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1  Introduction
With the growing interest in oceanic exploration, underwater robots, i.e., autonomous 
underwater vehicles (AUVs), play a vital role in marine research activities, such as ocean 
pollutant monitoring [1], marine biology exploration [2], and pipeline inspection [3, 4]. 
To maximize the AUV’s efficiency, reliable navigation information is essential and pre-
cise positioning is mandatory for effective navigation and control [5]. A long-baseline 
system (LBL) is an acoustic positioning technology for AUVs, affording high accuracy 
and a broad operational spectrum [6, 7]. However, an LBL positioning system is typically 
affected by biological noise, multipath fading channels, and other environmental noise, 
reducing the AUV’s distance measurement accuracy in a low signal-to-noise ratio (SNR) 
and reverberation environment, ultimately affecting the AUV’s positioning accuracy.
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The time difference of arrival (TDOA) method is commonly employed to calculate 
the AUV—hydrophone distance to accomplish AUV localization. The AUV’s posi-
tion is determined based on the time differences of the sound source signal arriving 
at different hydrophone receivers, which lowers the time synchronization require-
ments and avoids errors induced by the time synchronization between the sound 
source and the hydrophones [8]. However, an AUV often operates in a low SNR and 
multipath propagation environment, requiring TDOA to increase precision and 
accuracy. Thus, researchers have proposed several methods to solve these problems. 
For example, general cross-correlation (GCC) [9, 10] is a generic TDOA estimation 
method. GCC can be divided into two steps. The first step contains the calculation of 
two-time series signals. In the second step, the pre-filter is estimated. The pre-filter 
selection depends on the environment and the signal strength, with the pre-filter’s 
cross-correlation being sensitive to noise and reverberation [11]. Although GCC 
can utilize several pre-filter types, e.g., phase transform (PHAT) [12, 13] and maxi-
mum likelihood (ML) [14], these pre-filters are estimated by calculating the impulse 
response function (IRF) of the underwater acoustic system. However, IRF is not con-
stant in an underwater environment, and thus, it is still challenging to estimate the 
impulse response function in various underwater environments [15]. Furthermore, 
multipath signals and spurious noise peaks lead to anomalous time delay estimates 
in the underwater environment [16], affecting GCC’s performance. The difference 
between the main peak and the fake peak of the calculated values close to the main 
peak is not apparent when an AUV operates in a low SNR and reverberant environ-
ment, further enlarging the error. With the development of multi-information fusion 
technology, the work of [17–19] developed a system architecture including Doppler 
Velocity Log (DVL), Strapdown Inertial Navigation System (SINS), Global Position-
ing System (GPS), and LBL. Although these systems achieve accurate positioning, 
they do not solve the positioning difficulty brought by the multipath transmission 
of the underwater acoustic signal. Furthermore, such a system is highly complex and 
costly.

Spurred by the deficiencies of current methods, this paper proposes a new AUV 
position estimation architecture. The suggested technique involves a hybrid localiza-
tion algorithm that combines the Chan [20] and Taylor series expansion algorithms 
[21], where the fast positioning speed of the Chan algorithm generates the initializa-
tion values for the Taylor algorithm. Furthermore, regarding the crucial time delay 
parameter estimation in the hybrid algorithm, we suggest an improved weighing 
function that combines the ML and empirical mode decomposition (EMD) methods. 
Specifically, the EMD method estimates the AUV’s signal and noise, which is then 
input to ML to obtain the pre-filter function. Extensive simulations in MATLAB/Sim-
ulink verify the effectiveness of the proposed method.

This paper is organized as follows. Section  2 describes the long-baseline system 
architecture and explains the hybrid localization algorithm combining the Chan algo-
rithm and the Taylor series expansion algorithm. Section 3 introduces the empirical 
mode decomposition based on the maximum likelihood method, while Sect.  4 pre-
sents the simulation process and discusses the corresponding results. Finally, Sect. 5 
concludes this based on theoretical verification and simulation results.
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2 � Methods
2.1 � LBL architecture

For AUV localization, an LBL system includes, for example, a GPS, a base station, and a 
ground working system (Fig. 1). Such a setup involves at least four floating base stations, 
where the least-squares solution can be applied to provide the required acoustic infor-
mation for the location, with the distance to each baseline being 800  m. Each station is 
equipped with a wireless signal transmitter, hydrophone, and satellite for self-geolocation, 
whereas the AUV is equipped with an inertial navigation system, depth transducer, and 
sonar.

