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1  Introduction
Radar, as an electronic sensor, plays an important role in the civilian and military fields 
because of its all weather, all day and certain penetrating capabilities [1]. A multi-
static radar network, which is constituted of multiple dispersed radars, has the ability 
to achieve a wider range of detection and monitoring by information fusion. In addi-
tion, reasonable task scheduling method guarantees the cooperative work and can fully 
improve the overall performance the radar network.

High-resolution inverse synthetic aperture radar (ISAR) imaging technology that 
can acquire the target structure information becomes more and more popular in 
recent years [2–5]. An ISAR image can be obtained through long-term continuous 
observation and rich structure information such as shape, volume and surface physi-
cal parameters can be extracted for subsequent target classification and recognition. 
In fact, ISAR images are the two-dimensional (2-D) projection of the target scatter-
ing characteristics on the imaging projection plane (IPP). Due to the existence of 
anisotropy, the ISAR images from different observation views are not the same even 
for the same target. This brings great difficulty to target recognition. Thus, a three-
dimensional (3-D) target image is regarded as a feasible solution to such a problem 
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[6–8]. One possible way to construct the 3-D target scattering distribution is to use 
the differences in ISAR images from multiple views in multi-static radar network [9]. 
Obviously, high-resolution ISAR images are the prerequisite for 3-D target imaging. 
According to the ISAR imaging principle, high-resolution ISAR images of the target 
require long-term continuous observation. Thus, there are many restrictions and con-
flicts on resource allocation when performing multiple types of tasks and the radar 
resource utilization will be greatly reduced. In addition, when the radar network has 
to deal with multiple targets appeared in the monitoring region, it is difficult to allo-
cate enough observation time for each target. Thus, research on the task scheduling 
problem for 3-D multi-target imaging in radar network is essential and necessary.

Recent years, researchers show great interests on the problem of task scheduling in 
radar networks [10–16]. Motivated by better exploiting the limited system resource 
of radar network for target tracking, Yan proposed a joint detection and power allo-
cation method [10]. An auction-based task scheduling method for multifunction 
radar network was investigated to maximize the whole revenue considering the time-
liness constrained tasks [11]. Aiming at maximizing the power density of multiple 
regions for interference simultaneously, Zhang et al. proposed an antenna optimiza-
tion deployment method in multi-static radar and numerical results were provided to 
demonstrate the validity [12]. In [13], Zhang proposed a power allocation optimiza-
tion algorithm for a multi-static MIMO radar network in the case of multi-regional 
interference.

Note that, the current work mainly focuses on searching task, tracking task, anti-
jamming task, etc., while few work involves the imaging task. In our previous work, 
we have proposed several game-theoretic-based task allocation methods for ISAR 
imaging in radar network [17, 18]. However, the task scheduling problem for multi-
target 3-D imaging is much more complicated and the previous work cannot be 
directly applied to the problem. Therefore, a new task scheduling optimization model 
should be analyzed for the multi-target 3-D imaging problem. To the best of authors’ 
knowledge, no literature has addressed the task scheduling problem of multi-target 
3-D imaging in radar network.

In this article, an adaptive task scheduling algorithm for multi-target 3-D imaging is 
proposed. Firstly, a 3-D target imaging algorithm via multi-view ISAR images in radar 
network is analyzed. A sparse ISAR imaging algorithm is utilized to obtain the 2-D 
ISAR images and a 3-D target image is constructed based on the three ISAR images of 
different views. This cognitive imaging method leaves the possibility of adaptive task 
scheduling in radar network. Due to the cognition of target information, the multi-
target 3-D imaging task is optimally scheduled according to further imaging require-
ments and the imaging terminal time can be adaptively adjusted. As a consequence, 
the multi-target 3-D imaging task is accomplished efficiently with the minimal task 
time, meanwhile the overall radar resource utilization is significantly improved.

