
Automatically search an optimal face
detector for a specific deployment environment
Jiapeng Luo and Zhongfeng Wang*

1 Introduction
The task of face detection is to decide the locations and sizes of the faces in an image.
It is the stepping stone to many other facial analysis techniques and intelligence sys-
tems, such as face alignment, face modeling, face recognition, facial expression recogni-
tion, and gender/age recognition [1]. From the classical Viola–Jones detector [2] to the
recent ASFD [3], the accuracy has been improved dramatically with the development of

Abstract

Face detection plays an important role in many artificial intelligence applications, such
as identity recognition, facial expression recognition, and gender/age recognition.
Recently, the development of deep learning techniques has greatly improved face
detection’s performance. However, it is still ineffective and time-consuming to manu-
ally design hyperparameters of face detectors for different deployment environments
with diverse distributions. Besides, due to the limited computation capability, many
previous networks are hard to meet the latency requirements in deployment environ-
ments, and the improved resolution of current cameras further increases the computa-
tion burden. Motivated by the above problems, we propose a searching framework
aiming to automatically search a real-time face detector architecture with a fixed com-
plexity constraint, to adapt a specific deployment environment. We model the whole
searching space into two parts, including the hyperparameters of the network and
the detector. Instead of only searching the network structure, the proposed method
considers the whole model’s hyperparameters space which contains the preprocessing
and postprocessing parameters. The evolutionary algorithm is employed to find the
optimal solution, and new evolutionary operations are proposed to explore architec-
ture space. During the whole searching procedure, we guarantee the computation
cost is under the restrictions. The advantages of the proposed framework are that it
considers a hard computation cost constraint and the preprocessing and postprocess-
ing hyperparameters, leading to a fully automatic design style and global optimization.
Finally, we evaluate the proposed model on the most popular Widerface and FDDB
datasets. The proposed detector significantly surpasses the existing lightweight face
detectors in the comprehensive performances, and the average latency is twice as
shorter as the best competitor.

Keywords: Face detection, Lightweight network, Real-time detection, Network
architecture searching, Evolutionary algorithm

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Luo and Wang
EURASIP Journal on Advances in Signal Processing (2022) 2022:43
https://doi.org/10.1186/s13634-022-00868-1

EURASIP Journal on Advances
in Signal Processing

*Correspondence:
zfwang@nju.edu.cn

School of Electronic Science
and Engineering, Nanjing
University, Nanjing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00868-1&domain=pdf

Page 2 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

deep learning techniques. The early methods use handcrafted features and a classifier to
determine whether a face appears. Designing handcrafted features and classifiers robust
enough is challenging, because its accuracy can be easily hampered by occlusion, illumi-
nations, complex background, low resolution, blur, skin color, and other diversity in an
unconstrained context. With the help of the massive labeled data, CNN can automati-
cally explore better features with no need for human experiences. In recent years, CNN-
based detectors make significant progress and have dominated the face detection fields,
in both academic and industrial fields.

Nowadays, state-of-the-art detectors can make very accurate predictions, whose accu-
racies are several times higher than classical detectors [3, 4]. However, there are still sev-
eral unsettled obstacles to deploy the detection model to real deployment environments.
Firstly, the various input image sources lead to quite different data distribution, such as
illumination, input image sizes, and face sizes. For example, the public surveillance’s face
targets are usually small and blur, while the indoor home camera’s face targets are usually
larger and clear. A model suitable for one environment may fail in another. Therefore, it
is necessary to design different detector hyperparameters to reach the best performance
in different applications. It is also particularly important to utilize the limited compu-
tation power for edge devices whose computation resources are very restricted. How-
ever, manually designing all the hyperparameters is suboptimal and time-consuming,
because the interactions between each of the detector’s hyperparameters are consider-
ably complicated.

Furthermore, the high computing cost is still CNN’s Achilles’ heel. The state-of-the-art
detectors mostly take a powerful and large network as the backbone, such as VGG-16
[5] and ResNet [6, 7]. The computation of these detectors can reach a Tera of FLOPs
that only computers with accelerators such as GPUs can afford. Besides, high-resolu-
tion cameras have become more common in recent years. The advanced cameras can
have a resolution higher than 4096× 2160 (4K). The computation cost of a network is
quadratic proportional to the input image’s size, as the computation of 4K resolution is
approximately 30 times larger than that of 640× 480 (VGA resolution). But the existing
face detector usually does not consider the impact of the input image’s resolution. Even
deployed in the powerful server, it still can exhaust the computation resources when
the number of cameras rises. There are already some researches providing efficient and
lightweight face detectors. However, the speed is still unsatisfactory when the image size
is large.

Motivated by the problems above, we propose a searching framework to find an opti-
mal face detector with a given computation constraint. Given the input image resolution
and the FLOPs constraint, the searching algorithm automatically searches the hyper-
parameters and makes an optimal trade-off between them. We employ an evolutionary
algorithm to explore the detector architecture space instead of designing it by human
experiences.

Neural architecture search (NAS) [8, 9] is a technique for automating the design of
artificial neural networks. However, the existing neural architecture search methods

Page 3 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

focus on the network space, which is obviously not optimal for the whole model. A
typical CNN-based detection model is usually composed of preprocessing, network
inference, and postprocessing. The parameters in preprocess and postprocess are not
taken into account by existing methods. To solve this problem, we model the search-
ing space as the network’s hyperparameters and detector’s hyperparameters, as shown
in Fig. 1b. The proposed searching space includes not only the network’s channels and
strides but also the image scaling factor and anchor sizes, which have effects on the
preprocessing and postprocessing. All these parameters interact with each other and
are crucial to detection performance. For example, when the input images are resized
to a smaller size, the network’s filter can be larger to compensate for the reduction of
computation. Nevertheless, the optimal point of this trade-off is difficult to be deter-
mined. In our work, the aging evolutionary algorithm is employed to find the opti-
mal solution automatically. The evolutionary algorithm tries to find the best solution
in the search space by updating a population of solutions. Figure 1a shows the over-
all framework of the evolutionary-based NAS. Evolutionary-based NAS has several
advantages over other optimization algorithms such as reinforcement learning-based
(RL-based) and differentiable NAS. First, the searching space has more freedom com-
pared with differentiable NAS, because the evolutionary algorithm can process the
discrete values. Compared with the RL-based NAS, the evolutionary-based NAS is
simpler and can produce a competent result with RL-based methods and requires less
time.

To make the evolutionary algorithm able to manage the detector’s structure, we
propose new mutation and crossover operations. As the core functions in the search-
ing algorithm, the mutation and crossover operations generate the new individuals
from parents’ architectures. The proposed mutation and crossover operations process
discrete parameters, such as the index of layers with convolution stride. The key prob-
lem brought by these operations is that the computation cost of the detector changed
and can exceed the restriction. We solve it by uniformly rescaling each layer’s channel
number to fit the computation cost to the limitation.

