network are 0.6757 and 82.9 respectively. Thus, 
a conclusion can be made that the tracking speed has been significantly improved, and 
the tracking accuracy has not dropped much compared with the original network, and 
the minimum accuracy can reach about (the tracking accuracy of our proposed network 
0.6757/the tracking accuracy of the original network 0.6981) 95% of the original net-
work. In addition, as can be seen in Fig. 11, the tracking speed starts to drop sharply 
when the number of channels is 30. Therefore, the number of channels should be 
selected in the range of less than 30 to ensure the tracking speed. While selecting the 
number of channels, the tracking accuracy should be taken into account. Therefore, in 
this paper, 28 channels are selected under the precondition of ensuring the system has 
high tracking accuracy. If higher tracking accuracy is not required, less than 28 channels 
can be selected to further increase the tracking speed. Therefore, choosing 30 channels 
may not be better.

In fact, the tracking speed decreases as the number of channels increases. However, 
this mapping relationship is a complex nonlinear relationship. It is possible that there is 
a certain critical point which the tracking speed suddenly decreases when the number of 
channels exceeds this critical point. In Fig. 9, 30 is a inflection point. When the number 
of channels exceeds this point, the tracking speed is drastically decreased to 65. This 
experimental result illustrates the above analysis.

In addition, the above data were adjusted by trials on the specific OTB2013 dataset. 
So, it is possible that the optimal number may be significantly changed if we change the 
dataset.

4.5 � On‑line feature network update

At each tracking step, Eqs.  (13)–(18) are used to calculate the SSIM of the track-
ing box in the previous frame and the predicted tracking box of the current frame. 
When TH2 < SSIM < TH1 , it indicates that it is necessary for the feature network 
to be updated online to enhance the tracking accuracy while tracking. When the 
TH value = 0.5 , it indicates that the similarity of two images is in a critical state. When 
the TH value is lower than 0.5, it means that the two images are not similar and the tar-
get cannot be identified. This situation is judged as tracking failure and requires retrack, 
so the TH value for retrack is set to 0.5. When TH is higher than 0.5 and gradually 

Fig. 12  The SSIM of tracking video sequence girl gradually decrease
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approaches to 1, it means that the confidence of determining the target is getting higher. 
Therefore another threshold value is chosen between 0.5 and 1, which determines when 
to update the feature network. If the selected threshold is closer to 1, the feature network 
needs to be updated more frequently, thus leading to an increased computational bur-
den. Therefore, for experimental convenience, an intermediate value between 0.5 and 1 
was chosen, i.e. TH = 0.7 . Select a tracking video sequence arbitrarily from the OTB2013 
training data set. When TH1 < SSIM , normal tracking; when 0.5 < SSIM < 0.7 , update 
the network, i.e., from frame 317 to frame 322 of the selected tracking video sequence 
Girl, as shown in Fig. 12, the SSIM began to decrease because of the target’s appearance 
(posture) changes. At this time, the parameters of the previous frame’s feature network 
are taken as the initial values, Eq. (19) is taken as the loss function, and the feature net-
work online training is carried out based on the predicted tracking box of the current 
frame and its corresponding ideal Gaussian response; meanwhile, target tracking is con-
tinued to complete. Taking the lightened feature network with different channels as an 
example, comparative experiments were carried out on the update and non-update fea-
ture networks of the tracking network respectively. The experimental results are shown 
in Fig. 13 and Table 3.

It can be seen from Fig. 13 and Table 3 that both AOR and APE of the online update 
network with different channels are significantly improved, but the tracking speed is 
significantly reduced, compared to non-on-line updating network of different chan-
nels. Although the tracking speed has been reduced, it can still meet the engineering 

Fig.13  Success and precision plots of different channels on OTB2013 datasets with Online or Non-online 
training

Table 3  Success and precision plots of different channels on OTB2013 datasets with online or non-
online training

Channel numbers Online training AOR APE Speed

28 No 49.8832 0.6757 76.9

Yes 50.9769 0.6880 45.4

24 No 48.0773 0.6538 77.7

Yes 48.8888 0.6624 46.5

20 No 46.7033 0.6268 78.9

Yes 47.7525 0.6415 46.8
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requirements, in other words, the tracking speed can reach the speed more than the 
minimum 25  fps. Thus, we can conclude that, on the premise of meeting the require-
ments of engineering tracking speed, the online update of feature network should be 
considered according to the actual situation, so that the tracking system can adapt to the 
ever-changing environment.

4.6 � Comparison study between our research work and other similar ones

Two experiments are designed to illustrate the effectiveness and novelty of the pro-
posed deep correlation filter tracking algorithm, which is composed of lightweight 
and online updating feature networks, compared with other similar research work. 
Details are described below.

4.6.1 � Comparison of different feature network slimming methods

Using the pruning deep feature networks using channel importance propagation 
(PCIP) [59] channel pruning method, the pre-trained feature network is first pruned 
into a light-weight feature network with 28 channels. Then the light-weight feature 
network is cascaded with relevant filters to form a tracking network. Take the track-
ing results of this tracking network on the OTB2013 dataset as baseline. Using the 
light-weight feature network method proposed by us, a 28-channel tracking network 
with the same structure is obtained. The tracking results on OTB2013 dataset are 
compared with the baseline, and the results are shown in Fig. 14 and Table 4. As can 
be seen from Fig. 14 and Table 4, the tracking speed of our method is not much dif-
ferent from that of PCIP method, but the AOR and APE of our method are slightly 
improved compared with that of PCIP method, indicating that our lightweight feature 
network method and PCIP channel pruning method have very close tracking effect. 