The remainder of this article unfolds as follows. Section 2 introduces the 3-D target 
imaging method via radar network and formulates task scheduling problem. Section 3 
details the whole flow of our proposed task scheduling strategy and Sect. 4 conducts 
the performance analysis on simulated experiments. Finally, Sect.  5 concludes this 
article.
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2 � Three‑dimensional target imaging via radar network and task scheduling 
problem formulation

2.1 � Imaging geometry of 3‑D image via radar network

As known to all, a radar can obtain high-resolution profile in the range direction through 
transmitting signals with a large bandwidth. Meanwhile, a radar can obtain high-res-
olution profile of the azimuth direction through a bigger angle that the target rotates 
relative to the radar (i.e., longer synthetic aperture time). Consequently, after perform-
ing range compression and coherent processing, a high-resolution ISAR image in range 
and azimuth direction can be obtained for subsequent identification with enough radar 
observation time resource.

In essence, ISAR images can be seen as the 2-D projection of the target scattering 
characteristics on the imaging projection plane (IPP). The range direction and azimuth 
direction are considered as the two axes of IPP. When IPP varies, the ISAR images may 
be different even for the same target considering the anisotropy of the targets. This 
brings great difficulty to auto-target recognition.

Generally speaking, a 3-D target image which represents the 3-D scattering distribu-
tion of the target contains much more structure information of the target compared with 
2-D ISAR images. Thus, a 3-D target image which can support target recognition better 
can be regarded as a feasible solution to such a problem. Radar network can be recog-
nized as an efficient way to obtain the 3-D target image.

Specifically, in radar network, when the target is observed by several radars from dif-
ferent views, the observation information will be achieved simultaneously. Obviously, 
for each target, the 2-D ISAR images are obtained with certain differences by each radar. 
Considering the relationship between the ISAR images and the scattering distribution 
of the target, it is possible to construct the 3-D target image based on the differences 
between ISAR images [9].

Moreover, the geometry model for projection process by a single radar observation is 
shown in Fig. 1, where R represents the radar position and (R,X ,Y ,Z) represents a local 

R

Z

Y

X

n

UW

P

a

d

c

b

Q1

P1

P2

Target
part

V

ISAR
Image

 
Fig. 1  The geometric model of projection process
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Cartesian coordinate. Assume that point P denotes the center point of a target, which can 
be estimated by tracking algorithm, and point P is usually considered as the reference point 
for ISAR imaging. Additionally, (P,U ,W ) represents the coordinate system of IPP abcd, 
where axis U and W signify the directions of range and azimuth, respectively. nu and nw 
represent the unit vectors of axis U and W, respectively.

Let Pi denotes the spatial points, and Qi denotes its projection onto IPP abcd. The pro-
jecting operation of Pi can be expressed as

Assuming that 
−→
PQi = unu + wnw , then the formula (1) is reformulated as

Thus, the coordinates of the projection point Qi in (P,U ,W ) can be determined by

where 
−→
PPi =

−→
RPi −

−→
RP and Fm(·) represents the projection operator for the mth radar 

that map the spatial points to the imaging projection plane.
As mentioned above, the projection of a scatter point of the target to the plane abcd will 

coincide with a point of an ISAR image. Consequently, if Qi is coincides with a point of the 
ISAR image, point Pi can be regarded as one of the scattering points of the target with high 
probability. Then, a 3-D target image is constructed by collecting the approximate spatial 
points.

However, any spatial points parallel to the normal vector n of plane abcd should be pro-
jected to the same point. As illustrated in Fig. 1, the points P1 and P2 are two spatial points 
with same projection Q1 on plane abcd. In fact, only point P1 is the real scatter of the target. 
To overcome the problem of false points, multi-view observation in radar network is effec-
tive. For points P1 and P2 with the same projection Q11 on plane abcd, their projection on 
the imaging projection efgh is separated as Q12 and Q22 , as illustrated in Fig. 2. Thus, the 3-D 
target image can be constructed with more additional information from different radars.