In an LBL setup, the AUV initially acquires its position through GPS when floating on 
the water surface. When underwater, the AUV continuously sends an acoustic signal to the 
hydrophones. Given that the floating base stations may move due to waves, a GPS geolo-
cates the base stations in real time. Hence, each base station sends the received acoustic 
signals and positioning information to the ground working station. A positioning algorithm 
solves the AUV’s location at the ground working system, which is then sent to the primary 
base station H1 that relays it to the AUV.

2.2 � LBL positioning algorithm

An LBL system provides the distance between each base stations and the AUV, as measured 
by the TDOA positioning system will be described in the next section. The latter comprises 
one main and N − 1 auxiliary base stations, as illustrated in Fig. 2. Let the location of each 
base station be (xi, yi, zi)T , i = 1, 2, . . . ,N  , where i = 1 represents the main base station and 
i = 2, 3, . . . ,N  the auxiliary ones. The target’s spatial position is (x, y, z)T , Ri represents the 
distance between the target and the i-th station, ti refers to the time when the signal reaches 
the i-th base station from the target, and Ri,1 denotes the distance of the difference between 
the target to the i-th base station and the target to the main station, expressed as:

where c denotes the sound velocity.

(1)
{

Ri =
√

(x − xi)2 + (y− yi)2 + (z − zi)2

Ri,1 = Ri − R1 = c(ti − t1)

Fig. 1  Architecture of LBL
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The TDOA measurement value obtained by solving the hyperbolic equation is used 
to solve the subsequent algorithm involving the Chan and Taylor algorithms. Chan’s 
algorithm is a non-recursive hyperbolic equation system with an analytical expression 
solution. When the TDOA measurement error is too large, the localization accuracy 
drops sharply [22]. The Taylor series expansion algorithm is a recursive algorithm that 
achieves high positioning accuracy if some initial estimated information is provided. 
Otherwise, accurate positioning cannot be achieved [23]. Hence, we propose the 
Chan–Taylor hybrid algorithm illustrated in Fig.  3, where the Chan algorithm pro-
vides the initialization values for the Taylor algorithm.

Once TDOA’s time delay is obtained, we utilize the weighted least squares (WLS) of 
Chan’s algorithm to obtain the initial solution. Then, the first estimated coordinates 
and TDOA measurement value are re-employed in the WLS for the second time to 
obtain the improved estimated coordinates as follows:

where Ki = x2i + y2i + z2i , xi,1 = xi − x1, yi,1 = yi − y1, and zi,1 = zi − z1 . Let 
za =

(

x, y, z,R1

)T and x, y, z,R0 are linearly independent. Considering the existence of 
TDOA observation noise, the solution of the least weighted bivariate estimation is given 
by:

where h = 1
2











K2 − K1 − R2
2,1

K3 − K1 − R2
3,1

...

KN − K1 − R2
N ,1











 , Ga =











x2,1 y2,1 z2,1 R2,1

x3,1 y3,1 z3,1 R3,1

...
xN ,1

...
yN ,1

...
...

zN ,1 RN ,1











−1

 , ϕ = c2BQB , Q 

is the covariance matrix of the TDOA measurement value, and B = diag(R0
2,R

0
3, . . . ,R

0
N ) 

containing the unknown distance from the radiation source to each base station. When 

(2)R2
i,1 + 2Ri,1R1 = Ki − K1 − 2xi,1x − 2yi,1y− 2zi,1z

(3)ẑa = (GT
a ϕ

−1Ga)
−1GT

a ϕ
−1h

Fig. 2  TDOA positioning model
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the distance is far, R0
i  is close to a constant, and thus, we employ the TDOA covariance 

matrix Q instead of ϕ and obtain:

The parameter ẑa is obtained from Eq.  (4), which is then substituted to Eq.  (3) to 
obtain the solution of B . The value of ẑa in Eq. (4) is obtained when each element of za 
is independent; in fact, R1 in za is related to x, y, z . Therefore, to obtain a higher accu-
racy position estimation, we employ the initial WLS estimation and retain the linear 
perturbation term in Eq. (3) and then by ignoring the quadratic term error we obtain 
from the WLS the second estimation results:

where h
′
=









(x0 + e1 − x1)
2

(y0 + e2 − y1)
2

(z0 + e3 − z1)
2

(R0
1 + e4)