Compared with prior works, the proposed detector is easier to be deployed to
the production environment because of the simple architecture and it removes the

Initial
population

Sample
architectures

Mutate

Crossover

Evaluate &
add to population Time to stop

Output the best
arichitecture

Fitness
0.69
0.75

0.62

0.75
0.62

P=0.5

P=0.5 0.77Architectures

Remove the oldest
architecutre

Yes

No

(a) Aging evolutionary algorithm

Detector’s
hyperparameter

Input shape
960px, 640px,

320px, ...

Anchor size
64px, 48px,

32px, 16px, ...

Network’s
hyperparameter

Filter numbers
16, 32, 48,
96, 128, ...

Layer strides
stride=1
stride=2

FLOPs
Constraint

(b) Searching Space

Fig. 1 The framework of the aging evolutionary algorithm and the proposed searching space. Each colored
vector is a group of hyperparameters, which makes up a detector

Page 4 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

nuisance of manually designing procedures. To demonstrate the performance of the
proposed method, we evaluate the automatically designed detector on two popular
benchmarks, Widerface and FDDB. The experiment result shows that the proposed
method has a better comprehensive performance as the accuracy is on par with the
best lightweight detectors and the speed is twice faster than the best competitor.

For clarity, the contributions of this paper are summarized as follows: (1) We propose
a framework that employs evolutionary-based NAS to automatically design a real-time
face detector adapting to specific deployment environments. (2) We model the whole
searching space into two parts, which include not only the network’s structure but also
the whole detector’s parameters, leading to a fully automatic design style. (3) The new
mutation and crossover function of the network architecture are proposed to manage
a detector’s hyperparameters. (4) Compared with the state-of-the-art lightweight face
detectors, the detector produced by our method achieves more than twice the inference
speed and comparable accuracy.

The rest of this paper is organized as follows. Section 2 contains a brief review of light-
weight face detectors and NAS. In Sect. 3, we detail the proposed framework. In Sect. 4,
we compare our method with prior works on multiple aspects. Section 6 draws an over-
all conclusion of our works.

2 Related work
There are already many prior works about the NAS technique and face detection. How-
ever, most of these methods focus on either NAS or detection. A few methods that com-
bine detection and NAS do not consider the hyperparameters outside the network. In
this section, we give a brief introduction of the prior NAS and lightweight face detection
works which are closely related to the proposed method.

2.1 Lightweight CNN‑based face detector

As a special case of general object detection, face detection has many similarities and
they can even be used interchangeably with proper modification. However, face detec-
tion has its own characteristics. For example, human faces are closer to a vertical ellipse
and have more significant visual features than general objects. So, there are a lot of
researchers focusing on face detection. CNN-based lightweight face detectors have been
studied for many years. The prior works on it can be categorized into two branches, the
cascaded detectors and the one-stage detectors. The cascaded architecture [10–12] uti-
lizes the first stage to find many candidate boxes, which contain many false positive pre-
dictions and are refined by the following network. Because the training and inference of
the cascaded architectures are complicated, one-stage detectors [13–20] are attracting
more attention. One-stage detectors only use a single network to detect faces, so the
number of faces has little effect on inference speeds. The prior works mainly focus on
the new network structure, anchor matching strategy, loss function, etc.

Page 5 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

General object detection methods can also be employed to detect faces. The SSDLite
[21] and Pelee [22] are single-stage object detectors. The most popular detectors, such
as YOLO [23–25] and SSD [26], also have lightweight versions. Nowadays, anchor-free
methods also attract much attention. Instead of using anchors, FCOS [27] and Center-
Net [28] use corner points and center points to locate the objects.

However, the existing methods mostly only consider the VGA resolution as the
default input size, which is not optimal for high-resolution images such as 2K and
4K. In different deployment environments, the data distribution is different and the
default hyperparameters of the detector are also not optimal. Besides, they share the
common problem that it is difficult to have optimal hyperparameters subject to a
computation cost limitation.

2.2 Neural architecture search

NAS algorithms aim to automatically learn a network topology that can achieve the
best performance on a certain task. It provides a systematic and automatic way of
learning high-performance model architectures. NAS samples a population of child
networks and receives its performance metrics as rewards for learning to generate
the desired architecture.

The first work that coined the NAS acronym is [29]. The author uses an RNN con-
troller trained by the reinforcement learning (RL) algorithm to generate architec-
tures sequentially. Then, the following works [30–32] improve it by changing the
searching space, employing other controllers, taking a different controller trainer,
and so forth. Proxy training datasets are needed because RL-based NAS is compu-
tationally expensive and difficult to be trained directly on large datasets. MNasNet
[32] measures real-world inference latency and uses it as a regularization to the
environment reward. It forces the final model to have a relatively fast speed.

To reduce time consumption, recent studies [33–36] use a weight sharing supernet
to cover the entire search space. The supernet’s weights and its differentiable archi-
tecture parameters are jointly optimized by gradient descent. Compared with RL-
based NAS, differentiable NAS, which is also known as gradient-based NAS, needs
only a small fraction of the searching cost. Among them, FBNet [37] uses the esti-
mated network latency as a regularization to produce a desired fast model. But it is
also a soft limitation as it does not have an actual upper bound.

Evolutionary algorithms generate a population of individuals to evolve offsprings
for better performance. Offsprings of individuals are generated by mutation or
crossover. Compared with RL-based and gradient-based NAS, the evolution-
ary algorithm is simpler and can manage more complicated hyperparameters. It
does not need the hyperparameters in searching space to be differentiable, which
is required by gradient-based NAS. Real et al. [38] shows that the evolutionary
algorithm can produce a competent result with RL-based methods and requires
less time. Kyriakides and Margaritis [39] combine the regularized evolution and

Page 6 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

genome representation to conduct a global search. Miikkulainen et al. [40] utilize
genetic algorithms and co-evolution of species to improve the cells in the network.
However, like [38], the existing evolutionary algorithm focusing on image classi-
fication task is not suitable for searching lightweight face detectors for two rea-
sons. Firstly, the detector’s hyperparameters are not taken into account during the
searching process. Secondly, the model’s complexity is not directly constrained by
these algorithms.

Some prior works also combine the NAS technique with the object detection task,
such as the EfficientDet [41] and NAS-FCOS [42]. They achieve well detection per-
formances but only focus on the structure of the network while ignoring the hyper-
parameters outside the network. Auto-FPN [43] and NAS-FPN [44] focus on the
feature pyramid structure which also only uses the default input image resolution.

3 Methods
In this section, we give the problem definition and introduce the proposed evolutionary-
based NAS and face detector structure.