In addition, with the purpose of minimizing the difference between the ISAR images and 
the projection images using the least amount of spatial points, the reconstruction model of 
3-D target image can be determined by

where the space containing all scattering points of the target is described by a three-
dimensional grid model. Nc represents the number of the cells for each side of the space 
grid model and the 3-D matrix T represents the value of the space grid model where con-
tains only 1 and 0. T(x, y, z) = 1 means there exists a spatial point in the correspond grid 
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cell, otherwise not. ω and M represent the weight coefficient of the spatial point number 
and the number of the radars in radar network, respectively. Im and Fm(·) represent the 
obtained ISAR images and the projection operator by the mth radar, respectively.

Accordingly, after obtaining the ISAR images of the target from different radars and 
solving the 3D reconstruction model as depicted in (4), the 3-D target image can be 
constructed.

2.2 � Task scheduling problem formulation

The radar network is constituted of M distributed radars with autonomous imaging 
capability, as illustrated in Fig. 3. N moving targets flying smoothly in the surveillance 
region and the targets are considered to be in the far field. Assume that the targets can 
be separated in different radar beams, thus the targets can be observed by the networked 
radars independently and simultaneously.

According to the above analysis, a 3-D target image can be constructed by multiple-
view observation information from different radars in radar network. Note that, a high-
resolution ISAR image requires long and continuous observation time for each target. 
Thus, the selection of the radars to image the target may affect the task time. In addi-
tion, when multiple targets appeared in the monitoring region, the radar resources are 
extremely valuable and there are many restrictions and conflicts on resource allocation. 
Then, limited radar resources should be reasonably allocated to optimize the overall 
performance of the radar network. Thus, the study on the multi-target task scheduling 
problem for 3-D target imaging in radar network is essential and necessary.

For better collaborative imaging, the relationship between the image quality and 
resource requirements should be analyzed first. However, there are few quantita-
tive criterion to assess the quality of 3-D target image. Based on the above analy-
sis, the quality of 3-D target image depends on the quality of ISAR images and the 
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reconstructed algorithms for formula (4). Neglecting the influence of reconstruc-
tion algorithms, this article focuses on the relationship between the quality of ISAR 
images and radar resources.

Resolution is an important indicator for evaluating the image quality. As known to 
all, the range resolution of ISAR images is determined by the radar signal bandwidth 
and is generally regarded as a constant. Additionally, as depicted in Fig.  4, the azi-
muth resolution of an ISAR image of the jth target ρ j

a can be calculated as

where � represents the radar signal bandwidth and θij represents the rotation angle. The 
points O,T,Q represent the location of the radar, the location of the imaging initial time 
and the location of the imaging terminal time of the target, respectively.

To summarize, the high resolution in azimuth direction requires a bigger rota-
tion angle θij , which means a longer synthetic aperture time (i.e., a longer task time). 
According to the geometry relationship of ISAR imaging as illustrated in Fig. 4, the 
distance 
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Fig. 3  The imaging geometry of radar network

Fig. 4  The geometry relationship of ISAR imaging
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Then, the synthetic aperture time tij that the ith target is imaged by the jth radar be 
determined by

where Vj and ROT represent the speed vector of the jth target and the distance vector at 
the imaging initial time, respectively. It can be observed that the required synthetic aper-
ture time is related to the target characteristics such as the speed Vj and the initial rela-
tive position ROT between the radar and the targets. Once the target characteristics are 
obtained by conventional tracking algorithms [19], the required synthetic aperture time 
can be calculated according to the formula (6). Thus, the target characteristics also affect 
the azimuth resolution and the section of the radars to image the targets.

In addition, ISAR imaging requires long-term continuous observation to maintain a 
sufficiently high-resolution image if traditional Range-Doppler algorithm is used. After 
careful analysis and experiment, the scattered model is applied to describe the target 
in the ISAR imaging scene. Then, the energy of the radar echo is composed of several 
strong and dominant scattering points. According to the sparsity of the target, an ISAR 
image can be reconstructed with sparse imaging algorithms based on Compressed Sens-
ing theory [3–5], which can reconstruct a signal with far fewer measurements. The slow 
time echo Sr

(

f ,m
)

,m = 1, . . . ,Mall can be considered as sparse in the azimuth domain, 
where Mall represents the number of the whole pulses transmitted during the synthetic 
aperture time. The observation pulses of a target are randomly selected by a sparse 
observation matrix during the synthetic aperture time, as illustrated in Fig.  5. Then, 
through a small amount and random observation data Sr′

(

f ,m
)

,m = 1, . . . ,Ms where 
Ms < Mall , the original slow time echo can be reconstructed by Orthogonal Matching 
Pursuit (OMP) algorithm [20]. Consequently, the ISAR image is obtained by solving a 
sparsity-constrained optimization problem.