2









 , G
′

a =







1 0 0
0 1 0
0 0 1
1 1 1






,z′a =





(x − x1)
2

(y− y1)
2

(z − z1)
2



 , and e1, e2, e3, e4 is 

the error estimate of za . Finally, the estimated results of the two WLS are be expressed 
as:

(4)ẑa = (GT
a Q

−1Ga)G
T
a Q

−1h

(5)z
′
a =

(

G′T
a B′−1GaQ

−1GaB
′−1G′

a

)−1(

G′T
a B′−1GaQ

−1GaB
′−1

)

h′

Fig. 3  Flowchart of the proposed Chan–Taylor hybrid algorithm
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Then, the initial position 
(

x(0), y(0), z(0)
)

 is determined based on the target’s prior infor-
mation. Considering the positioning results of the Chan algorithm as the iterative initial 
value of the Taylor algorithm, fi function is defined according to Eq. (1):

where i = 1, 2, . . . ,N  . We expand the objective of Eq. (7) for the 
(

x(0), y(0), z(0)
)

 case and 
according to the Taylor series. Furthermore, we ignore the high-order terms above the 
quadratic term in the expansion section and define f̂i = fi

(

x(0), y(0), z(0), xi, yi, zi
)

 as:

whereR̂i =

√

(

x(0) − xi
)2

+
(

y(0) − yi
)2

+
(

z(0) − zi
)2 , ai1 =

x(0)−xi
R̂i

− x(0)−x1
R̂1

 , 

ai2 =
y(0)−yi

R̂i
−

y(0)−y1

R̂1
 , ai2 = z(0)−zi

R̂i
− z(0)−z1

R̂1
 . Then, Eq. (8) can be rewritten as:

where ε =









e2
e3
...
en









 , D =













m2 − f̂2

m3 − f̂3
...

mn − f̂n













 , A =









a21
a31
...

an1

a22
a32
...

an2

a23
a33
...

an3









 , δ =





�x
�y
�z



 , 

mi = c(ti − t1) , and ei is the measurement error. Considering δ as an unknown variable 
and supposing that Q is the covariance matrix of ε , we adopt the WLS estimation 
method, and Eq. (9) is rewritten as:

The calculated δ value is then compared against the estimated error value η . If the con-
dition is not met regarding the estimated error value η, the initial value will be updated, 
and iteration continues until the requirement is met.

3 � EMD–ML method
This method’s objective is first to obtain the initial nonlinear TDOA value provided by 
the linear equation system of Eq. (1). GCC is one of the most popular methods for esti-
mating time delay and assumes that two identical base stations H1 and H2 are within a 
reverberant environment. Among these base stations, H1 acquires signal x1(t) and H2 
the signal x2(t) from a source s(t) , expressed as:

(6)zp = ±

�

z
′

a +





x1
y1
z1





(7)
fi
(

x, y, z, xi, yi, zi
)

=

√

(x − xi)
2 +

(

y− yi
)2

+ (z − zi)
2

−

√

(x − x1)2 + (y− y1)2 + (z − z1)2

(8)fi

(

x(0), y(0), z(0), xi, yi, zi

)

≈ R̂i − R̂1 + ai,1�x + ai,2�y+ ai,3�z

(9)Aδ = D + ε

(10)δ =
[

ATQ−1A
]−1

ATQ−1D

(11)
{

x1(t) = s(t)+ w1(t)
x2(t) = αs(t + τ)+ w2(t)
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where w1(t) and w2(t) are Gaussian noise uncorrelated with s(t) , τ represents the delay, 
and α is an attenuation coefficient.

The cross-correlation function Rx1x2 generated between x1(t) and x2(t) is:

The generalized cross-correlation function Rx1x2 is calculated by applying in Eq.  (12) 
the cross-correlation spectra and suitable pre-filter values. The maximum value of Rx1x2 
provides information about the time delay τ:

where �
(

f
)

 is a pre-filter, and Gx1x2(f ) represents the cross-spectral density. The fre-
quency domain of the cross-correlation represents the cross-spectral density. Selecting 
pre-filter �

(

f
)

 depends on the signal’s propagation environment and SNR, with the lit-
erature proposing several pre-filters, i.e., general cross-correlation (GCC), phase trans-
form (PHAT), and maximum likelihood (ML) method. This section proposes calculating 
the delay time τ by combining empirical mode decomposition (EMD) and maximum 
likelihood (ML).