3.1 Problem definition

We try to find the best combination of the hyperparameters of a face detector under an
upper bound of the FLOPs. It can be formulated as a global optimization problem:

where β is a vector of the selected hyperparameters, D is the definition set of the β .
flops(β) is the detector’s FLOPs according to β . performance(β) is the detection met-
ric in a specific dataset as the optimization target. We use the mean average precision
(mAP) on the validation set as the optimization target in experiments.

3.2 Evolutionary algorithm

The evolutionary algorithm (EA) is an optimization technique that utilizes a metaphor
borrowed from natural and genetic selection mechanics. It is a heuristic-based approach
suitable for solving problems that cannot be easily solved in polynomial time, such as
classic NP-Hard problems. As we described in Sect. 1, evolutionary algorithms have sev-
eral advantages over other NAS techniques. We select the aging evolutionary algorithm
in our method because it does not need hyperparameters to be differentiable, which
gives us more choice to design our searching space. The aging evolutionary algorithm
discards the oldest individual instead of the weakest one to avoid the suboptimal points.

An evolutionary algorithm can be concluded as 5 steps as follows:

• Initialization: Randomly generate the initial population of individuals.
• Repeat:

(1)
arg max

β

performance(β)

subject to flops(β) <= θ

β ∈ D

,

Page 7 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

– Evaluate the fitness of individuals in the population.
– Select individuals in the population for reproduction.
– Generate new individuals through crossover and mutation operation using

selected ones.
– Add new individuals to the population and delete old ones.

Figure 1a presents the overall framework of the evolutionary algorithm. Each colored
vector is an individual during evolution and represents a group of hyperparameters,
which makes up a detector. The old individual is eliminated and offsprings are gener-
ated during each iteration of the evolution. The employed evolutionary algorithm’ details
are presented in Algorithm 1. The employed elimination strategy is similar to [38],
namely the aging evolutionary algorithm. In our optimization problem, each individual
is a detector and is represented by a chromosome that consists of several genes to be
searched. The genes in a chromosome are the variables to be searched here. During the
evolution process, the better detectors have a bigger chance to be the parents to produce
the offspring and the weaker detectors have a bigger probability to be eliminated. It is
analogous to natural selection and the detectors that survive in the population can be
evolution step by step.

In Algorithm 1, we construct a population containing the P individuals firstly. Each
individual is a potential optimal solution, which represents a group of hyperparameters
in the context of NAS. Words “individual” and “architecture” are used interchangeably in
the rest of this paper. During the initialization of the population, we add several seeded
individuals initialized manually by human experiences to reduce the convergence time.
The others are initialized with random architectures.

After the population is initialized, the aging algorithm begins to evolve the popu-
lation’s architectures at each cycle. At each cycle, S individuals are uniformly sam-
pled from the population as the candidate parents. One or two best candidates are
selected to be the parents (noted as p1, p2 in Algorithm 1) of the new individuals.
Then, the new individual is produced randomly from the parents by mutation or
crossover operation. The mutation operation creates child architecture from one par-
ent by randomly modifying the attributes. The crossover operation produces a child
by randomly selecting attributes from two parents. Algorithm 2 and Sect. 3.5 express
mutation and crossover in more detail. After constructing a child architecture, to
keep the population size unchanged, we need to discard an individual from the popu-
lation and push the new individual into it. Instead of discarding the worst individual
in the population, the proposed method discards the oldest individual to avoid the
suboptimal points. Then, the algorithm pushes the constructed child into the end of
the population. As time passes, even the best individual will die, which conforms with
natural principles. The elites still have the advantage that they are more likely to be
selected as parents.

Figure 2a shows the time-course of the model accuracy during the evolution process
where the orange line is the moving average of accuracy. The accuracy approximately
converges within the first 100 cycles. In the following cycles, the population’s accuracy
remains growing at a slower speed.

Page 8 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

3.3 Detector structure

In this section, we describe the deep face detectors included in the search space. We cus-
tom design a simple and efficient detection framework that consists of preprocess, infer-
ence, and postprocess stages. The detection framework includes the variables which will
be searched during the evolution process. During the searching process, all candidate

(a) (b) (c)

(d) (e)
Fig. 2 Evolution process and effects of parameters on model accuracy

Page 9 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

detectors share the same framework. All these variables compose the final searching
space described in the next section.

A straightforward CNN composed of separable depthwise convolution is employed as
the backbone, as shown in Fig. 3a. Each block of the network consists of a separable
depthwise convolution layer, a batch norm layer, and a ReLU layer. A separable convolu-
tion layer consists of a depthwise convolution and a pointwise convolution. It has been
proven to be very efficient for lightweight networks [21, 45]. Therefore, the proposed
network is very straightforward and is easy for training and deployment. To detect
objects of different sizes, we employ the image pyramid strategy and use two square
anchors. Each anchor has an independent detection head network for outputting the
classification and regression features.

As shown in Fig. 3a, during the inference stage, the input image is resized to a smaller
size with a scaling factor determined by EA. Through the image pyramid, the image is
further resized to several images with different scales. The network runs on each resized
image. Then, the postprocess can convert the network’s output to bounding boxes of
faces using the anchor-based strategy. The conversion is similar to Faster-RCNN [46].
A square grid is defined and it has the same height and width as the network output.
The grid’s stride is also the same as the network’s stride, so the points of the grid can
match the network output’s receptive fields. For example, the dimension of the network

Fig. 3 Face detector Inference structure. a The detector is composed of three parts, preprocess, network, and
postprocess. b and c are the searched network structure. “/2” means the convolution’s stride is 2

Page 10 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

input is 640× 640× 3 , as height, width, and RGB channels. Then, the dimension of the
network’s output is 80× 80× 6 . The first two output channels are the classification log-
its, while the rest channels correspond to the transformed center offsets and size of the
predicted bounding boxes. We present a square anchor box in each grid point and use
the network’s output to classify it and to adjust its boundary. Equation 2 is the predicted
boxes where x, y, h and w are the coordinates and shape of the predicted boxes. xa , ya ,
ha and wa denote the preset anchor box’s coordinates and shapes. xt , yt , ht and wt are the
outputs of the network. s is the image scaling factor to resize the boxes to the original
image resolution.

Following the standard object detection, the training of the detector is actually the clas-
sification and regression of each preset anchor box, so the training loss consists of clas-
sification loss and regression loss. An anchor box is positive if it has an IoU higher than
0.35 with ground-truth face and vice versa. We use the cross-entropy loss as the clas-
sification loss. The regression loss is the Euclidean loss indicating the size and position
distance between anchors and ground-truth faces. The target values of the regression are
actually the xt , yt , ht and wt in Eq. 2 when we set x, y, h and w as the ground-truth face.
The final regression loss is the sum of the positive anchor boxes’ regression loss.

