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1 Introduction
This article presents an optimization-based approach for counting and localizing stars 
within a small cluster, based on photon counts in a focal plane array. The array need not 
be arranged in any particular way, and relatively small numbers of photons are required 
to ensure convergence. The stars can be located close to one another, and good perfor-
mance was obtained when the separation was larger than 0.2 Rayleigh radii. To ensure 
generality of our approach, it was constructed as a special case of a general theory built 
upon topological signal processing using the mathematics of sheaves. This generality 
ensures that the strategy works without change for super-resolution problems on arbi-
trary topological spaces, including abstract simplicial complexes and other higher-order 
networks. We obtain theoretical performance guarantees for our method, in contrast to 
many state-of-the-art algorithms, because there are ultimately few parameters that the 
user of our method is required to choose in order to ensure good performance. While 
familiarity with the basics of sheaf-based topological signal processing is necessary to 
understand the derivation of the algorithm, this familiarity is not essential to understand 
the final form of algorithm.

1.1  Historical context

Perhaps the most famous algorithm for separating nearly coincident stars is the CLEAN 
algorithm and its generalizations (see [1–3], for instance, among many others). These 
greedy algorithms rely on the geometric structure of stars, namely that they are point 
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sources or nearly so. It should be noted that the more modern versions of CLEAN tend 
to require the user to select or “tune” parameters or function dictionaries to exploit sub-
tle features of the scene, whereas the original CLEAN algorithm does not require this 
tuning since it assumes the stars are all point sources. In low lighting conditions, it is 
helpful to use statistical methods. For instance, Richardson–Lucy deconvolution can be 
effective at identifying star locations in the presence of shot noise [4, 5].

While greedy algorithms can yield good performance, they also can fail in dramatic 
ways. This can be especially pronounced if photon counts are low. This article proposes 
that an optimization-based approach can lend some robustness to an algorithm. Opti-
mization-based imaging using the Wasserstein metric has recently led to improvements 
in molecular microscopy [6]. Our approach is a generalization of this idea.

This article uses a diagrammatic approach to topological signal processing, in which 
measurements of a signal are localized to portions of an arbitrary topological space 
using the formalism of a sheaf [7]. Due to their expressivity, sheaves have become popu-
lar tools for studying sensor and communication problems [8–12]. Our algorithm is an 
incremental minimization of sheaf local consistency radius, which is a general frame-
work for solving sensing problems [13–15]. The key benefit of this framework is that 
once a parametric model of the signal has been constructed, parameter estimation from 
measurements is given by a canonical minimization problem. Although we apply it to a 
specific case, the methodology behind our algorithm is quite general. In a companion 
paper [16], we prove that our mathematical approach works for arbitrary sparse source 
decomposition problems.

1.2  Problem statement

We can model a scene of N stars illuminating a focal plane by using a simplistic Dirac 
point-mass model,

where an ∈ [0,∞) is the magnitude of each star, bn ∈ R
2 is the location of each star in the 

focal plane, and x ∈ R
2 can be taken to be the location of an arbitrary pixel. Although it 

is natural to assume that the pixels are organized in a grid, there is no actual requirement 
that this be so. Nevertheless, this article will assume a rectangular grid of pixels for sim-
plicity of presentation.

The response of an actual sensor to the incoming photons from a set of stars in the 
scene will not be a sum of Dirac point-masses because of dispersion, diffraction, and 
other physical effects. Suppose that there are M pixels in the focal plane, each col-
lecting an integer number of photons. This means that the measurements lie in NM 
(rather than RM ). It is useful to record the photon counts as an integer-valued function 
z = z(x) ∈ ℓ2(R2) in the focal plane R2 , as is shown schematically in Fig. 1. The problem 
to be solved in this article is therefore the determination of the number of stars N, the 
set {an} (magnitudes), and the set {bn} (locations) from z (photon counts).

It is easy to imagine other signal decomposition problems that are modeled by Eq. (1). 
Instead of a superposition of stars, instead one can model the signal as a superposition 

(1)s(x; a1, b1, a2, b2, . . . , aN , bN ) =

N
∑

n=1

anδ(|x − bn|),



Page 3 of 17Robinson and Capraro  EURASIP Journal on Advances in Signal Processing         (2022) 2022:26  

of parametric sources. All it takes is a different interpretation of the space of possible 
values for the locations bn , and the replacement of the δ distribution with a prototypical 
signal from an appropriate dictionary. The mathematical implications—but not the prac-
tical utility—of this generalized approach are explored in [16].