Fig.14  Success and precision plots of different feature network slimming methods on OTB2013 datasets

Table 4  Success and precision plots of different feature network slimming methods on OTB2013 
datasets

Method AOR APE Speed

Ours 49.8832 0.6757 76.9

PCIP 46.5830 0.6041 78.2
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In addition, more importantly, the tracking system constructed by the light-weight 
feature network method proposed by us has obvious physical interpretability, which 
facilitates the adjustment of tracking model parameters.

4.6.2 � Comparison of different on‑line training feature network methods

The feature network update strategy based on SSIM and the feature network update 
strategy based on the fixed interval (e.g. 2 frames) update strategy were selected 
[43]. The proposed 28-channels tracking networks with different update strategies 
were respectively applied on the OTB2013 data set. The tracking results are shown 
in Fig. 15 and Table 5. As can be seen from Fig. 15 and Table 5, the tracking system 
based on SSIM update strategy proposed by us is far superior to the tracking system 
based on fixed interval update strategy in terms of tracking accuracy and tracking 
speed, thus meeting the basic requirements of real-time tracking. In conclusion, the 
SSIM updating strategy proposed by us can make the network adapt to the changes 
of target and environment in the tracking process, and improve the tracking accuracy 
while ensuring the tracking speed.

4.7 � Re‑tracking after tracking failure

At each tracking step, Eqs.  (13)–(18) are used to calculate the SSIM of the tracking 
box in the previous frame and the predicted tracking box in the current frame. When 
TH2 > SSIM , it is judged that the tracking has failed. At this time, the tracking target 
should be searched in the neighborhood around the rectangular prediction box in the 
current frame or the subsequent frame in order to recover tracking from the failure. 
The specific process has been described in detail in Sect. 3.4. To verify the effective-
ness of the strategy proposed in this paper, we constructed an artificial simulation 
environment. Three tracking video sequences (Boy, David2 and Suv) are arbitrarily 

Fig.15  Success and precision plots on OTB2013 datasets with different online training methods

Table 5  Success and precision plots on OTB2013 datasets with different online training methods

Online training AOR APE Speed

SSIM 50.9769 0.6880 45.4

Interval 41.5930 0.5324 16.7
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selected from the OTB2013 training data set. Boy starts from frame 151 until the end 
of frame 170, David2 starts from frame 269 to the end of frame 283, and Suv strats 
from frame 237 to 266. The tracking box is partly covered with mosaics, as shown in 
Fig. 16a, c, e.

During the experiment, the re-tracking method described in Sect. 3.4 is used, and 
let n = 3. We re-track the simulation tracking sequence constructed in Fig. 16a, c, e, 
and the results are shown in Fig. 16b, d, f.

It can be seen from Fig. 16b, d, f that when the tracking target drifts out of the tracking 
window or field of view, it still appears near the prediction window of the current frame 
or in the subsequent frames, the re-tracking strategy proposed in this paper keeps search-
ing the tracking target in the neighborhood around the rectangular prediction box in the 
current frame or the subsequent frame till the target is found in a certain frame (frame 
171 in the Boy video sequence, frame 284 in the David2 video sequence, and frame 267 in 

(a)

(b)

(c)

(d)

(e)

(f)

#151 #157 #163 #170

#269 #274 #279 #283

#237 #246 #256 #266

#156 #168 #170 #171

#277 #279 #282 #284

#261 #263 #266 #267

Fig. 16  a Tracking video sequence boy with an artificial mask; b recovery tracking result based on the 
tracking video sequence boy with an artificial mask; c tracking video sequence David2 with an artificial mask; 
d recovery tracking result based on the tracking video sequence David2 with artificial mask; e tracking video 
sequence Suv with an artificial mask; f recovery tracking result based on the tracking video sequence Suv 
with artificial mask
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the Suv video sequence). Therefore, it is easy for the re-tracking strategy proposed in this 
paper to search for the tracking target, relocate the target, and re-track the target.

In addition, if the target drift range is relatively large, one of the effective ways to solv-
ing the problem is to increase the n described in Sect.  3.4, i.e., to increase the search 
space. This will result in decreasing the tracking speed.

5 � Conclusion
In this paper, we propose a deep correlation filter algorithm based on the importance of 
the channel, which lightens the feature network and improves the tracking speed on the 
premise of ensuring tracking accuracy. In the tracking process, the SSIM of the predicted 
tracking target in two consecutive frames of the video sequence is calculated in real-
time. Based on the SSIM, determine whether the feature network needs to be updated, 
and decide whether the tracking fails. The experimental results on the OTB benchmark 
data set show that (1) Our model can improve the tracking speed and achieve a balance 
between accuracy and speed while ensuring the tracking accuracy; (2) The online update 
of the feature network can make the network adapt to the complex background and tar-
get changes and improve tracking accuracy; (3) In the case of tracking failure (the target 
drifts out of the field of view), the re-tracking module can search for the target again 
and resume tracking. (4) The model is simple and physically interpretable. All of these 
advantages will provide a new effective tracking method to the field of the single target 
tracking research. But there are some limitations of this method. One is that if there 
are similar objects in an images, and within the current search window, there may be 
more than one peak in the output response of the tracking system. This case will affect 
the overall performance of the tracking system. Another is how to adaptively select the 
threshold for updating the feature network of the tracking system. These limitations are 
our future work to be further researched.
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