Obviously, through alternate observation with fewer observation pulses, an ISAR 
image is obtained successfully. Meanwhile, the unoccupied pulses are used to image 
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other targets. Notably, the synthetic aperture time required for imaging is not changed, 
while the number of observation pulses is greatly reduced. Thus, the sparse imaging 
algorithm brings high degree of freedom in task scheduling problem.

Therefore, combined with sparse imaging algorithms, the task scheduling problem can 
be established, while the quality of the 3-D target image is guaranteed and the minimal 
task time is used.

3 � Methods
As mentioned above, a 3-D target image can be constructed by multiple-view observa-
tion information from different dispersed radars. To ensure the accuracy of 3-D target 
image, three independent and non-collinear radars are usually selected to image one tar-
get simultaneously. In a nutshell, a 3-D target image will be achieved when three differ-
ent ISAR images are obtained.

The targets characteristics such as the speed and the distance will also affect the task 
schedule strategy and the image quality. Obviously, the effective way to allocate radar 
resources is to do it adaptively combined with the target characteristics. The sparse ISAR 
imaging algorithm [4] which makes cognitive imaging possible is adopted in the adap-
tive task scheduling strategy. Then, the brief task scheduling process is depicted in Fig. 6, 
where there are three key parts.

Target Information Perception: Task allocation is closely related to the target charac-
teristics, thus target information perception is the prerequisite for task scheduling opti-
mization problem. The target characteristics such as the distance, the speed, the size, the 
sparsity, and the imaging resource requirements can be cognized by transmitting a small 
number of pulses first.

Fig. 6  The framework of adaptive task schedule process
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Radar selection: After the imaging resource requirements of each target is obtained, 
the radar selection module can obtain an approximate optimal solution to finish the 
whole imaging tasks using the minimal task time.

Adjustment of imaging terminal time: The imaging accumulation time of each target 
can be adjusted by the closed-loop feedback between the receiver and the transmitter. 
To be specific, the imaging terminal time can be adaptively adjusted according to the 
comparison of the ISAR image quality between the adjacent scheduling intervals. Thus, 
the utilization of radar resources can be further improved.

The three key parts will be described in detail in the upcoming subsection.

3.1 � Target information perception

A few pulses are transmitted by each radar and the target characteristics can be cogni-
tive obtained by the echo signal.

First, through tracking processing, the basic characteristics such as the speed V j , the 
heading θ j , the priority Pi,j of the jth target, and the distance Ri,j between the ith radar 
and the jth target can be measured [19]. Thereafter, the sparsity Ki,j of the jth target cor-
responding to the ith radar can be calculated according to the coarse-resolution ISAR 
image. Furthermore, the measurement dimension Mi,j (i.e., the required observation 
pulses) can be reckoned by

where Ti,j
c  denotes the required synthetic aperture time, which depends on the expected 

azimuth resolution ρ j
a as analyzed in formula (2). PRFi denotes the pulse repetition rate 

of the ith radar.
Furthermore, the measure dimension of each scheduling interval Mi,j

per is determined 
by

where T0 denotes the time of scheduling interval.
When the measurement dimension meets the condition (8)–(9), the radar observa-

tion resources required for each target are known, thus the radar selection optimization 
model can be established in upcoming section.

3.2 � Radar selection optimization

As mentioned above, the imaging time (i.e., the synthetic aperture time) for each target 
is closely related to the required azimuth resolution, the relative position of the radars 
and the targets, and the target characteristics. Once the required azimuth resolution 
and the target characteristics are determined as a prior information, the selection of the 
radars to image the targets is necessary and needs to be optimized.