3.1 � Maximum likelihood method

Hannan and Thomson [24] developed the coherence-based maximum likelihood pre-
filter defined as:

where

Furthermore, Stephane and Benoit [25] proposed the power spectral-based maximum 
likelihood pre-filter appropriate for the reverberation environment.

where S(f ) , W1(f ) and W2(f ) represent the power spectral densities of s(t) , w1(t) and 
w2(t) , respectively. The signal s(t) can be estimated from x1(t) and x2(t) as follows:

where ∗ represents the convolution operation, and I1 and I2 are the impulse responses of 
base stations H1 and H2, respectively. Once the impulse response for each hydrophone 
has been calculated, the required signal generated by sensor s(t) , and noise w1(t) and 
w2(t) is estimated utilizing a deconvolution operation.

(12)Rx1x2(τ ) =
∞
∫

−∞
�
(

f
)

Gx1x2(f )e
j2π f τdf

(13)D = arg max
[

Rx1x2(τ )
]

(14)�
(

f
)

=

∣

∣γ12(f )
∣

∣

2

∣

∣Gx1x2(f )
∣

∣

[

1−
∣

∣γ12(f )
∣

∣

2
]

(15)
∣

∣γ12(f )
∣

∣

2
=

∣

∣Gx1x2(f )
∣

∣

2

Gx1x1(f ) · Gx2x2(f )

(16)�
(

f
)

=
S(f )

W1(f )W2(f )
·

1
[

1+
S(f )
W1(f )

+
S(f )
W2(f )

]

(17)
{

x1(t) = [I1 ∗ s](t)+ w1(t)
x2(t) = [I2 ∗ s](t)+ w2(t)
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3.2 � Empirical mode decomposition method

Conventional signal processing techniques include time-domain and frequency-domain 
analysis. Most of them depend on the Fourier transform because they assume that the 
process of generating a signal is stationary and linear. Hence, Huang et al. [26] propose a 
time–frequency analysis method, named empirical mode decomposition (EMD), appro-
priate for nonlinear and non-stationary signal generation scenarios.

EMD is employed to extract the required information from noisy signals, with the cor-
responding EMD signal processing flow presented in Fig. 4, where x(t) represents a low 
SNR signal. The intrinsic mode function (IMF) conditions include the two conditions: 
the number of crossing zeros and the number of extreme points equal or at most one. 
The difference throughout the time course and the mean value of the upper envelope 
defined by the local maxima and the lower envelope defined by the local minima is zero 
at any point on the signal, i.e., the signal is symmetric about the time axis. During this 
process, all the extreme points on x(t) are determined and connected with a cubic spline 
curve to form the upper and the lower envelopes. The difference between x(t) and the 
mean value m1 of the lower and upper envelope curves provides H1:

(18)H1 = x(t)−m1

Fig. 4  Flowchart of EMD
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H1 is regarded as a new x(t) and this process repeats until Hi meets IMF conditions 
and then becomes the original signal ( C1 ) by filtering out IMF’s first order. Usually, the 
first stage IMF component C1 contains the highest frequency component of the signal. 
Then, we separate C1 from x(t) to obtain a different signal r1 with the high-frequency 
components removed:

Considering r1 as a new signal, Eq. (18) is reapplied until the residual signal becomes a 
monotonic function and the IMF component is not screened out.

Mathematically, x(t) is represented as the sum of the IMF components and a residual 
term:

where rn(t) is the residual quantity representing the average signal trend and each IMF 
component Cj(t) represents the signal’s components in different frequencies, i.e., the fre-
quency components contained in each frequency band are different. In the same IMF 
component, the instantaneous frequency at different times also varies and the local time 
distribution of this different frequency component changes with the signal changes.

