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1  Introduction
With the development of artificial intelligence technology, in the future 6G era, various 
network models of deep learning will be ubiquitous. One of the most critical scenarios is 
that service providers need to interact and make decisions on vehicle information in real 
time [1, 2].

IoV is based on the Internet of Things [3, 4] technology and is more oriented to trans-
portation applications. The Internet of Things (IoT) has a wide range of applications in 
the current 5G era, especially in improving the data transmission rate. IoT is facing the 
shortage of spectrum resources due to the rapid growth of IoT terminals and big data 
services. Fifth-generation (5G) network owns sufficient spectrum resources and supplies 
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large data volume business, which can help to expand the communication resources of 
the IoT by combing IoT with 5G network [5, 6].

IoV can obtain environmental information around the vehicle through the image sen-
sor on the vehicle [7, 8]. This information processing technology has greatly improved 
traffic safety. However, the current signal processing technology of the IoV is not perfect. 
When the owner deliberately violates the rules or the vehicle sensing system fails, it is 
difficult to avoid traffic accidents only by relying on the subjective initiative of the owner. 
Therefore, safe, effective and intelligent interference to illegal driving behavior is an 
important field of IoV signal control. At present, most of the communication methods 
of the IoV rely on digital radio communication. According to the characteristics of the 
communication technology of the Internet of Vehicles, this study introduces the intelli-
gent interference technology of digital communication into the processing technology of 
the IoV signals, uses the model in deep learning to transform the high-order character-
istics of the original communication signal and finally achieves the purpose of intelligent 
interference.

At present, interference methods for digital communication are still dominated by 
traditional interference methods, which hinder the target receiver from receiving infor-
mation through high-power suppression. However, the number of vehicles with abnor-
mal conditions is often small. High-power barrage jamming cannot distinguish specific 
interference targets, which means that traditional interference methods are not suita-
ble for IoV signal processing. Therefore, the introduction of intelligent communication 
interference into IoV signal processing has become a major trend in the development of 
the current IoV field.

Research on intelligent interference has been carried out for several years at home 
and abroad. Traditional methods are generally based on optimization theory, informa-
tion theory, game theory [9] and other technologies. They rely on prior knowledge and 
combine signal analysis optimization and game theory to obtain optimal interference 
strategies and optimal interference waveforms under specific constraints. References 
[10–12] analyze the capacity of wireless channels in the presence of correlated interfer-
ence and prove that Gaussian signaling and Gaussian interference form a saddle-point 
solution. In 2016, Scholars such as Amuru deduced the theoretical optimal interference 
waveforms for several classical digital modulations and proved that it is not optimal to 
match the jammer’s signal with the disturbed signal to obtain the maximum BER prob-
ability. These interference methods based on optimization theory need to have certain 
prior knowledge of the modulation method of the disturbed signal and the communi-
cation network environment, so that the corresponding optimal interference waveform 
can be accurately analyzed. When the environment changes, the algorithm often can-
not adapt quickly according to the parameter changes of the target. Li et al. address the 
joint interference pricing and power allocation problem for multi-beam satellite systems 
(MSS) through the Stackelberg model [13].

With the rapid development of computer equipment, scholars have begun to 
research the interference algorithm of artificial intelligence. The work done at home 
and abroad mainly focuses on artificial intelligence algorithms, makes autonomous 
decisions in terms of interference strategies, and finds the best interference pattern 
under the existing interference waveform pattern library. Amuru et al. [14] proposed 
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to use a multi-armed bandit machine to model the interference waveform deci-
sion problem and studied the interference strategies for one-to-one and many-to-
many scenarios in the absence of prior information. At the same time, continuous 
and discrete action state spaces are established, which provides a reference for sub-
sequent modeling and exploration based on reinforcement learning methods. Yang 
et al. applied the reinforcement learning algorithm to the selection of the interference 
channel and explored the action space based on the power and signal modulation 
method through the reinforcement learning network, so as to achieve the purpose 
of tracking the dynamic interference of the enemy target. Zhang searched the entire 
strategy combination space by means of Gaussian perturbation exploration, gener-
ates the optimal interference strategy, and improved the selection speed of the opti-
mal interference strategy. Wu et al. proposed reinforcement learning methods based 
on state-action-reward-state-action (SARSA) and Q-learning, optimized the design 
of interference waveforms, and verified the feasibility of the fill collaborative forecast 
and replenishment (Fill-CFAR) method of interference design. Zhang et  al. estab-
lished a Markov chain dynamic interference model and used reinforcement learning 
to design interference waveforms with various exploration strategies.