Note that, three independent and non-collinear radars are usually selected to image 
one target simultaneously to construct the 3-D target image. Combined with sparse 
ISAR imaging algorithm, each radar can image multiple targets by alternate observation. 
Consequently, the optimization model is established as

(8)Mi,j ≥ c1K
i,j
ln(T

i,j
c · PRFi)

(9)M
i,j
per =

Mi,j

T
i,j
c /T0
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where the M × N  matrix X denotes the radar selection strategy and each element in 
matrix X can only take 0 or 1. X

(

i, j
)

=1 represents the ith radar is chosen to image the 
jth target, otherwise not. Multiple radars may be assigned to a target to obtain a 3-D 
target image. Similarly, the M × N  matrix A represents the required synthetic aperture 
time of the corresponding radar selection strategy and each element can be determined 
by A

(

i, j
)

=tij based on formula (7). The total synthetic aperture time is determined by 
the longest synthetic aperture time among all the imaging tasks. Thus, the total synthetic 
aperture time for the overall imaging tasks in radar network is chosen as the objective 
function. Then, by minimizing the maximum of the Hadamard product of matrix A and 
X, the radar selection optimization model is formulated.

In addition, the fourth constrain in (10) should be satisfied by the targets which are 
imaged by the same radar. To be specific, we define the aperture occupancy ratio as the 
ratio of the pulses assigned to each target to the overall transmitted pluses of the radar 
in a scheduling interval. Then, the M × N  matrix B represents the aperture occupancy 
ratios in radar network and each element can be measured by

where the symbol ⌊·⌋ denotes the operation of round toward negative infinity.
Obviously, the radar selection optimization problem is a combinatorial optimization 

problem and non-convex because of the first constraint in formula (11) where the ele-
ment in matrix X can only take 0 or 1 (i.e., X

(

i, j
)

∈ {0, 1} ). Thus, it is a challenge to 
obtain an optimal radar selection strategy.

To deal with this problem, we try to turn it to a convex optimization problem by 
choosing convex relaxation methods [21–23]. Thus, the radar selection optimization 
model is reformulated as

(10)

minimize max (A · X)
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First, we relax the constraint by introducing a weight matrix X′ where the elements 
range from 0 to 1 to replace the original matrix X . Then, the weight matrix X′ can be 
obtained by using the CVX toolbox. For each column in the matrix X′ , it is known 
that the greater the value in a row, the larger the weight assigned to the correspond-
ing radar. Then, the selection matrix X can be easily obtained by letting the first 
three larger values of each column in weight matrix X′ be 1, while letting the others 
be 0. If the fourth constraint in formula (11) is not satisfied as expected, the for-
mer selection matrix X can be used as the input matrix to the optimization model. 
Through iterative processing, the selection matrix X can be finally obtained.

Sometimes it is not possible to schedule all the targets at the same time according 
to the proposed optimization model due to resource constraints. Then, it is neces-
sary to analyze the range of number of targets NO that the radar selection model can 
optimize simultaneously. The maximum number Nmax , which is determined by the 
sum of the minimum aperture occupancy ratios, can be calculated by

Similarly, the minimum number Nmin , which is determined by the sum of the max-
imum aperture occupancy ratios, can be calculated by

Then, the number of targets NO that can optimize is determined by 
Nmin ≤ NO ≤ Nmax.

Through the analysis, it is observed that if the equality Nmin=N=Nmax holds, all 
the targets can be scheduled simultaneously by the proposed optimization model. If 
the inequality N ≥ Nmin holds, it is unlikely that all the targets can be scheduled at 
the same time. Generally, Nmin targets are chosen first to the radar selection model 
according to the priority. When the imaging task is accomplished, the correspond-
ing radar resources are free and the following targets can be executed in succession 
according to the priority and the radar resource constrains.
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3.3 � The adjustment of imaging terminal time

Generally speaking, the ISAR image quality should increase with the increase in the 
synthetic aperture time, until it comes to a standstill. Since then, the ISAR image 
quality will become worse even the synthetic aperture time increases. Therefore, the 
closed-loop feedback between the receiver and the transmitter can be used to adjust 
the synthetic aperture time of each target and the radar resource utilization can be 
further improved.