3.3 � EMD–ML time delay estimation

In the ML method of Stephen and Benoit [25], signal and noise are estimated using 
deconvolution. By calculating the impulse response function of the acoustic medium, 
the signal and noise are estimated from the received noisy signal. Moreover, the esti-
mated signal and noise are input to Eq. (16) to obtain the GCC function. However, this 
method is estimated by calculating the IRF of the underwater acoustic system, and IRF is 
not constant in an underwater environment. In response to these problems, the EMD–
ML method proposed in this study.

The signal ( s1(t), s2(t) ) and noise ( w1(t),w2(t) ) are estimated from the noisy sig-
nals x1(t) and x2(t) , as explained in the previous section. The EMD–ML pre-filter is 
expressed in Eq. (16).

By applying the power spectral densities of the EMD estimated signal s1(t) and noise 
w1(t) and w2(t) in Eq. (16), the EMD–ML pre-filter �ml

(

f
)

 is estimated in Eq. (22).

where S1(f ) , W1(f ) , and W2(f ) represent the power spectral densities of s1(t) , w1(t) and 
w2(t), respectively. By substituting the pre-filter value in Eq. (22), the generalized cross-
correlation function Rx1x2(τ ) is calculated, with its maximum value providing the infor-
mation about the time delay τ.

(19)r1 = x(t)− C1

(20)rn = rn−1 − Cn

(21)X(t) =

n
∑

j=1

Cj(t)+ rn(t)

(22)�ml

(

f
)

=
S1(f )

W1(f )W2(f )
·

1
[

1+
S1(f )
W1(f )

+
S1(f )
W2(f )

]
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The EMD–ML algorithm integrates two processes, it shows that the proposed method 
does not increase the computational complexity, the pre-filtering effect can be optimized, 
and the accuracy of delay time estimation can be improved.

4 � Results and discussion
4.1 � Simulation of AUV working environment

The underwater environment in which the AUV operates is a low SNR environment, where 
multiple sound wave reflections from the water surface and seabed create several delayed 
and attenuated versions of the source signal. Each hydrophone receives these in addition to 
the direct path signal. This perceivable phenomenon, known as reverberation, is illustrated 
in Fig. 5. Let a hydrophone receive n acoustic signal paths. The unit impulse signal received 
by each hydrophone is expressed as follows:

where αn is the attenuation coefficient of the nth propagation path, τn is the relative time 
delay of the transmission along the nth propagation path, and αn is related to the under-
water environment. Several empirical equations exist to measure the attenuation coef-
ficient [27]. Since the simulation signal frequency used in this paper is less than 5 kHz, 
we consider the viscous absorption of pure water in low frequency utilizing the Thorpe 
attenuation model:

where the attenuation α(f ) is measured in dB/km and frequency f  in kHz.
Then, the base stations receive a signal xi(t) generated from Eq. (17). The simulated sound 

source signal s(t) adopts the amplitude-modulated signal:

(23)Rx1x2(τ ) =
∞
∫

−∞
�ml

(

f
)

Gx1x2(f )e
j2π f τdf

(24)Ii =

N
∑

n=1

αnδ(t − τn)

(25)α(f ) =
0.109f 2

1+ f 2
+

40.7f 2

4100+ f 2
+ 3.01× 10−4f 2

(26)s(t) = 1000 ∗ sin (2 ∗ π ∗ 4000 ∗ t)+ 5000 ∗ sin(2 ∗ π ∗ 2000 ∗ t)

Fig. 5  Multipath propagation
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We suppose that the AUV moves slowly, and therefore, the acoustic channel is a lin-
ear time-invariant (LTI) system. According to the sound velocity distribution shown 
in Fig.  6, we establish the AUV motion model to simulate sound propagation and 
reception.

4.2 � Time delay estimated simulation of motion AUV

For the scenario examined, the three-dimensional trajectory of the AUV is illustrated in 
Fig. 7, involving four base stations at H1(0,0,0), H2(800,0,0), H3(0,800,0), H4(0,800,800).

Fig. 6  Sound velocity distribution curve

Fig. 7  The trajectory of the AUV



Page 12 of 20Yang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:38 

In this system, noise is simulated through a Gaussian distribution with zero mean and 
a variance of one. Specifically, we consider white Gaussian noise of 5–30 dB SNR with a 
5 dB step size, and EMD extracts the required information from the noise signal.