However, these methods above rely too much on prior information, and in practical 
application scenarios, it is very difficult to obtain prior information of the disturbed 
signal.

Therefore, for the case of unknown prior information, this study proposes a method 
based on convolutional autoencoder to parse the received signal and generate an 
interference waveform with similar characteristics to the original signal. In this study, 
we choose to interfere with the communication signals of three modulation meth-
ods: binary phase shift keying (BPSK), quaternary phase shift keying (QPSK) and 
octal phase shift keying (8PSK). After denoising, the signal sent by the transmitter is 
input into the convolutional autoencoder to extract signal features, and the interfer-
ence waveform is generated by changing the parameters of the fully connected layer, 
and the interference effect is evaluated at the receiver. This study makes the following 
three contributions to the problem of signal management and control of the IoV: 

(1)	 The method used in this paper is to design the best interference signal for the dis-
turbed signal, which does not require high-power noise transmitting equipment, 
and can achieve precise interference.

(2)	 The convolutional autoencoder used in this study can automatically design the 
optimal interference waveform according to the received signal, which means that 
the method used in this study does not rely on prior knowledge.

(3)	 The shape of the interference waveform generated by the method used in this study 
is very similar to the shape of the disturbed signal waveform, so that the receiver 
cannot judge whether the interference is applied or not.

(4)	 The interference effect of the method adopted in this study is superior to Gaussian 
noise interference and amplitude modulation (AM) noise interference under any 
SIR. When the signal-to-noise ratio(SNR) is 15 dB, and the SIR is within − 10 dB to 
− 15 dB, the interference waveform generation technology proposed in this study 
can make the bit error rate reach 38.4%.
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This study is organized as follows: Sect. 2 presents the method used in this study and 
describes the model and algorithm network structure of the optimal interference wave-
form generation based on convolutional autoencoders proposed in this study. Section 3 
presents the simulation results of the experimental simulation. Section 4 draws conclu-
sions and summarizes future research directions.

2 � Methods
2.1 � System model

Traditional interference generally selects the interference waveform that best matches 
the characteristics of the received signal from the strategy library. However, for the sig-
nal of the unknown system, it is impossible to find a suitable interference method, and 
generally barrage interference is used to interfere with the other party. However, the bar-
rage interference has the problem that the required power is too large and cannot be 
accurately interfered. Therefore, this study proposes a method based on the convolu-
tional autoencoder to extract features from the signal and adds perturbations to the fea-
tures of the fully connected layer to generate interference signals with similar high-level 
abstract features to the target signal.

2.1.1 � Model of interference waveform generation based on convolutional autoencoder

When the modulation mode adopted by the communication signal is known, the 
probability density function of its efficient interference can be derived by mathemati-
cal formula, and the interference signal can be generated according to the distribution 
characteristics. However, in the absence of prior knowledge of communication signals, 
signals with similar characteristics in time domain, frequency domain, information 
domain, energy domain and feature domain can still be considered as efficient inter-
ference. Therefore, this proposes a feature extraction method based on convolutional 
autoencoders. Autoencoders are generally used for image reconstruction, denoising, 
data dimensionality reduction and feature extraction. In this study, the convolutional 
autoencoder is used to extract signal features, combining both classification effect and 
minimum mean square error (MMSE) [15, 16] to design error function to improve the 
performance of feature extraction and signal reconstruction. After training the model, 
according to the characteristic parameter distribution of the fully connected layer, the 
signal of the fully connected layer is changed by occlusion and replacement to generate 
an interference waveform, and the BER is calculated by the receiver, the BER is used as 
the evaluation of the interference effect. The system model is shown in Fig. 1.