To be specific, the imaging terminal time can be adaptively adjusted according to the 
comparison of the ISAR images between scheduling intervals. The information entropy I 
is chosen as an indicator to measure the changes of ISAR images in this case. The infor-
mation entropy of an ISAR image in the kth schedule interval Ik can be calculated by

where p(a) represents the gray probability distributions of an ISAR image and is approx-
imately evaluated by the statistical results of the gray histogram [24–26].

It is known that the smaller the information entropy, the higher the image quality. 
With the increase in synthetic aperture time, the information entropy will be decreased 
and the imaging quality will be improved. Then, in this case, we can continue to trans-
mit pulses in the next scheduling interval to improve the image quality. While the image 
quality comes to a standstill, the changes of information entropy are relatively small, it 
is difficult and unnecessary to continue to transmit pulses to improve the image quality.

Then, an appropriate threshold Qth is chosen to control this imaging process. In gen-
eral, if the change of the information entropy between two adjacent schedule interval is 
less than ten percent of the previous information entropy, the change is relatively small 
and can be set as the threshold (i.e., Qth=

(

Ik − Ik−1
)/

10 ). Consequently, if the change 
of the information entropy is smaller than the threshold Qth , the image quality is consid-
ered to reach the expected standard and the corresponding task is finished. Otherwise, 
the imaging task continues to execute in the next scheduling interval. The saved radar 
resources can be used to perform other tasks.

Once the three ISAR images of each target are finished, the 3-D target image is con-
structed smoothly.

In a nutshell, the concrete flow of the task scheduling method is depicted in Fig. 7. For 
better understanding, the detail steps of the proposed task scheduling strategy are also 
summarized as follows:

Step 1) A few pulses is transmitted to the targets by the radars in radar network and 
the target characteristics such as the distance Ri,j , the speed V j , the heading θ j , the 
number of targets N, and the priority Pi,j is cognized initially.
Step 2) Obtain the coarse ISAR image and determine the imaging resource require-
ments such as the sparsity Ki,j , the measurement dimension Mi,j and the measure 
dimension of each scheduling interval Mi,j

per , the matrix of imaging time A, the matrix 
of aperture occupancy ratio matrix B.
Step 3) Select the first NB targets according to the priority, and allocate the imaging 
tasks including the M radars and NB targets according to the optimization model in 
(9).

(15)Ik=
∑

p(a) ln p(a)
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Step 4) Perform ISAR imaging tasks in current scheduling interval and calculate 
the change of the information entropy of ISAR images between adjacent schedul-
ing intervals in radar network. When the changes of the information entropy Q are 
smaller than the preset threshold Qth , the imaging terminal time is determined and 
the corresponding imaging task is finished. Otherwise, continue performing the cor-
responding imaging task in next scheduling interval.
Step 5) Update the resource utilization information of each radar in radar network 
and select the next and appropriate target according to radar resource requirements.
Step 6) Determine whether the overall imaging tasks are finished or not. If some 
imaging tasks are not finished, then go to step 4.

Fig. 7  The detailed framework of adaptive task scheduling process
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Step 7) Perform the 3-D target imaging according to formula (4) and the 3-D imaging 
tasks are done.

4 � Results and discussion
Some experiments are performed to demonstrate the effectiveness of the proposed task 
scheduling strategy in realizing the multi-target 3-D imaging task while using the mini-
mal task time in this section.

Assume that the radar network is constituted of six non-collinear homogeneous 
radars, and time synchronization has been realized between the radars. Two differ-
ent scenarios with 3 and 6 targets, respectively, are set in this experiment, as shown in 
Figs. 8 and 9. Scenario 2 adds some targets on the basis of Scenario 1 to create a slightly 
resource-constrained situation. We assume that the radars have the same operating 
parameters. Linear frequency modulation (LFM) signal is applied for imaging tasks. The 
carrier frequency is 10 GHz, the pulse width is 1 us, the signal bandwidth is 300 MHz, 
the pulse repetition frequency is 1000 Hz and the scheduling interval is 1 s.