2  Methods
Consider that each star is determined by its magnitude (an element of [0,∞) ) and loca-
tion (an element of R2 ). These properties have different units and thereby suggest that 
the correct space for the parameters defining a star is

There is a natural metric on I that is induced by the usual metric on R3 . Ideally, zero-
magnitude stars should be indistinguishable from each other even if their locations dif-
fer. Although the induced metric does not satisfy this property, it will suffice for our 
purposes.

If there are N stars present in the scene, this would suggest that IN is the correct space 
of parameters defining all stars. However, since the order in which the stars are listed in 
such a product does not matter, the correct space of parameters for defining all of the 
stars is the quotient space IN /SN , where SN is the group of permutations on N items. 
Observe in particular that while IN /SN has the structure of a metric space, it is not a 
vector space!

2.1  Warm up: sheaf model for a known star count

Briefly, a sheaf diagram is a directed acyclic graph in which vertices are labeled with 
spaces of parameters (called stalks), and edges are labeled with functions (called restric-
tions) from the stalk shown at the tail of the edge to the stalk shown at its head. Sheaf 
diagrams have the additional requirement that the composition of consecutive functions 
along a path is independent of the path itself.

I = [0,∞)× R
2 ⊂ R× R

2.

Fig. 1 A typical comparison between stars as Dirac distributions (arrows) and photon counts (histogram)
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In this article, we will think of the sheaf diagram not as a graph, but as the Hasse 
diagram for a partially ordered set. Each vertex corresponds to an element of the 
partially ordered set, and each edge a → b corresponds to the relation a ≤ b . This 
interpretation is helpful because every partially ordered set has a natural Alexandrov 
topology—a kind of higher-order network—in which each open set is the union of 
upwardly closed sets of the form

for each vertex x in the directed acyclic graph.
The specification of values from the stalks within an open set U is called an assign-

ment to U for the sheaf. Assignments of values from every stalk that are consistent 
with the sheaf are called global sections; this means that f (a) = b whenever f : A → B 
is a restriction in the sheaf diagram and a ∈ A , b ∈ B are specified by the assignment. 
Intuitively, if a sheaf diagram represents a signal model, then the global sections char-
acterize the signals permitted by that model.

If we know the number of stars is N, we can express the relationship between the 
photon count at each pixel xk and the star magnitudes and locations by the sheaf 
diagram

The diagram expresses the fact that each photon count (values in the second row 
of the diagram) is determined by Eq. (1). Furthermore, no photon count functionally 
determines any other because there are no arrows between vertices in the second row. 
One should be aware that the lack of functional dependence does not imply that the 
photon counts are independent. Specifically, it may happen that one or more photon 
counts suffice to determine a unique value in IN /SN  , after which point all of the other 
photon counts can be determined from this unique value. This is exactly the situation 
in which an adaptive method is warranted, since later photon counts are not actually 
required!

Suppose we have a set of M pixels at x1 , x2 , . . . , xM , for which we have photon counts 
z1 , z2 , . . . , zM respectively. These measurements form an assignment to the above 
sheaf, which is supported on the second row.

The assignment is not supported at the top row, since that would be tantamount to 
knowing all of the star parameters. Nevertheless, assuming that no noise is present 
and that we have correctly found the parameters a1 , b1 , . . . , aN  , bN  , then it should be 
the case that

for all m = 1, . . . ,M.
If M real measurements are taken from the scene determined by N stars, then the 

previous discussions mean that we can instead use a simpler sheaf diagram

Ux = {y : x ≤ y}

(3)zm = s(xm; a1, b1, . . . , aN , bN )
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where

simply aggregates all of the pixel values into a single vector. One can consider this as 
a function taking specific values on regions within the plane R2 , so we can interpret 
fN : IN /SN → ℓ2(R2).

In the (unlikely) situation that the pixels have taken exactly the values specified by Eq. 
(1), this corresponds to a global section of both of the sheaf diagrams shown above. The 
presence of noise or systematic errors implies that Eq. (3) will generally not hold exactly. 
The sheaf consistency radius measures the degree to which Eq. (3) holds and can be com-
puted for any sheaf in which the stalks are metric spaces [15]. The consistency radius in 
our case is merely1 a rearrangement of Eq. (3), namely

Since global sections have zero consistency radius and the stalks of the sheaf are all met-
ric spaces, any assignment which is not a global section will have positive consistency 
radius.