2.1.2 � Interference waveform generation strategy

According to the network structure of the convolutional autoencoder, the communi-
cation signal can be approximately reconstructed under the constraint of ensuring the 
classification accuracy. Therefore, it is considered that the high-dimensional features 
extracted by the network structure in the fully connected layer can represent the sig-
nal. In addition, literature [14, 17] has deduced the interference probability distribution 
functions of signals such as multiple phase shift keying (MPSK) and multiple quadra-
ture amplitude modulation (MQAM) under specific constraints. We generate interfer-
ence waveforms by destroying the characteristics of specific signals. In order to test the 
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interference effect of interference waveforms generated by different feature perturba-
tions, this study formulates rules for testing the significant scores of two types of signal 
features, which are the inter-class variance and the total mean.

For the linear combination, the larger the mean of the signal features, the greater the 
impact on the follow-up. The relationship between the two can be expressed as:

where,m =  1,2, ..., M and x̄iM represents the variance of the ith feature in the feature 
layer extracted from the Mth signal.

If the connection between the fully connected layer and the classifier does not go 
through any activation function, the two are considered to be a linear combination, so 
the larger change in the eigenvalue is the result that obviously affects the classification. 
Therefore, the scoring rule using the between-class variance can be expressed as:

where D(•) is expressed as a variance function.

2.2 � Convolutional autoencoder

In the field of deep learning, convolutional neural network (CNN) [18] is an algorithm 
model widely used by scholars. At present, various new algorithm models developed by 
most scholars are based on convolutional neural network. In the ideal case of not con-
sidering other problems such as fitting, the deeper the CNN layer, the more abstract the 
features it extracts, and the autoencoder is designed with this idea. Autoencoder (AE) 
[19, 20] is a neural network that copies input to output. AE converts the input infor-
mation into a high-dimensional representation of the hidden space by compressing 
the input information and reconstructs the representation of the hidden space into the 
output.

AE is a neural network that copies input to output. AE converts the input information 
into a high-dimensional representation of the hidden space by compressing the input 
information and reconstructs the representation of the hidden space into the output. 
The running process of the autoencoder is shown in Fig. 2.

(1)Sifeature = x̄iM

(2)Sifeature = D(x̄i1, x̄i2, . . . , x̄iM)

Fig. 1  Interference waveform generation model
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The basic structure of AE is generally composed of three parts: input layer, hidden layer 
and output layer, and its structure is shown in Fig. 3.

Assuming that the input dataset is X = {x1, x2 . . . , xN } and x ∈ {x1, x2 . . . , xN } . The pro-
cess of inputting the dataset into the encoding network can be expressed as:

where WEncoder and bEncoder are the weight parameter matrix and bias matrix in the 
encoding network, and f (•) is the encoding activation function.

(3)hW ,b(x) = f (WEncoderx + bEncoder)

Fig. 2  Running process of the autoencoder

Fig. 3  Autoencoder structure
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According to the structural symmetry of AE, the output of the hidden layer is recon-
structed as Y =

{

y1, y2 . . . , yN
}

 , The process of decoding and reconstruction can be 
expressed as:

where y ∈
{

y1, y2 . . . , yN
}

 is the output dataset and g(•) is the decoding activation func-
tion. It is known from the above that the most critical step to improve the performance 
of AE is to reduce the reconstruction error of AE, so the reconstruction error JAE(θ) is 
expressed as:

where θ is the loss entropy, and L(x, y) is the sample loss function:

The operation process and basic structure of AE have been introduced above. The net-
work structure of each layer of AE mainly updates and propagates parameters through 
the fully connected layer. CNN is mainly a neural network composed of convolutional 
layers and pooling layers, in which the convolutional layer acts as a filter, and the pool-
ing layer is responsible for extracting invariant features. The convolutional autoencoder 
(CAE) [21–23] replaces the fully connected layers in AE with convolutional layers and 
pooling layers according to the unsupervised feature extraction characteristics of CNN. 
The principle block diagram of CAE is shown in Fig. 4.