Since the AUV trajectory is spiral, the signals received from the different base station 
are similar. Therefore, we compare the time estimation accuracy from H1 and H2 under 
different SNR levels and evaluate the effectiveness of different methods on the time delay 
estimation. The corresponding results are presented in Table 1.

Figure 8 highlights that when the SNR is lower than 15 dB, GCC attains a poor aver-
age estimated time delay value because GCC does not have any clear peak at the max-
imum value influenced by noise. Therefore, this method is unsuitable for reverberant 
scenarios and SNR below 20 dB environment (Figs. 9, 10). The generalized cross-cor-
relation function presents a lower average time delay estimation error than the tra-
ditional generalized cross-correlation scheme using the PHAT pre-filter. According 
to Fig.  11, for SNR = 15  dB, PHAT has a clear peak at the maximum value, i.e., the 
pre-filter suppresses noise, and therefore, this pre-filter is suitable for reverberant 
and high noise environments. Figure 12 shows that the generalized cross-correlation 
function using the Hannan and Thomson ML pre-filter attains a maximum value 
when SNR is 15 dB. Nevertheless, in Fig. 8, the average estimated time delay error is 

Table 1  Time delay estimation for GCC, PHAT, ML, and EMD–ML

SNR/dB GCC​ PHAT ML EMD–ML

Average 
error/s

RMSE Average 
error/s

RMSE Average 
error/s

RMSE Average 
error/s

RMSE

5 0.265 3.090 0.119 0.653 0.201 2.690 0.076 0.968

10 0.198 2.324 0.082 0.603 0.248 3.020 0.028 0.322

15 0.123 1.344 0.038 0.279 0.176 2.131 0.013 0.421

20 0.046 0.450 0.021 0.283 0.050 0.520 0.012 0.181

25 0.004 0.044 0.005 0.003 0.012 0.128 0.027 0.387

30 0.001 0.013 0.001 0.002 0.001 0.015 0.031 0.439
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Fig. 8  Average time delay error of different methods
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higher than the GCC pre-filter method. Therefore, this method is more suitable for 
environments where the SNR is higher than 20 dB.

Considering the EMD–ML method, the received signal is decomposed into IMFs uti-
lizing an empirical shifting process. The simulated hydrophone’s H1 IMF signals are 
illustrated in Fig. 13. In the time domain, there is some difficulty in discerning the noise 
signal present in Fig.  13 IMFs. To separate the noise signal, a Fourier transform pro-
cesses the IMFs with the corresponding result depicted in Fig.  14. The first two IMFs 
have a wider frequency distribution and a relatively smaller amplitude characteristic 
than the other IMFs, revealing the noise signal characteristic that determines the noise 
signal. By adding the remaining IMFs and the residue, the estimated signal is illustrated 
in Fig. 15. Finally, the estimated signals and noise are input to the ML pre-filter.

Fig. 9  Generalized cross-correlation method (SNR = 15 dB)

Fig. 10  RMSE distribution of different methods
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Figure 16 shows that EMD–ML provides a sharp generalized correlation function 
peak, which means that this method suppresses noise and the reflected sound sources 
generated in the reverberant environment.

The results of the proposed EMD–ML method are presented in Fig.  8. When the 
SNR is lower than 15 dB, it has a lower average time delay estimate error than GCC, 
ML, and PHAT. Also from Table 1, it is observed that the average time delay estimate 
error of EMD–ML is reduced by 0.189  s and 0.125  s compared with GCC and ML, 
respectively, when the SNR is 5  dB. At same condition, the accuracy of the average 
delay estimate error is reduced by 0.043  s. And when the SNR is lower than 15 dB, 
EMD has better performance than other methods in the accuracy of time estimation. 
Furthermore, the RMSE value is more accurate than the other filter affording greater 
stability, according to Fig. 10. However, according to Fig. 8, when SNR exceeds 15 dB, 
the average time delay estimation error of the EMD–ML method increases due to the 

Fig. 11  PHAT pre-filter method (SNR = 15 dB)

Fig. 12  ML pre-filter method (SNR = 15 dB)



Page 15 of 20Yang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:38 	

improvement of SNR, the frequency of the combined components in the mixed sig-
nal is close, and the information between the decomposed IMF is coupled with each 
other. IMF1 and IMF2 not only include noise information but also signal information. 
Modal aliasing makes EMD decomposition results unable to represent the real physi-
cal process, resulting in signal and noise not being well separated.