On the other hand, if the fN function defined in Eq. (4) is injective then there is only 
one global section. This means that we can recast the problem of obtaining the stars 
from the photon counts as the minimization of consistency radius. With essentially no 
further work, we obtain the following result.

Corollary 1 If the function fN defined in Eq. (4) is injective, then the solution to

is the correct star decomposition for the scene {zm}Mm=1 if one exists.

The reader may correctly argue that the optimization problem in Eq. (5) can be 
obtained easily—though not solved—by inspection! However, if the number of stars is 
not known, then the correct optimization problem that obtains the star parameters is 

(4)fN (a1, b1, . . . , aN , bN ) :=









s(x1; a1, b1, . . . , aN , bN )
s(x2; a1, b1, . . . , aN , bN )

...
s(xM; a1, b1, . . . , aN , bN )









,

c(a1, b1, . . . , an, bn) =

√

√

√

√

M
∑

m=1

∣

∣s(xm; a1, b1, . . . , an, bn)− zm
∣

∣

2
.

(5)argmin{an,bn}Nn=1∈I
N /SN

(

M
∑

m=1

∣

∣s(xm; a1, b1, . . . , an, bn)− zm
∣

∣

2

)

.

1 The reader is cautioned that the consistency radius for more complicated sheaves can be difficult to determine by 
inspection!
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difficult to state explicitly. However, the correct optimization problem is still a consist-
ency radius minimization, but for a more elaborate sheaf. This sheaf accounts both for 
the unknown number of stars and the fact that the number of measurements that should 
be taken depends on the (unknown) number of stars.

2.2  Sheaf model for an unknown star count

Now let us assume that the scene is built from an unknown number of stars. We cannot 
use a single fN map, because we do not know N. Therefore, we need to consider many 
possibilities for the number of stars. For instance, let us consider that there may be as 
many as P stars in the scene.

Definition 1 The sheaf JP is defined by the diagram

in which each of the restriction maps is given by the map defined in Eq. (4) with different 
numbers of stars.

Notice that the P in JP is the maximum number of stars we will attempt to con-
sider, which may not have much (if anything) to do with the actual number of stars N. 
Of course, we hope that N ≤ P so that the actual number of stars is considered in our 
analysis.

Since the underlying directed acyclic graph of JP is more complicated than in the pre-
vious section, it is useful to consider what the open sets are. While there are many open 
sets, for our purposes the ones we need to consider are unions of the Uk sets shown in 
the left frame of Fig. 2. The set Uk corresponds to a situation where we posit that there 
are between k and P stars in the scene, and the open set UP corresponds to a case where 
we assume that there are exactly P stars in the scene.

An assignment in the case of UP is given by an element of IP/SP paired with an ele-
ment of NM , namely a set of the form {(a1, b1), . . . , (aP , bP)} paired with a z ∈ N

M . An 
assignment to an arbitrary Uk is a bit more complicated, since it contains an element z of 

Fig. 2 Determining the correct number of stars by iterating over open sets in the topology
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N
M along with an element of each of Ik/Sk , . . . , IP/SP . To keep the indexing clear, let us 

write wk ,• ∈ Ik/Sk for each of these elements, realizing that wk ,j is a magnitude/location 
pair for each j = 1, . . . , k.

Given this notation, the global consistency radius of an assignment to this sheaf is 
given by

where z ∈ N
M is the set of photon counts and the wi,j is the proposed j-th star parameter 

when we are considering a representation of the scene with i stars. The global consist-
ency radius is simply the sum of consistency radii of each subproblem, in which we con-
sider a given number of stars.

On the other hand, each one of these subproblems is the minimization of the con-
sistency radius restricted to each open set in the base space topology for JP . When 
restricted to an open set Uk , the resulting local consistency radius is

and cannot exceed the global consistency radius [17].
If the f• functions are injective, then it is clear that if N > P , the only set upon which 

the local consistency radius can vanish is the set consisting of only the photon counts 
(i.e., the bottom row of the sheaf diagram). Conversely, if the f• functions are injective 
and N ≤ P , then the minimum local consistency radius possible on UP is zero.