It can be noted that the employed detection framework can be propagated to the gen-
eral object detection task. Although the proposed framework targets face detection
and many parameters are optimized for it, there is no intrinsic contradiction to general
objection. With proper modifications, the proposed framework can also support other
detection tasks.

3.4 Searching space

The searching space of the evolutionary algorithm is the set of all the possible network
architectures. The proposed searching space includes not only the network parameter
space but also the complete detector hyperparameter space, covering preprocessing and
postprocessing. The complete searching space is quite large and is difficult to converge,
and therefore, we make several simplifications, as shown in Fig. 1b. The whole space
consists of two parts, detectors’ hyperparameters and network’s hyperparameters, which
include scale, anchors, channels, and strides. It is very easy to add more hyperparameters
or new type hyperparameters if needed. The total layer number and total stride of the
network are specified in advance.

The scale is the input image scaling factor. Directly executing the network on the origi-
nal resolution image is unnecessary. Because we can train the detector to detect faces
smaller than the ground-truth faces, properly resizing the image to a smaller size would
not damage the accuracy of the detector. The FLOPs of a network decrease quadrati-
cally with the input image size, and each layer’s FLOPs can be calculated by Eq. 3. The
computation saved on a smaller resolution can be invested in the network. For example,
when an image is resized to its half size, the network’s FLOPs can be approximately four
times larger, which keeps the total FLOPs unchanged. The scale has a strong relation to
the anchor.

(2)x =
waxt + xa

s
, y =

hayt + ya

s
, w =

wae
wt

s
, h =

hae
ht

s

Page 11 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

The anchors are the preset square box sizes, which directly affect the scales of detect-
able faces. The sensitivity of the network in different size faces is very different. Besides,
the anchor sizes need to adapt to the scaling factor which is crucial to accuracy. When
the image is zoomed to a smaller size, it is crucial to choose a suitable anchor size to
match the faces.

The channels are the output channels of each convolutional layer in CNN. It is equal
to the convolutional kernel number and also equal to the next layer’s convolutional ker-
nel depth, which is proportional to both the computation amount and the information
amount of a feature map. Equation 3 is the FLOPs of a single conventional convolutional
layer regardless of padding, where H and W are the input feature map’s shape, K is the
kernel size and S is the stride. As we focus on the lightweight network, the performance
is sensitive to each layer’s channel numbers.

The strides are the indexes of the layers whose stride is 2. The stride of a convolutional
layer is the step of the convolution operation. When stride is 2, a convolution operation
reduces the feature map size like a downsampling operation. Hence, a layer with a stride
of 2 can squeeze the feature map information and reduce the latter layers’ computation.
The existing methods usually set each layer’s stride by experience. If the shallow layer’s
stride is 2, the deep layer can have more convolutional filters when the total FLOPs is
fixed. The stride of each layer can be 1 or 2, except that the strides of three of the layers
need to be 2.

During experiments, we produce two detector models by using two different FLOPs
constraints. We use “Our-small” and “Our-large” to indicate two detectors. The
searched parameters of these two models are presented in Table 1. The detailed per-
formances of the two detectors are expressed in Sect. 5.1.

3.5 Mutation and crossover

The mutation and crossover operations generate new individuals during the evolution
process, which is the core operation during evolution. They provide a way to explore
the searching space.

The term “mutation” and “crossover” originated from biology. The mutation
and crossover happen during genetic recombination which causes gene diversity.

(3)FLOPs =
H ×W × K 2

S2

Table 1 The settings and searched parameters of the proposed detectors

Model name Our‑small Our‑large

FLOPs(VGA) 100M 200M

FLOPs(4K) 3.99 G 8.20 G

Filter numbers 36, 38, 210, 107,
213, 151, 199

38, 111, 373, 186,
216, 190, 175

Layers with stride 2 1, 3, 4 1, 3, 4

Scaling factor 0.237 0.216

Anchor sizes 16, 28 16, 28

Page 12 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

Mutation operator involves a probability that an arbitrary bit in a genetic sequence
will be flipped. The crossover operator produces new genes by exchanging the bits
from the original ones. For our searching problem, an individual is a vector of varia-
bles, a mutation operation randomly changes some variables and the crossover opera-
tion combines two individuals to be one individual.

The original mutation and crossover can only process the data encoded which is
usually a vector of 0s and 1s. We reform them to make it able to manage the detector’s
hyperparameters. Algorithm 2 is the mutation operation employed in the proposed
method. The values of each individual are the genes, and the mutation’s probability
for each gene is 0.3. The new scale follows uniform distribution ranging from 0.1 to
0.7. The new strides are sampled randomly without replacement from 2 to 7, which
indicates the layer index. Layer 1 is excluded because the first layer is always fixed as
stride 2. Each channel number is randomly selected independently from an uniform
distribution ranging from 0.5 to 1.5 times the original number. The new anchors are
sampled from 8 to 32. After the mutation, the FLOPs of the detector may exceed the
upper bound. To guarantee the FLOPs restriction, we greedily scale the channels after
mutation and crossover, as shown in line 13 of Algorithm 2.

Different from the mutation, the crossover operation combines two parents’ individ-
uals to generate a new offspring. We use the uniform crossover for all parameters, as
Channels, strides, scale, and anchors are uniformly selected from two parents. The chan-
nel number is also scaled like that in mutation to guarantee the restriction of FLOPs.
Because the offspring can inherit the good genes from its parents, which are probable
elites in the searching space. Compared with mutation, the offspring is probably a better
individual by limiting probability space in its parents.

4 Experiments
In this section, we describe our experiment settings. The experiment results are pre-
sented in the next section.

Page 13 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

4.1 Datasets

The face detection dataset we used includes Widerface [47] and FDDB [48]. Widerface
is one of the most widely used face detection datasets. It contains 32,203 images and
393,703 faces where 40%/10%/50% images are randomly selected as training, validation,
and testing sets, respectively. During the evaluation and test stage, Widerface dataset has
three difficulty level sets, including easy, medium, and hard sets. The widerface easy set
only contains faces larger than 50 pixels. Therefore, it is more practical than the hard set
because smaller faces are difficult for following analysis algorithms and are filtered by the
quality control process in most applications. So we set the AP on Widerface easy set as
the optimization goal of the searching algorithm, and pay more attention to the easy set,
medium set during evaluation. FDDB [48] is another widely used face detection dataset.
FDDB contains 5171 annotated faces in 2845 images and 5171 faces that vary largely in
appearance, pose and scale. All the architectures are trained on Widerface train set and
are evaluated on Widerface test set and FDDB dataset. Figure 4 is the distribution of the
face height distribution of Widerface and FDDB. The distributions of these datasets are
very different, as the most frequent face is around 10 pixels in Widerface hard set and 60
pixels in FDDB.