Fig. 8  Geometry of scenario 1. a 3-D view. b Vertical view

Fig. 9  Geometry of scenario 2. a 3-D view. b Vertical view
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4.1 � Task scheduling optimization

Each radar in radar network transmits a handful of pulses to cognize the target charac-
teristics. Then, the distance, the coordinates, the speed, the heading, the priority can be 
evaluated by conventional tracking algorithm [19]. Furthermore, the coarse ISAR image 
can be reconstructed by matched filtering algorithm. Then, the sparsity, the measure-
ment dimension and the aperture occupancy ratio can be calculated. For simplicity’s 
sake, we consider the required azimuth resolution of each target is 1 m. The required 
target information of the two different scenarios are illustrated from Tables 1 to 2.

Based on the perception of target information, we can continue to complete the task 
scheduling work. The imaging time matrix A of the two scenarios is calculated and 
illustrated as a histogram in Fig.  10. The proposed task scheduling method is applied 
to schedule the targets. Subsequently, as shown in Table 3, the optimal task scheduling 
strategy with minimal total synthetic aperture time is obtained. Meanwhile, the black 
arrows represent the selection of radars (i.e., radar selection strategy) and the red arrow 
indicates the total task time, as shown in Fig. 10.
Table 1  Characteristics of the targets in scenario 1

Targets Coordinates (km) Velocity (m/s) Aperture occupancy ratio

Target 1 (70, 20, 13.1) (400, − 200, 0) 1/3, 1/3, 1/3, 1/4, 1/4, 1/3

Target 2 (− 30, 80, 9.1) (− 100, − 500, 0) 1/4, 1/4, 1/3, 1/4, 1/3, 1/3

Target 3 (− 24, 100, 10.1) (− 100, − 500, 0) 1/3, 1/3, 1/4, 1/3, 1/4, 1/3

Table 2  Characteristics of the targets in scenario 2

Targets Coordinates (km) Velocity (m/s) Aperture occupancy ratio

Target 1 (70, 20, 13.1) (− 400, − 200, 0) 1/3, 1/3, 1/3, 1/4, 1/4, 1/3

Target 2 (80, 0, 12.1) (− 400, − 200, 0) 1/3, 1/4, 1/3, 1/4, 1/3, 1/3

Target 3 (90, − 20, 12.1) (− 400, − 200, 0) 1/3, 1/3, 1/4, 1/3, 1/4, 1/3

Target 4 (− 36, 60, 8.1) (− 100, − 500, 0) 1/3, 1/4, 1/3, 1/3, 1/4, 1/3

Target 5 (− 30, 80, 9.1) (− 100, − 500, 0) 1/3, 1/3, 1/3, 1/4, 1/3, 1/3

Target 6 (− 24, 100, 10.1) (− 100, − 500, 0) 1/3, 1/4, 1/3, 1/3, 1/3, 1/4

Fig. 10  Imaging time presented by histogram. a Scenario 1. b Scenario 2. The black arrows represent the 
selection of radars (i.e., radar selection strategy) and the red arrow indicates the total task time, respectively
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Note that, in the scenario 1, the radars assigned to each target are those with the mini-
mal imaging time and there are still free radars exist. This is because the radar resources 
are relatively abundant at this time, the optimal radar selection strategy for each tar-
get can be obtained. As the number of targets increases, the conflicts in radar resources 
appeared. As shown in Fig. 10b, the radars assigned to Target 4 are not those with the 
minimal imaging time (i.e., the radars assigned are not individually optimal). But for the 
overall imaging task, the minimal total task time is obtained with the radar selection 
strategy. In a conclusion, when the radar resources are tight, the imaging time of indi-
vidual target will be sacrificed to achieve overall optimization.