(1)	 Convolution layer convolution: Assuming that there are k convolution kernels in 
CAE, each convolution kernel consists of parameters ωk and bk , firstly initialize k 

(4)yW ,b(x) = g(WDecoderh+ bDecoder)

(5)JAE(θ) =
∑

x∈X

L(x, y)

(6)

L(x, y) =











||x − y||2 g(·) is the identity map

−

�

Decoder
�

i=1

xj log
�

yi
�

+ (1− xi) log
�

1− yi
�

�

g(·) is the sigmoid activation function

Fig. 4  CAE principle block diagram
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convolution kernels, and match each convolution kernel with a bias b, generate k 
features after convolving with the input, and its operation can be expressed as: 

 where hk is the feature map.
(2)	 Pooling layer-pooling operation: Perform a pooling operation on the feature map 

hk generated above. The purpose of pooling is to retain the matrix of the positional 
relationship during pooling, which is convenient for subsequent de-pooling opera-
tions.

(3)	 Pooling layer—self-encoding (de-pooling operation): Perform de-pooling operation 
on the feature map hk generated above, use the matrix that retains the positional 
relationship during pooling, and restore the data to the corresponding position of 
the matrix of the original size.

(4)	 Convolutional layer—self-encoding (deconvolution operation): Each feature map h 
and the transposition ŵ of its corresponding convolution kernel perform a convolu-
tion operation and sum the results, and then add the bias c to obtain the activation 
function y: 

(5)	 Convolutional Layer—Update Weights: To update the weights, first determine the 
loss function. The MMSE function used here, that is, the target value minus the 
square sum of the actual value and then the mean value, where 2n is to simplify the 
derivation. 

2.3 � Loss function

In the encoder-based algorithm, it is generally believed that the smaller the reconstruc-
tion error, the higher the performance of the algorithm, and the error approaches zero 
under ideal conditions. However, Yu Z. of Southwest Jiaotong University gave the lower 
bound of the reconstruction error of the input data, and gave a necessary condition for 
the reconstruction error of the input layer to reach an ideal state. When the input data 
are corrupted or noise is added, the reconstruction error of corrupted or noisy input 
data also has a lower bound. For the loss function of the autoencoder structure, such 
as formula (6), the pure data input by the autoencoder network can be expressed as x, 
the input pure data can be expressed as x∗c , and the abstract parameters in the implicit 
part of the structure can be expressed as hc . Formula (10) can be obtained through the 
encoder:

(7)hk = σ(x ∗ ωk + bk)

(8)y = σ

(

∑

k

hk ∗ ŵk + c

)

(9)E =
1

2n

n
∑

i=1

(xi − yi)
2

(10)f (x) = hc
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Similarly, according to its symmetric structure, the reconstructed parameters can be 
encoded to obtain formula (11):

The Taylor expansion of the Lagrangian remainder for the above formula can be 
obtained:

where ∇f
[

x + ρ
(

x∗c − x
)]

 is the first derivative of the coding part, where ρ ∈ (0, 1) . The 
loss function is represented by hc and h∗c as:

Combining (12) can get:

Let x∗c − x = |ξ1, ξ2, . . . , ξm|
T , while denoting ∇f

[

x + ρ
(

x∗c − x
)]

 as a real matrix A. Then 
formula (14) can be expressed as:

Ideally, it is hoped that the reconstructed data and the produced data are as identical as 
possible, which can be expressed as:

Formula (17) can be obtained from the above formula:

Through the network structure of the convolutional autoencoder in Sect.  2.4, the 
1*1000-dimensional features of the signal are connected to the classifier through the 
encoded information of the fully connected layer. The confidence loss for classification 
represented by the Softmax [24, 25] function is shown in formula (18):

The classification accuracy of the signal is evaluated by the normal cross-entropy loss. 
When this part of the network can complete the classification of the signal, it can be 

(11)h∗c = f
(

x∗c
)

(12)f
(

x∗c
)

= f (x)+
(

x∗c − x
)T

∇f
[

x + ρ
(

x∗c − x
)]

(13)
L
(

hc, h
∗
c

)

= L
(

hc, f
(

g(hc)
))

=
∥

∥h∗c − hc
∥

∥ =
∥

∥f
(

x∗c
)

− f (x)
∥

∥

2

(14)L
(
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c

)

=

∥

∥

∥
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∥

∥

∥

2
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T · A

∥

∥

∥

2

=

n
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(

m
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≤

n
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m
∑
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aij

2
)(

m
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ξi

2
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= ξ2 · A2

(16)lim
x∗c→x
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[
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(
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)]2

F
= Jf (x)