0 20 40 60 80 100
Size

0

100

200

300

400

500

600

700

N
um

be
r

(a) easy

0 20 40 60 80 100
Size

0

500

1000

1500

2000

N
um

be
r

(b) medium

0 20 40 60 80 100
Size

0

1000

2000

3000

4000

5000

6000

N
um

be
r

(c) hard

0 20 40 60 80 100
Size

0

100

200

300

400

N
um

be
r

(d) fddb
Fig. 4 The distribution of the face sizes in Widerface val set and FDDB

Page 14 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

4.2 Experiment settings

To show the difference of the searched detector with different complexity constraints,
we use the proposed searching algorithm to produce two models by fixing the net-
work FLOPs to 100M and 200M with VGA resolution input. We use “Our-small”
and “Our-large” to denote these two models. The FLOPs of the two models are fixed,
and the model size is determined automatically by a searching algorithm under its
constraint.

Widerface training set is employed as the training dataset. As the hard set contains
many faces as small as 10 pixels size, we focus more on easy, medium, and FDDB sets.
The medium set’s AP is our optimization target. Image augmentation during the training
procedure includes random cropping, random scaling, and color distortion. The image
size during training is 256× 256 . The image pyramid is not employed during training.
All the parameters are initialized with the random “Xavier” method. The learning rate
is 0.01 for Adam optimizer. Each architecture is trained within 3 epochs, which costs a
quarter of an hour in all on a 4 GPUs workstation. As we set the cycles of the evolution-
ary algorithm to 300, it costs around 3 days with only 4 GPUs, which is much faster than
most of the existing methods. After the evolution process ends, the best individual is
trained again with a better training procedure. During final training, the total epoch is
15, and we employ a learning rate decay of 0.1 in every 4 epochs.

To verify the model’s actual speed in the deployment environment, we test the infer-
ence efficiency using the deployment toolchain on two production platforms, including
NVIDIA RTX2080Ti and NVIDIA Jetson Xavier. We export the model to ONNX format
and use the NVIDIA TensorRT framework to accelerate the network inference. Latency
and average latency are measured. Latency is the time of processing a single image when
batch size is 1, while the average latency is the time for a single image with the best batch
size. The results are shown in Sect. 5.3.

To verify the effectiveness of the proposed searching scheme, we compared the search-
ing scheme with a random searching scheme and handcrafted designed detectors. The
random searching scheme shares the same searching space with the proposed method
but uses uniform distribution to randomly generate parameters. 3 handcrafted designed
detectors are fully trained and the best one is chosen to be compared with the proposed
searching method. The results are shown in Sect. 5.4.

5 Result and discussion
In this section, we analyze the experiment results. For clarity, we summarize them as
follows: (1) We present the detection performance and the searching time of the pro-
posed model in Sects. 5.1 and 5.2. (2) We compare the speed and complexity of the pro-
posed model against other methods in Sect. 5.3. (3) We compare the proposed searching
scheme with the random searching baseline scheme in Sect. 5.4. (4) We analyze the evo-
lution process and present the details about the evolutionary trends of parameters in
Sect. 5.5. (5) We demonstrate the detection examples in Sect. 5.6.

5.1 Evaluation of searched detectors

In this section, we evaluate the proposed detectors’ accuracy and inference latency. The
search result is shown in Table 1, and the detail network architecture is shown in Fig. 3.

Page 15 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

Table 2 is the comparison between the proposed detector and the existing lightweight
face detectors. The size column presents the models’ parameters number. The FLOPs
column is the FLOPs during inference when input resolution is 4096× 2160 . The pro-
posed models have the smallest FLOPs among all the lightweight detectors. The easy,
medium, hard, and FDDB column is the average precision (AP) in Widerface test sets
and FDDB dataset. The precision-recall curves are shown in Fig. 5. The TinaFace has
the best detection accuracy, but the model size is very large. The speed is also far from
real-time speed. Retinaface-0.25’s detection accuracy is slightly better than the proposed

Table 2 The comparison with other detectors in model size, computation amount, and
performances (AP%)

Size FLOPs Easy Medium Hard FDDB

TinaFace [49] 37.48 M 5150 G 97.0 96.3 93.4 98.3

EXTD-32 [19] 0.06 M 129 G 88.3 87.3 79.9 96.6

ASFD-D0 [3] 0.62 M 21.9 G 90.1 87.5 74.4 –

Retina-0.25 [4] 0.43 M 22.0 G 90.0 87.5 73.1 97.4

Yolov5s [25] 7.26 M 183 G 87.3 87.9 83.1 93.5

LFFD [20] 1.52 M 201 G 86.0 84.8 74.9 96.6

Our-small 0.10 M 3.99 G 88.0 86.0 64.3 96.3

Our-large 0.49 M 8.20 G 89.8 87.3 63.0 96.9

(a) easy (b) medium

(c) hard (d) fddb
Fig. 5 The precision–recall curves on widerface and FDDB

Page 16 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

method, but there is a large gap between FLOPs. Our large model only needs one-third
of the FLOPs of the Retinaface-0.25, and the AP is just less than Retinaface-0.25 0.002
on Widerface easy and medium sets. Besides, the proposed model’s speed is 2–3 times
faster than Retinaface-0.25. Although EXTD has the smallest model size, it reuses the
parameters too much and uses a very complicated network structure, making it very
time-consuming.

5.2 Searching time

As a non-convex optimization problem, it is difficult to find the optimal point during
searching. So, we need to trade off the detection performance and the searching time.
The searching time is related to the single architecture’s training time and the total evo-
lution cycles. We analyze the relationship between the single detector’s training epochs
and its performance to choose a proper training epoch. The relationship between the
evolution cycle and the searched result is also analyzed. Figure 6a is the detection per-
formance of ten random sampled models from the searching process. Figure 6b is the
average margin to the final best performance of these models. The X-axis is the train-
ing epoch. It is clear that in the third epoch, the model almost converges. And the third
epoch’s performance also reflects the final performance rank. So, we only train 3 epochs
for each model during searching. Figure 2a shows the time-course of the model accuracy
during the evolution process. After 100 epochs, the evolution process starts to converge
and the best model appears around 200 epochs. Based upon these observations, we ter-
minate the evolution process in the 300th epoch. The current best model is good enough
and it needs much more time to find a better model. It takes one hour to train each
model in a single GPU, so the total GPU time is around 300 GPU hours, which is accept-
able. With 4 GPUs, it only takes us 3 days to finish the whole process. The time can be
shortened with more GPUs. If we can afford more time and allow more training epochs
and evolution cycles, the performance of the final searched model can be better.