2.3  Performance guarantees

Proposition 1 Suppose that the number of stars is fixed at N and that z ∈ N
M is given 

by

where S is given by Eq. (4).

If we assign z ∈ N
M to represent the set of photon counts in the sheaf JP (see Eq. 6) , then 

there is an extension to a global assignment in which the local consistency radius vanishes 
for all sufficiently small open sets provided that P ≥ N .

Proof To that end, z ∈ N
M is assigned in the bottom row of the diagram in Eq. (6).

Let us name the values in the assignment to the top row of the sheaf diagram

Notice that these values define many possibilities for the source parameters.

c((w•,•, z)) =

P
∑

i=1

�fi(wi,1, . . . ,wi,i)− z�,

c((w•,•, z);Uk) =

P
∑

i=k

�fi(wi,1, . . . ,wi,i)− z�,

z = S(a1, b1, . . . , aN , bN ),

{(a1,1, b1,1)},{(a2,1, b2,1), (a2,2, b2,2)}, {(a3,1, b3,1), (a3,2, b3,2), (a3,3, b3,3)}, . . . ,

{(aP,1, bP,1), . . . , (aP,P , bP,P)}.
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If the number of stars is not known, but decompositions with P ≥ N  stars are encoded 
in the sheaf, then the consistency radius of any assignment supported on the open set 
UN is given by

Define

and

If we then declare that ai,k = aj,k and bi,k = bj,k whenever they are both defined, then 
this definition clearly results in the sum of Eq. (6) being zero. �

Corollary 2 If the S function is injective, then the assignment for which the local consist-
ency radius of JP vanishes occurs precisely at the number of stars N.

2.4  Probabilistic treatment

If we combine the sheaf models with the observation that the collection of photon 
counts from each pixel are best thought of as a (single) function on the plane, we obtain 
a way to recover star parameters from a distributional measurement.

To formalize this idea, consider the space ℓ2(R2) of functions on star locations. In 
brief, a measurement specifies the amount of mass on a set of star locations. The map 
iN : IN /SN → ℓ2(R2) reinterprets stars as measures

We can use these iN maps as the restriction maps in JP , which still works structurally, 
namely

Algorithmically, if we obtain a measurement as an element z ∈ ℓ2(R2) (which need not 
be a sum of a small number of Dirac distributions), then the best star decomposition is 
still obtained by minimizing local consistency radii:

(7)
P
∑

i=N

�S(ai,1, bi,1 . . . , ai,i, bi,i)− z�.

aP,k =

{

ak if k ≤ N ,
0 otherwise

bP,k =

{

bk if k ≤ N ,
arbitrary otherwise.

iN ((a1, b1), . . . (aN , bN )) :=

N
∑

n=1

anδ(x − bn).

�iP(w1, . . . ,wP)− z�2,
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and selecting the smallest P for which this quantity is zero. In cases where the source 
magnitudes are widely varying, it is likely that a greedy approach is possible (and may 
be preferable). The trade-off between greedy and non-greedy approaches to solving the 
minimization problem is quite subtle! Moreover, if one considers a generalized signal 
model, rather than a star cluster, the topology of the sheaf diagram can impact how this 
trade-off operates. The interested reader should consult [16] for details about the general 
case. In the next section, we employ a compromise approach by reusing solutions with 
smaller number of proposed stars when solving for larger numbers of proposed stars.

2.5  Pivoting to an algorithm

From a methodological perspective, Corollary 2 implies that the number of stars can be 
determined from the consistency filtration given enough samples. If there is noise, our 
algorithm looks for the “knee” in local consistency radius as the open set size increases, 
as shown in Fig. 2.

The algorithm we used to count, locate, and characterize stars begins with a proposed 
maximum number of stars P. Convergence is not ensured by Proposition 1 and Corol-
lary 2 if the true number of stars N is larger than P. The algorithm proceeds through the 
following steps, which ultimately minimize the local consistency radii of the sheaf JP : 

1. Collect photon counts from all pixels into a vector z
2. For i in 1, 2, . . . ,P , 

(a) Initial guess: If i = 1 , use the centroid of the photon count distribution as the 
initial guess for b1 and the total photon count as a1 . Otherwise, use the previ-
ous step’s set of star locations b1, . . . , bi−1 and magnitudes a1, . . . , ai−1 as an 
initial guess with ai = 0 and bi chosen randomly.