Through the computational time of different filtering algorithms at 100 points, the 
computational time between them is compared. From Table  2, the computational 
time of PHAT is the least, and the calculation time of GCC and ML filtering algo-
rithm is similar. The computational time of EMD–ML is 0.3 s more than that of ML 
filtering algorithm, which is because the EMD–ML filtering algorithm increases the 

Fig. 13  Received IMF signal (SNR = 15 dB)

Fig. 14  Spectral of received signal IMFs (SNR = 15 dB)
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Fig. 15  EMD processing result. A Received signal, B estimated signal by EMD, and C estimated noise by EMD
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signal and noise extraction steps and has an impact on the computational time. How-
ever, compared with the improvement of performance such as accuracy and stability 
when SNR is lower than 15 dB, the increase in computational time is still within an 
acceptable range.

The time delay is estimated from the maximum value of the generalized cross-corre-
lation function Rx1x2 , with the EMD–ML pre-filter method achieving a lower estimated 
time delay than the competitor methods due to modal aliasing in the EMD process. The 
experimental results verify the effectiveness of the EMD–ML method and demonstrate 
that it is more suitable for low SNR and reverberant environments.

4.3 � Chan–Taylor hybrid positioning algorithm

This section employs the EMD–ML method to estimate the TDOA value of various 
base stations. Then, the Chan and Chan–Taylor hybrid algorithms are utilized for AUV 
positioning.

The trajectories acquired by various positioning methods are illustrated in Fig.  17, 
highlighting that some positioning estimations deviate from the true trajectory when 
the Chan method is employed. We also apply the Chan–Taylor hybrid positioning 
algorithm for the same trajectory and find minor deviations, indicating that this posi-
tioning algorithm effectively limits Chan’s error. The Chan–Taylor hybrid positioning 
algorithm affords a trajectory closer to the real one for the entire AUV, showing that 

Fig. 16  EMD–ML pre-filter method (SNR = 15 dB)

Table 2  Computational efficiency of GCC, PHAT, ML, and EMD–ML

5 dB 10 dB 15 dB 20 dB 25 dB

GCC​ 1.866 s 1.616 s 1.425 s 0.825 s 0.716 s

ML 1.991 s 1.233 s 1.225 s 1.225 s 1.375 s

PHAT 0.433 s 0.383 s 0.366 s 0.383 s 0.366 s

EMD–ML 2.291 s 1.533 s 1.525 s 1.525 s 1.675 s
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the Chan–Taylor hybrid algorithm is more accurate than simply using the Chan method. 
The corresponding positioning error results are illustrated in Fig. 18.

Due to the singular solution of the Chan algorithm, some localization errors exceed 
50  m while the maximum error exceeds 250  m at the beginning of the localization 
process. In any case, these errors are limited by the Taylor positioning algorithm. 
In the case where the CHAN algorithm has a stable solution value, the positioning 
error of the Chan algorithm exceeds that of Chan–Taylor. For the simulation exam-
ined here, we used the result of the CHAN algorithm as the initial value of Tay-
lor’s algorithm, and the positioning accuracy of the Chan algorithm increases up to 

Fig. 17  Trajectory positioning results of the Chan and Chan–Taylor hybrid algorithms

Fig. 18  Positioning error of the Chan and Chan–Taylor hybrid algorithm
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4.34 m, demonstrating that combining the Chan and the Taylor positioning algorithm 
improves the overall positioning accuracy.

5 � Conclusions
The positioning accuracy of traditional LBL is reduced due to the time delay estima-
tion under low SNR and reverberation environment. This study proposes a new LBL 
positioning method based on EMD–ML. Specifically, we design a fusion scheme com-
bining the empirical mode decomposition (EMD) and the coherence-based maximum 
likelihood (ML) pre-filter to estimate time delay correctly. Furthermore, we develop 
the Chan–Taylor hybrid positioning algorithm to improve positioning accuracy. 
Simulations verify that the proposed EMD–ML algorithm does not require calculat-
ing the impulse response function, has a higher time delay estimation accuracy and 
is more appealing than the traditional methods GCC, ML, and PAHT. Overall, the 
Chan–Taylor hybrid positioning algorithm affords a higher positioning accuracy in 
low SNR and reverberation environment.
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