5.3 Speed and complexity comparison

We test the inference efficiency on two production platforms, including NVIDIA
RTX2080Ti and NVIDIA Jetson Xavier. Table 3 is the inference speed comparison on
RTX2080Ti and Jetson Xavier. The input image resolution is 4096× 2160 . During the
latency test, all the models are exported in ONNX format and accelerated by the Ten-
sorRT framework. The latency column indicates the time consuming when batch size
is 1, while the average latency is the average latency time on each image when selecting
the best batch size. The image pyramid inference time is included during latency and
average latency tests. The postprocessing time is approximate 1 ms for the proposed
detector and the data transferring time is all the same in all methods, so we exclude the
postprocessing and data transferring time for convenience, which does not affect the
conclusion. The data transferring can also be pipelined for the inference module with
a very small overhead. It is clear that the proposed detector has the fastest inference
speed among all these detectors. The TinaFace employed the ResNet-50 as backbone can
only reach 6 fps even on RTX 2080Ti. The proposed model can achieve 2–3 times faster
speed than Retinaface-0.25, which is the fastest competitor.

Page 17 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

Figure 7 demonstrates the comparison of the network complexity and the model runt-
ime complexity. The Y-axis is set to be log scale. Because the difference between net-
work complexity and runtime complexity is mainly caused by image pyramids, other
detectors’ runtime complexity is equal to the network complexity because of no image
pyramid. The detectors produced by our searching algorithm have different runtime
FLOPs and network FLOPs. In deployment scenarios, the complexity is associated with
the input resolution. We select 3 most common resolutions which are 640× 480 (VGA),
1920× 1080 (2K) and 3840× 2160 (4K). Although the runtime FLOPs are larger than

Table 3 Inference latency comparison with 4K resolution image on GPU and Jetson Xavier

Latency (ms) Avg. latency (ms)

Xavier 2080Ti Xavier 2080Ti

TinaFace [49] 1363.40 155.62 1362.15 153.45

EXTD-32 [19] 417.24 51.50 417.24 51.50

LFFD [20] 104.41 14.57 98.63 11.84

Yolov5s [25] 182.80 18.84 182.58 18.27

Retina0.25 [4] 52.54 6.85 52.21 5.34

Our-small 26.81 2.93 23.91 1.70

Our-large 34.36 3.61 31.12 2.26

(a) (b)
Fig. 6 The relationship between training epoch and detection performance. a Ten random sampled models
from the searching process. b The average margin to the final best performance of these models in each
epoch

Fig. 7 The comparison of runtime complexity and the network complexity between detectors. Except for
the proposed model, the other detectors have the same complexity for runtime and network because of no
image pyramid

Page 18 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

the network FLOPs, the proposed methods still have the smallest FLOPs among all the
detectors (Fig. 7).

5.4 Comparison with random search and handcrafted detectors

To verify the effectiveness of the proposed searching scheme, we compare the proposed
searching scheme with the random searching scheme and handcrafted detectors and
they share the same detection framework. 100 randomly generated detectors and 5 man-
ually designed detectors are trained. The results are shown in Fig. 8. The orange points
are the detectors searched by the proposed algorithm in every evolution cycle. The green
line is the best handcrafted model’s performance. Blue points are random models. The
randomly generated detectors in the early stage have comparable performance with the
proposed method. In the latter stage, the proposed scheme is obviously better by gradual
evolution. The handcrafted model can achieve good performance but still has a signifi-
cant margin with the best model generated by the searching algorithm.

5.5 Evolution process analysis

We analyze the evolution process of the proposed “Our-small” detector. Figure 2a
shows the time-course of the model accuracy during the evolution process. The
orange line is the moving average of accuracy. The moving average accuracy increases
very fast within the first 100 cycles. In the following cycles, it gradually converges
over time.

Figure 2b shows the effects of the image scaling factor on the model accuracy. The
orange bar in each box is the average accuracy. Obviously, the scale has a very signifi-
cant effect on detection performance. The detection accuracy becomes poor when the
face is scaled too small, although the model can have a larger convolutional kernel. On
the other hand, the detector can receive a higher resolution image with a larger scaling
factor, while the model has to be squeezed to a smaller size, and the accuracy decreases.

Figure 2c, d is the boxplots of detection accuracy and network strides. When a lay-
er’s stride is 2, the feature map’s resolution is smaller and the spatial size is reduced by

Fig. 8 The comparison between the proposed searching scheme, the random searching, and the
handcrafted detector. The orange points are the detectors searched by the proposed algorithm in every
evolution cycle. The green line is the best handcrafted model’s performance. Blue points are random models

Page 19 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

half size, which is similar to the dimension reduction. The latter layers have a smaller
input size and can have a larger convolutional filter number to compensate for the
reduction of computation cost.

Figure 2e shows the relation between the convolutional filter numbers and the model
AP. The y-axis is the moving average AP. To clarify, we select the second, third, and fourth
convolutional layers for representation. Although the joint distribution of filter numbers is
very complicated, it is still very significant that the AP of each layer has a significant opti-
mal point. The shallow layer’s best filter number is obviously smaller than the deep layers.

5.6 Visualization of the detection results

At last, we give the visualized detection results of several methods for comparison in
Fig. 9. Limited by the length of the article, we select three samples that include typi-
cal face detection deployment scenarios. Because the detection result is affected by the

Fig. 9 Visualization of the detection results of six methods. The green, red, and orange boxes are the correct,
incorrect, and missed detections, respectively

Page 20 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

confidence threshold, we set the threshold to keep each model’s precision to 80% for a
fair comparison. The green, red, and orange boxes are the correct, incorrect, and missed
detections, respectively. The TinaFace shows the most accurate detection performance
by dozens of times complexity as other competitors. The other lightweight face detectors
and the proposed method show comparable detection performance, but the proposed
model’s computation complexity is much smaller than the other methods. More detec-
tion examples of the proposed method are presented in Fig. 10.

6 Conclusion
We propose a framework to automatically search the optimal lightweight face detector
by an optimized evolutionary algorithm. It aims to automatically find optimal hyperpa-
rameter settings for specific deployment environments. We model the whole search-
ing space into two parts, not only including the network’s hyperparameters but also
the detector’s hyperparameters. The produced face detector can achieve real-time face
detection on 4K resolution images and surpass existing detectors’ performance. Other

Fig. 10 Demonstrations of the prediction results of the proposed method

Page 21 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

model compression methods, such as pruning, quantization, and decomposition, can
still be applied to the proposed model, which can further improve the model’s perfor-
mance. Although we only apply the proposed framework to the face detection task, it
can be easily extended to other applications.

Abbreviations
CNN: Convolutional neural network; RL: Reinforcement learning; mAP: Mean average precision; EA: Evolutionary
algorithm.