(b) Iteration: Solve the minimization problem Eq. (5) given i stars using the i cen-
troids as initial guesses for b1, . . . bi.

(c) Store: the residual error, along with the parameters for the i stars.

3. Return the proposed number of stars, locations, and magnitudes corresponding to 
the smallest residual.

We found that the minimization problem Eq. (5) was solvable using the standard Matlab 
fmincon function, though the initial guess stage was necessary to aid in ensuring con-
vergence under repeated Monte Carlo runs.

3  Results and discussion
As a test of our approach, star fields consisting of between 1 and 10 stars were simulated. 
These star fields were propagated through a simulated optical system, resulting in pho-
ton counts on an array of pixels. These photon counts were then used to determine star 
locations and magnitudes using the algorithm discussed above, a multiple centroiding 
approach, the standard CLEAN algorithm [1], and Richardson–Lucy deconvolution [4, 
5].
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We chose to focus our attention on only these four algorithms, because they do not 
require the user to “tune” parameters in order to get good performance. In algorithms 
that require tuning, good performance is difficult to guarantee in both theory and prac-
tice, and this tuning may require considerable effort. In contrast, the four methods con-
sidered in our study do not require any such tuning, and can be compared directly with 
no further manipulation.

While the CLEAN algorithm, the multiple centroiding algorithm, and our sheaf algo-
rithm all output star locations and brightness directly, the Richardson–Lucy algorithm 
produces in a denoised image. To convert this into star locations, we ran two iterations 
of the Richardson–Lucy algorithm, followed by a narrow Gaussian filters, a threshold 
detector, and then into the multiple centroid detector. This yielded a simple algorithm 
with only one tunable parameter (the Gaussian filter bandwidth), which we tuned for 
maximum efficiency as described below in Eq. (9).

Figure  3 shows a typical result for 10,000 photons. Figure  4 shows several example 
runs for four stars, in which the stars (shown in green) are placed on the corners of a 
square whose side length was varied. If we minimize consistency radius using J4 , which 
effectively means that we are declaring the number of stars to be known, the minimiz-
ers of consistency radius for J4 are shown in blue. Our algorithm does not expect any 
particular geometry, as is clear by its obvious symmetry breaking in the right frames of 
Fig. 4.

Fig. 3 A typical photon count distribution with 10000 photons (left) and (right), marked with the true star 
locations (green), a decomposition into four centroids (yellow), and the minimizer of consistency radius 
produced by our algorithm (blue)

Fig. 4 Photon count distributions for four stars (green) at various inter-star separations, with the minimizers 
of consistency radius for the J4 sheaf superimposed (blue) and ten thousand (10,000) total photons. (Star 
count known to be 4.)
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Assuming that the correct magnitude and location of star i are given by (ai, bi) and 
that the algorithm’s estimate of the same is (a′i, b

′
i) , an algorithm can be scored by its effi-

ciency, given by

where φ : {1, 2, . . . ,P} → {1, 2, . . . ,N } ranges over all functions. Note that #image φ/P 
is the Jaccard index of the two sets of stars, given the function φ used as a matching. 
Higher efficiency means that the algorithm is doing a better job of determining the cor-
rect number of stars, their magnitudes, and locations. The best possible efficiency is 100, 
while the worst is 0.

Good efficiency scores are produced by our algorithm for separations greater than 0.2 
Rayleigh radii when the star count is known, as is shown in Fig. 5. As might be expected, 
the performance of the algorithm suffers without knowing the correct number of stars. 
Figure 6 shows the same four stars, but with the minimizers of consistency radius for 
J15 . This means that the algorithm was not told the correct number of stars, but merely 
that there are at most 15 stars. The overall efficiency scores are less in this case. As 
shown in Fig. 7, performance is good for separations greater than 0.5 Rayleigh radii.