Furthermore, the imaging terminal time can be adjusted according to the changes of 
the information entropy between the adjacent scheduling intervals. For instance, the 
curve of the information entropy of Target 6 in scenario 2 is shown in Fig. 11. It can 
be observed that as the synthetic aperture time increases, the information entropy 
decreases and the image quality improves correspondingly at the beginning. Subse-
quently, the curve of the information entropy will tend to be stable and the change of 

Table 3  The optimal radar selection scheme

Scenarios Targets Radar selection

Scenario 1 Target 1 Radar 4, 5, 6

Target 2 Radar 4, 5, 6

Target 3 Radar 3, 4, 5

Scenario 2 Target 1 Radar 4, 5, 6

Target 2 Radar 4, 5, 6

Target 3 Radar 1, 2, 3

Target 4 Radar 1, 2, 3

Target 5 Radar 1, 2, 3

Target 6 Radar 4, 5, 6

Fig. 11  The curve of the information entropy for Target 6
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the information entropy is smaller than the threshold Qth . This means that the ISAR 
images between the adjacent scheduling intervals are highly similar and the image 
quality is hard to improve. Thus, the imaging terminal time can be determined and 
the corresponding imaging task is early finished compared with a pre-calculated time. 
Through the dynamic adjustment of imaging terminal time, the saved radar resource 
can be used to perform other tasks and the resource utilization is further improved.

4.2 � Image performance

Different with the traditional Range-Doppler algorithm, the CS-based sparse imaging 
algorithm makes a high-resolution ISAR image possible with a handful of random dis-
continuous observation pulses. The reduced observation pluses can be applied to image 
other targets simultaneously. Thus, the flexibility for radar resource allocation can be 
expanded and the radar resource utilization can be improved. In order to measure the 
image quality of ISAR images using CS-based algorithm, we conducted a comparative 
experiment with Range-Doppler algorithm which uses full observation pulses during 
the synthetic aperture time. As described in Table 4, the correlation coefficients of the 
ISAR images of the same target using different imaging algorithms are 0.9533, 0.9655 
and 0.9685, respectively. Consequently, the ISAR images with the CS-based sparse imag-
ing algorithm are similar to those with traditional imaging algorithm [27–30].

Based on the three ISAR images of the Target 6, a 3-D target image can be con-
structed subsequently. The reconstructed 3-D image result is illustrated in Fig.  12a 
and the top, front and side views of the 3-D image are presented in Fig.  12b–d, 
respectively. The black dots represent the real scatters of the target and the red cir-
cles represent the reconstructed scatters. It can be observed that the positions of the 
reconstructed scatters are very close to those of the real target model. In fact, how 
to further reduce the errors of 3-D reconstructed image is worth studying, while the 
focus of this article is on task scheduling rather than imaging algorithms.

Table 4  Image comparison of different imaging algorithms
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Therefore, through reasonable and effective task scheduling method, the multiple 3-D 
target image can be accomplished efficiently.

5 � Conclusions
This article presents an adaptive multi-target task scheduling algorithm for 3-D target 
imaging in radar network. Combined with multi-view ISAR imaging results, a 3-D image 
of the target can be constructed. Moreover, the CS-based sparse imaging algorithm is 
introduced to obtain the ISAR images of each target, which also brings high degree of 
freedom to radar task scheduling. After the target information perception, the radar 
selection problem which is a discrete optimization problem can be solved by relaxed 
convex optimization algorithm. In addition, the imaging terminal time can be adjusted 
adaptively based on the information entropy of the adjacent ISAR images. Through the 
steps of target information perception, radar selection and adaptive adjustment of imag-
ing terminal time, we achieved the multi-target 3-D imaging task with the minimal total 
task time. Finally, simulation results show that the proposed task scheduling algorithm 
is effective and the radar resource utilization is significantly improved. As a preliminary 
attempt, the proposed task scheduling method only takes the radar time resource into 
consideration nevertheless. There are some other resources such as power and wave-
form resources that deserve future research.

Fig. 12  The real and reconstructed 3-D target image for target 6. a 3-D view. b Vertical view. c Side view. d 
Front view. The red circles and the black dots represent the reconstructed scatters and the real scatters of the 
target, respectively
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Abbreviations
ISAR: Inverse synthetic aperture radar; CS: Compressed sensing; 2-D: Two dimensional; 3-D: Three dimensional; IPP: Imag-
ing projection plane.
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