Authors’ Information
Jiapeng Luo received the M.S. degree in computer science and technology from Nanjing Normal University, Nanjing,
China. He is currently a Ph.D. candidate in electronic and communications engineering of Nanjing University. His current
research interests include artificial intelligence, deep learning and computer vision.
Zhongfeng Wang received both the B.E. and M.S. degrees in the Dept. of Automation at Tsinghua University, Beijing,
China, in 1988 and 1990, respectively. He obtained the Ph.D. degree from the University of Minnesota, Minneapolis, in
2000. He has been working for Nanjing University, China, as a Distinguished Professor since 2016. Previously he worked
for Broadcom Corporation, California, from 2007 to 2016 as a leading VLSI architect. Before that, he worked for Oregon
State University and National Semiconductor Corporation. Dr. Wang is a world-recognized expert on Low-Power High-
Speed VLSI Design for Signal Processing Systems. He has published over 200 technical papers with multiple best paper
awards received from the IEEE technical societies, among which is the VLSI Transactions Best Paper Award of 2007. He
has edited one book VLSI and held more than 20 U.S. and China patents. In the current record, he has had many papers
ranking among top 25 most (annually) downloaded manuscripts in IEEE Trans. on VLSI Systems. In the past, he has served
as Associate Editor for IEEE Trans. on TCAS-I, T-CAS-II, and T-VLSI for many terms. He has also served as TPC member and
various chairs for tens of international conferences. Moreover, he has contributed significantly to the industrial standards.
So far, his technical proposals have been adopted by more than fifteen international networking standards. In 2015,
he was elevated to the Fellow of IEEE for contributions to VLSI design and implementation of FEC coding. His current
research interests are in the area of Optimized VLSI Design for Digital Communications and Deep Learning.

Author contributions
JL completed the analysis, experiments and paper writing. ZW helped perform the analysis with constructive discussions
and curate the manuscript. The authors read and approved the final manuscript.

Funding
This work was supported in part by the National Natural Science Foundation of China under Grant 62174084, 62104097
and in part by the High-Level Personnel Project of Jiangsu Province under Grant JSSCBS20210034, the Key Research Plan
of Jiangsu Province of China under Grant BE2019003-4.

Availability of data and materials
Project name: NAS Face Detect. Project home page: https:// sourc eforge. net/ proje cts/ nas- face- detect/. Operating
system(s): Ubuntu 18.04. Programming language: Python. License: FreeBSD

Declarations

Ethics approval and consent to participate
The article has been ethically approved and approved.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
All presentations of the case report have been agreed for publication.

Received: 26 August 2021 Accepted: 2 April 2022

References
 1. S. Zafeiriou, C. Zhang, Z. Zhang, A survey on face detection in the wild: past, present and future. Comput. Vis. Image

Underst. 138, 1–24 (2015). https:// doi. org/ 10. 1016/j. cviu. 2015. 03. 015
 2. P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004). https:// doi. org/ 10. 1109/

iccv. 2001. 937709
 3. B. Zhang, J. Li, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang, Y. Xia, W. Pei, R. Ji, ASFD: automatic and scalable face detector

(2020). arXiv: 2003. 11228
 4. J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, S. Zafeiriou, Retinaface: single-stage dense face localisation in the wild (2019).

arXiv: 1905. 00641

https://sourceforge.net/projects/nas-face-detect/
https://doi.org/10.1016/j.cviu.2015.03.015
https://doi.org/10.1109/iccv.2001.937709
https://doi.org/10.1109/iccv.2001.937709
http://arxiv.org/abs/2003.11228
http://arxiv.org/abs/1905.00641

Page 22 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

 5. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014). arXiv: 1409.
1556

 6. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In: Proceedings of the the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778. https:// doi. org/ 10. 1109/ cvpr. 2016. 90

 7. K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV) (2016), pp. 630–645

 8. T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: a survey. J. Mach. Learn. Res. 20, 1997–2017 (2019)
 9. Y. Liu, Y. Sun, B. Xue, M. Zhang, G.G. Yen, K.C. Tan, A survey on evolutionary neural architecture search. IEEE Trans.

Neural Netw. Learn. Syst. (2021)
 10. K. Zhang, Z. Zhang, Z. Li, Y. Qiao, Joint face detection and alignment using multitask cascaded convolutional net-

works. IEEE Signal Process. Lett. 23, 1499–1503 (2016). https:// doi. org/ 10. 1109/ lsp. 2016. 26033 42
 11. K. Zhang, Z. Zhang, H. Wang, Z. Li, Y. Qiao, W. Liu, Detecting faces using inside cascaded contextual CNN. In: Proceed-

ings of the IEEE International Conference on Computer Vision (ICCV) (2017), pp. 3171–3179. https:// doi. org/ 10. 1109/
iccv. 2017. 344

 12. D. Triantafyllidou, P. Nousi, A. Tefas, Fast deep convolutional face detection in the wild exploiting hard sample min-
ing. Big Data Res. 11, 65–76 (2018). https:// doi. org/ 10. 1016/j. bdr. 2017. 06. 002

 13. R. Ranjan, V.M. Patel, R. Chellappa, Hyperface: a deep multi-task learning framework for face detection, landmark
localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41, 121–135 (2019).
https:// doi. org/ 10. 1109/ TPAMI. 2017. 27812 33

 14. P. Hu, D. Ramanan, Finding tiny faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR) (2017), pp. 1522–1530. https:// doi. org/ 10. 1109/ cvpr. 2017. 166

 15. X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-time rotation-invariant face detection with progressive calibration
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp.
2295–2303. https:// doi. org/ 10. 1109/ cvpr. 2018. 00244

 16. J. Han, D. Zhang, G. Cheng, N. Liu, D. Xu, Advanced deep-learning techniques for salient and category-specific
object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018). https:// doi. org/ 10. 1109/ msp. 2017. 27491
25

 17. S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, Faceboxes: a CPU real-time face detector with high accuracy. In: IEEE
International Joint Conference on Biometrics (IJCB) (2017). https:// doi. org/ 10. 1109/ btas. 2017. 82726 75

 18. H. Zhang, X. Wang, J. Zhu, C.-C.J. Kuo, Fast face detection on mobile devices by leveraging global and local facial
characteristics. Signal Process. Image Commun. (2019). https:// doi. org/ 10. 1016/j. image. 2019. 05. 016

 19. Y. Yoo, D. Han, S. Yun, EXTD: extremely tiny face detector via iterative filter reuse (2019). arXiv: 1906. 06579
 20. Y. He, D. Xu, L. Wu, M. Jian, S. Xiang, C. Pan, Lffd: a light and fast face detector for edge devices (2019). arXiv: 1904.

10633
 21. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2: inverted residuals and linear bottlenecks.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 4510–4520.
https:// doi. org/ 10. 1109/ cvpr. 2018. 00474

 22. R.J. Wang, X. Li, C.X. Ling, Pelee: a real-time object detection system on mobile devices. Adv. Neural Inf. Process. Syst.
31, 1963–1972 (2018)

 23. J. Redmon, A. Farhadi, Yolov3: an incremental improvement. arXiv (2018)
 24. A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: optimal speed and accuracy of object detection (2020). arXiv: 2004.