(9)

E := 100−min
φ

√

√

√

√

(

1−
#image φ

P

)2

+

N
∑

i=1

P
∑

j=1

|aφ(j) − a′i|
2 +

N
∑

i=1

P
∑

j=1

|bφ(j) − b′i|
2,

Fig. 5 Efficiency of the sheaf algorithm as a function of separation between two stars when the star count is 
known

Fig. 6 Photon count distributions for four stars (green) at various inter-star separations, with the minimizers 
of consistency radius for the J15 sheaf superimposed (blue) and ten thousand (10,000) total photons. (Star 
count unknown but less than 16.)
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In order to compare the performance of the sheaf algorithm with the standard 
CLEAN algorithm, we ran a set of 10 Monte Carlo runs of 7 different configurations 
of stars, as shown in Table 1. Using the efficiency (Eq. 9) to rate the performance of 
all three algorithms, the results from all runs of all tests are shown in Fig. 8. The sheaf 
algorithm did better than CLEAN in 55 of the 70 runs. In 42 of those 55 runs, the dif-
ference in efficiency was greater than 10.

Delving more deeply into the performance differences, Fig.  8 shows a breakdown 
of efficiency for each Test shown in Table 1. For Tests A and B both the sheaf algo-
rithm and the Richardson–Lucy algorithms perform nearly optimally. For Tests F and 
G (the hardest tests), the sheaf algorithm outperforms both the CLEAN and Richard-
son–Lucy algorithms by a wide margin—nearly twice the efficiency than CLEAN, as 

Fig. 7 Efficiency of the sheaf algorithm as a function of separation between two stars when the star count is 
unknown

Fig. 8 Efficiency of the sheaf algorithm versus the CLEAN algorithm. The dashed line is the diagonal (equal 
efficiency from both algorithms)
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shown in Fig. 9. For the other tests, the sheaf algorithm’s performance is substantially 
more variable than CLEAN. Although the Richardson–Lucy algorithm does better 
than CLEAN in all cases, the sheaf does better than that by a similar margin. Inter-
estingly, the pattern of which tests had higher efficiencies with the sheaf algorithm is 
similar to that of the Richardson–Lucy algorithm.

The location errors for all three algorithms and all tests are shown in Fig.  10. As 
should be expected, location errors increase in all three algorithms as the number 
of stars increase. Generally, the sheaf algorithm yields better location estimates than 
both CLEAN and the Richardson–Lucy for a smaller number of stars, while CLEAN 
yields better location estimates than the sheaf for a larger number of stars.

Magnitude estimate errors for all three algorithms and all tests are shown in Fig. 11. 
All three algorithms yield highly variable performance on magnitude estimates 
regardless of test conditions. At least in the sheaf algorithm case, this may be a direct 
result of the use of the Euclidean metric on ℓ2(R2) , since—in contrast to the Wasser-
stein metric [6]—the convergence in magnitude is not guaranteed.

4  Conclusion
The results we obtained from our algorithm typically exceeded the performance of both 
the CLEAN and Richardson–Lucy algorithms, especially with more challenging scenes, 
which indicates that our sheaf method shows promise. Moreover, since our sheaf method 
does not require the user to tune parameters, it is easy to apply directly to a scene of 
interest. The fact that it converges very well for small numbers of stars and less well for 
larger numbers of stars suggests there is room for improvement. In particular, the use of 
a general optimization solver is not particularly efficient, and the solver converges slowly.

Computational considerations were not central to our approach on this problem, 
but could be important in future work. We have already developed a general library 
for sheaf algorithms [18] and could port this library to a high-performance comput-
ing platform. We expect that high-performance sheaf computational tools would have 
broad applicability, providing numerous avenues for improvements.

Finally, the sheaf-based approach we used is extremely general and applies without 
change to many other imaging techniques, not just focal plane arrays, as discussed in [16]. 
Quantum imaging with a small number of photons [19] fits neatly into this perspective and 
deserves to be explored in future work.

Table 1 Constellation tests performed

Test Star count Magnitudes

A 1 N/A

B 2 Equal

C 2 Variable

D 3 Equal

E 3 Variable

F 7 Variable

G 10 Variable



Page 14 of 17Robinson and Capraro  EURASIP Journal on Advances in Signal Processing         (2022) 2022:26 

Fig. 9 Efficiency of the sheaf, CLEAN, and Richardson–Lucy algorithms split by Test (see Table 1). The vertical 
scales differ between frames to emphasize details
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Fig. 10 Location root mean squared error (RMSE) of the sheaf, CLEAN, and Richardson–Lucy algorithms split 
by Test (see Table 1). The vertical scales differ between frames to emphasize details
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Fig. 11 Magnitude root mean squared error (RMSE) of the sheaf, CLEAN, and Richardson–Lucy algorithms 
split by Test (see Table 1). The vertical scales differ between frames to emphasize details
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