2
F

(17)L
(
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)

≥ L
(
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considered that the network has extracted significant information in each category, so 
the deconvolution network can be used to reconstruct the signal on this basis. In the 
previous coding structure, the position of the reserved value in each operation in the 
pooling layer is recorded, and the deconvolutional signal is expanded to the same dimen-
sion as the original according to the above position during deconvolution. The data for-
mat of the final structure output is 2*1024. According to the above derivation, the sum of 
the reconstruction error and the classification error is guaranteed to be the smallest, so 
the error formula is obtained as follows:

where Lclassify is the Softmax cross-entropy loss above, and α is a hyperparameter. To 
balance the magnitude relationship between the two and accelerate the training conver-
gence, this study sets this parameter to 0.1.

2.4 � Network structure

According to the characteristics of the interference signal, it is considered that the inter-
ference signal needs to overlap with the communication signal in the time-frequency 
domain and should have similar characteristics in the communication signal. Therefore, 
a convolutional encoder and a classification loss structure are proposed in this to gener-
ate interference signals, and the structure box is shown in Fig. 5.

(19)Lmypaper = αLclassify + ||x − y||2 − L
(

x∗c , hc
)

/
∥

∥Jf (x)
∥

∥

2

F

Fig. 5  Algorithm block diagram
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Through the convolutional neural network in the Table 1, the signal is converted into 
features of dimension 1*1000. For a signal with a length of 2*1024, only a fully connected 
layer with a smaller dimension is required to describe the features. The purpose of using 
a longer dimension in this study is to provide a larger policy dimension space for sub-
sequent generation of interference waveforms. The classifier is connected through the 
encoded information of the fully connected layer, and the upper part of the encoder is 
connected to the Softmax classifier, so that the neural network can extract the salient 
features of the communication signal in this way. At the same time, the fully connected 
layer is connected to the deconvolution network for decoding the communication signal. 
According to the symmetry of the structure of the autoencoder and Table 1, the struc-
ture of the decoder can be reversely restored.

3 � Results and discussion
To test the feasibility of the interference waveform generation technology proposed in 
this study, we divide the experiment into pattern analysis of generated signal and inter-
ference effect comparison experiment. Section  3.1 verifies the waveform similarity 
between the interference signal and the communication signal through the performance 
of the algorithm reconstruction. Section 3.2 proves the interference effect of this method 
through the BER curve.

3.1 � Analysis of algorithm reconstruction results

Compared with the traditional interference method, the intelligent interference can 
design the interference signal according to the high-order characteristics of the com-
munication signal waveform, so that the waveform of the interference signal is very 
similar to the waveform of the communication signal, which saves the interference 

Table 1  Encoding part of the network structure

Network structure Convolution kernel structure Output layer

Input / (2, 1024)

Convolutional layer (normalization) (2, 2, 128) /

ReLU/PReLU 128 /

Convolutional layer (normalization) (1, 2, 128) /

ReLU/PReLU 128 /

Pooling layer (max pooling) (1, 2, 128) stride = 2 /

Convolutional layer (normalization) (1, 2, 256) /

ReLU/PReLU 256 /

Convolutional layer (normalization) (1, 2, 256) /

ReLU/PReLU 256 /

Pooling layer (max pooling) (1, 2, 256) stride = 2 /

Convolutional layer (normalization) (1, 2, 512) /

ReLU/PReLU 512 /

Convolutional layer (normalization) (1, 2, 512) /

ReLU/PReLU 512 /

Pooling layer (max pooling) (1, 2, 512) stride = 2 /

Fully connected layer (dropout = 0.5) 256*128*1 1000*1

Fully connected layer (dropout = 0.5) 1000*1 1000*1

Classifier 1000*3 3*1
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resources. To verify the subsequent interference effect, the reconstruction perfor-
mance of the convolutional autoencoder needs to be tested first. In this experiment, 
the features with significant scores are kept unchanged while other non-salient 
features are changed. The 1*1000-dimensional features are distributed in a ratio 
of 10:990, and the non-salient features or salient features are replaced with Gauss-
ian random noise with the same energy to reconstruct the signal. The experimental 
results are illustrated in Figs. 6 and 7.