10934
 25. Ultralytics: Yolov5. (2021). https:// github. com/ ultra lytics/ yolov5
 26. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, SSD: single shot multibox detector. In: Proceed-

ings of the European Conference on Computer Vision (ECCV) (2016), pp. 21–37
 27. Z. Tian, C. Shen, H. Chen, T. He, FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision (2019), pp. 9627–9636. https:// doi. org/ 10. 1109/ iccv. 2019. 00972
 28. X. Zhou, D. Wang, P. Krähenbühl, Objects as points (2019). arXiv: 1904. 07850
 29. B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning (2016). arXiv: 1611. 01578
 30. B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for scalable image recognition. In: 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 8697–8710. https:// doi. org/ 10. 1109/
CVPR. 2018. 00907

 31. H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture search by network transformation. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

 32. M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q.V. Le, Mnasnet: platform-aware neural architecture
search for mobile. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp.
2815–2823. https:// doi. org/ 10. 1109/ CVPR. 2019. 00293

 33. Y. Akimoto, S. Shirakawa, N. Yoshinari, K. Uchida, S. Saito, K. Nishida, Adaptive stochastic natural gradient method
for one-shot neural architecture search. In: Proceedings of the 36th International Conference on Machine Learning
(ICML) (2019), pp. 171–180

 34. H. Cai, L. Zhu, S. Han, ProxylessNAS: direct neural architecture search on target task and hardware. In: International
Conference on Learning Representations (2019)

 35. X. Dong, Y. Yang, Searching for a robust neural architecture in four GPU hours. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2019), pp. 1761–1770. https:// doi. org/ 10. 1109/ CVPR. 2019. 00186

 36. H. Liu, K. Simonyan, Y. Yang, Darts: differentiable architecture search. In: International Conference on Learning Repre-
sentations (2019)

 37. B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, K. Keutzer, FBNet: hardware-aware efficient con-
vnet design via differentiable neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2019), pp. 10734–10742. https:// doi. org/ 10. 1109/ cvpr. 2019. 01099

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/lsp.2016.2603342
https://doi.org/10.1109/iccv.2017.344
https://doi.org/10.1109/iccv.2017.344
https://doi.org/10.1016/j.bdr.2017.06.002
https://doi.org/10.1109/TPAMI.2017.2781233
https://doi.org/10.1109/cvpr.2017.166
https://doi.org/10.1109/cvpr.2018.00244
https://doi.org/10.1109/msp.2017.2749125
https://doi.org/10.1109/msp.2017.2749125
https://doi.org/10.1109/btas.2017.8272675
https://doi.org/10.1016/j.image.2019.05.016
http://arxiv.org/abs/1906.06579
http://arxiv.org/abs/1904.10633
http://arxiv.org/abs/1904.10633
https://doi.org/10.1109/cvpr.2018.00474
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/iccv.2019.00972
http://arxiv.org/abs/1904.07850
http://arxiv.org/abs/1611.01578
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00186
https://doi.org/10.1109/cvpr.2019.01099

Page 23 of 23Luo and Wang EURASIP Journal on Advances in Signal Processing (2022) 2022:43

 38. E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier architecture search. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33 (2019), pp. 4780–4789. https:// doi. org/ 10. 1609/ aaai. v33i01.
33014 780

 39. G. Kyriakides, K. Margaritis, Regularized evolution for macro neural architecture search. In: IFIP International Confer-
ence on Artificial Intelligence Applications and Innovations (2020), pp. 111–122

 40. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, et al.,
Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing (2019),
pp. 293–312. https:// doi. org/ 10. 1016/ B978-0- 12- 815480- 9. 00015-3

 41. M. Tan, R. Pang, Q.V. Le, EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2020), pp. 10781–10790. https:// doi. org/ 10. 1109/ cvpr4 2600.
2020. 01079

 42. N. Wang, Y. Gao, H. Chen, P. Wang, Z. Tian, C. Shen, Y. Zhang, NAS-FCOS: fast neural architecture search for object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp.
11943–11951. https:// doi. org/ 10. 1109/ cvpr4 2600. 2020. 01196

 43. H. Xu, L. Yao, W. Zhang, X. Liang, Z. Li, Auto-FPN: automatic network architecture adaptation for object detection
beyond classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp.
6649–6658. https:// doi. org/ 10. 1109/ iccv. 2019. 00675

 44. G. Ghiasi, T.-Y. Lin, Q.V. Le, NAS-FPN: learning scalable feature pyramid architecture for object detection. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 7036–7045. https:// doi.
org/ 10. 1109/ cvpr. 2019. 00720

 45. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient
convolutional neural networks for mobile vision applications (2017). arXiv: 1704. 04861

 46. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. In:
Advances in Neural Information Processing Systems (NIPS) (2015), pp. 91–99. https:// doi. org/ 10. 1109/ tpami. 2016.
25770 31

 47. S. Yang, P. Luo, C.C. Loy, X. Tang, WIDER FACE: a face detection benchmark. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016), pp. 5525–5533. https:// doi. org/ 10. 1109/ cvpr. 2016. 596

 48. V. Jain, E. Learned-Miller, FDDB: a benchmark for face detection in unconstrained settings. Technical report, Techni-
cal Report UM-CS-2010-009, University of Massachusetts, Amherst (2010)

 49. Y. Zhu, H. Cai, S. Zhang, C. Wang, Y. Xiong, TinaFace: strong but simple baseline for face detection (2020). arXiv: 2011.
13183

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://doi.org/10.1109/cvpr42600.2020.01079
https://doi.org/10.1109/cvpr42600.2020.01079
https://doi.org/10.1109/cvpr42600.2020.01196
https://doi.org/10.1109/iccv.2019.00675
https://doi.org/10.1109/cvpr.2019.00720
https://doi.org/10.1109/cvpr.2019.00720
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/cvpr.2016.596
http://arxiv.org/abs/2011.13183
http://arxiv.org/abs/2011.13183

	Automatically search an optimal face detector for a specific deployment environment
	Abstract
	1 Introduction
	2 Related work
	2.1 Lightweight CNN-based face detector
	2.2 Neural architecture search

	3 Methods
	3.1 Problem definition
	3.2 Evolutionary algorithm
	3.3 Detector structure
	3.4 Searching space
	3.5 Mutation and crossover

	4 Experiments
	4.1 Datasets
	4.2 Experiment settings

	5 Result and discussion
	5.1 Evaluation of searched detectors
	5.2 Searching time
	5.3 Speed and complexity comparison
	5.4 Comparison with random search and handcrafted detectors
	5.5 Evolution process analysis
	5.6 Visualization of the detection results

	6 Conclusion
	References