To detect the similarity between the interference signal and the communication 
signal more intuitively, the above figures illustrate the time domain I/Q waveform 
and constellation diagram of the generated interference.

It can be seen from Fig. 6 that the time-domain curves of the communication sig-
nals of the I and Q channels of the interference signal are smooth. In Fig.  7, the 
BSPK, QPSK and 8PSK signals can be clearly distinguished from the constellation 
diagram, and the time-domain curve of the communication signal is smooth, which 
proves that the reconstructed interference waveform has a strong similarity with the 
communication waveform. However, there is a large gap between the constellation 
diagram of the BPSK signal and the original signal constellation diagram. This is 
because the unified mean square error is used in the training process, and the ampli-
tude difference between the Q-channel signal of the BPSK signal and the other two 
types is too large.

Fig. 6  Randomly generated interference waveform

Fig. 7  Constellation diagram of the generated interference waveform



Page 13 of 16Wu et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:31 	

3.2 � Analysis of the interference results of the algorithm

This experiment adds perturbation and occlusion to the features in the fully connected 
layer and verifies the interference performance of the waveform generated by the decon-
volution. In order to compare and test the interference effect, the SNR is selected as 
15 dB, the communication mode is BPSK, QPSK, 8PSK, the SIR is − 15 to 10 dB, the 
step is 2 dB, and a random string with a length of 1200 is used. The ASCII source code 
is used as a test sequence, and 100 tests are performed and the average value of the BER 
is taken. Select BPSK, QPSK and 8PSK three kinds of communication signal itself, noise 
amplitude modulation, Gaussian noise and other interference for comparison, and the 
interference effect curve is shown in Fig. 8.

In this experiment, the maximum weight of 1% of the fully connected layer is selected 
to apply Gaussian perturbation according to the two standards of mean and standard 
deviation, and the mean value of the fully connected layer is kept unchanged. The output 
interference signals are deconvolution interference waveform 1 and deconvolution inter-
ference waveform 2, respectively. The low interference performance in BPSK communi-
cation is because a certain amount of energy is allocated to the Q-channel signal in the 
waveform reconstruction, resulting in the degradation of the interference performance. 
The BER of QPSK and 8PSK communication waveforms is both higher than noise ampli-
tude modulation and Gaussian noise interference. It can be seen from Fig. 8 that, under 

Fig. 8  BER curve under the generated interference waveform (SNR = 15 dB)
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the BPSK communication system, when the SIR is less than − 4 dB, the highest BER can 
reach 0.486. Under the QPSK communication system, when the SIR is less than − 5 dB, 
the highest BER can reach 0.40. Under the 8PSK communication system, when the SIR is 
less than − 8 dB, the highest BER can reach 0.387.

In summary, the method proposed in this study can generate an interference wave-
form that approximates the communication signal, and is better than the interference 
performance of Gaussian noise and noise amplitude modulation under different SIRs.

4 � Conclusion
To ensure the applicability and validity of the experimental results, a complete vehicle 
network communication system is simulated and built in this study, and three commu-
nication signals of BPSK, QPSK and 8PSK are used for communication. In this study, 
a method based on convolutional autoencoder is proposed to extract high-order fea-
tures of communication signals, and the required intelligent interference waveform is 
obtained by occluding and replacing the features on the fully connected layer.

This study introduces intelligent interference into the signal processing technology of 
IoV communication. This study can design interference signals that use the least inter-
ference resources and have the best interference effect under the premise of lacking prior 
information. It solves the serious waste of interference resources of suppressive interfer-
ence and the limitation of signal prior information in traditional intelligent interference.

It can be seen from the simulated constellation diagram that the reconstructed inter-
ference waveform has a strong similarity with the communication waveform, which 
proves the similarity between the generated interference waveform and the original 
signal waveform. In addition, the BER curve obtained by simulation can prove that the 
interference performance of the interference waveform generated in this study is better 
than that of Gaussian noise and noise amplitude modulation under different SIRs.

The modulation methods applied to the IoV signals are complex and diverse, and this 
study only focuses on three phase shift keying signals for communication system con-
struction and intelligent interference. Therefore, in future research, the types of modula-
tion methods included should be expanded, so as to achieve comprehensive control of 
IoV signals.
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